
Fluid Properties and Manometry

Introduction
Fluid Mechanics is defi ned as the science that deals with 
a fl uid’s behaviour, when it is at rest for in motion, and the 
fl uid’s interaction with other fl uids or solids at the bound-
aries. Fluid Statics deals with fl uids at rest while Fluid 
Dynamics deals with fl uids in motion. Fluid statics is gener-
ally referred to as hydrostatics when the fl uid is a liquid. 

What is a Fluid?
Matter can be primarily classifi ed as: (a) Solids (b) Liquids 
and (c) Gases

Matter
Inter–molecular

Space Cohesive forces

Solids Small Large

Liquids Large Small

Gases Very large Very small

Liquids and gases (including vapours) are commonly 
referred to as fl uids. A fl uid is defi ned as a substance that 
deforms continuously under the infl uence of a shear stress 
of any magnitude, i.e., when subjected to an external shear 
force, of any magnitude, a fl uid will deform continuously 
as long as the force is applied. A fl uid has negligible shear 

resistance, i.e., it off ers negligible resistance towards an 
applied shear (or tangential) stress that tends to change the 
shape of the fl uid body.

Shear and Normal Stresses
Stress is defi ned as force per unit area (area upon which the 
force acts). Let us consider a small area dA, on the surface 
of a fl uid element, on which a force F acts as shown in the 
fi gure below.

If the tangential and normal components of the force F 
are respectively Ft and Fn, then

Normal to the surface

Tangent to the
surface

q

Fluid element surface

Fn

Ftd

F

Shear stress (τ) at the surface of the fl uid element 

= =
F

dA

F

dA
t cosθ
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3.390  |  Part III  •  Unit 4  •  Fluid Mechanics

Normal stress at the surface of the fluid element 

= =
F

dA

F

dA
n sinθ

Normal stress and shear stress are vector quantities

For a static fluid body, i.e., a body of fluid that is at rest 
or has zero velocity, the shear stress is always zero. Also 
for static fluids, the normal stress is always positive.

Solved Examples
Example 1:  A force F1 (=20 N) is applied on an area A1 
(=0.1 cm2) at the surface of a fluid element in the outward 
direction. The force F1 acts at an angle of 60° from the 
tangential plane at the point of application of the force. 
Another force F2 (=60 N) is applied, in the same manner as 
the force F1, on an another area A2 (=0.2 cm2) at the surface 
of the same fluid element. The ratio of the normal stress at 
area A1 to the shear stress at area A2 is

(A)	 2 : 3	 (B)	 2 3 3:

(C)	 2 3: 	 (D)	 1 3:

Solution:
Area A1:

F1

F1 cos 60°

F1 sin 60°

q = 60°

Normal stress acting on area A1

=
°

=
×

×−
F

A
1

1
4

60 20

0 1 10

3

2

sin

.
= ×3 106

2

N

m

Area A2:

F2

F2 cos 60°

F2 sin 60°

q = 60°

Shear stress acting on area A2

=
°

=
×

× ×−
F

A
2

2
4

60 60 1

0 2 10 2

cos

.
 = ×1 5 106

2
.

N

m

Ratio of the normal stress at area A1 to the shear stress at area A2

=
×
×

= =
3 10

1 5 10

2

3
2 3

6

6.
:or

Example 2:  An example for a normal stress is 
(A)	 Volume	 (B)	 shear stress
(C)	 Pressure	 (D)	 temperature

Solution:
Pressure is an example for a normal stress. In static fluids, 
the pressure at a given position is equal to the normal stress 
at that position.

Example 3:  On an area of 0.1 cm2 at the surface of a static 
fluid element, a force of 40 N is observed to act in the 
outward direction. If the force acts at an angle a from the 
tangential plane at the point of application of the force, and 
the fluid still remains Static then the value of a is
(A)	 0°	 (B)	 30°
(C)	 45°	 (D)	 90°

Solution:

Shear stress acting on the given area =
F

A

cosα

F sin α

F cos α

Area d A

∝

For a static fluid element, Shear stress = 0

	             ⇒ =
F

A

cosα
0

		                 or cos a = 0 ( ∵  F ≠ 0, A ≠ ∞)
		                 \ a = 90°

Fluid Properties
Density (Mass Density or Specific Mass)
Density is defined as mass per unit volume. If m is the mass of 
a fluid body having a volume V, then the density of the fluid, 

denoted by r, is ρ =
m

V
.  The S.I., unit of density is 

kg

m
.

3

For practical calculations, the density of water is taken to be 

the density of water at 4°C which is1000 1 1
kg

m
or

g

cm
or

Kg

L3 3
.  

For most gases, density is inversely proportional to the tem-
perature and proportional to pressure. For liquids, variations in 
pressure and temperature induce a small (negligible) variation 
in the density.

Example 4:  A gas behaves like a real gas at temperature 
T1 and pressure P1. The gas can be made to behave 
approximately like an ideal gas by either changing the 
temperature from T1 to T2 or by changing the pressure from 
P1 to P2. One may then conclude that

(A)	 T2 > T1 and P2 < P1		  (B)	 T2 < T1 and P2 < P1

(C)	 T2 > T1 and P2 > P1	 	 (D)	 T2 < T1 and P2 > P1
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Solution:
Real gases have been experimentally observed to behave 
like ideal gases at low densities.

The density of most gases can be reduced by increasing the 

temperature as ρα 1

T

⎛
⎝⎜

⎞
⎠⎟  or by decreasing the pressure (as 

r a P).

\ T2 > T1 and P2 < P1

Specific Volume
Specific volume is defined as volume per unit mass. The 
reciprocal of a fluid’s density (r) is its specific volume (v), 

i.e., ν
ρ

= =
1 V

m
.  The S.I unit of specific volume is 

M

kg

3
.

Specific Weight (weight Density)
Specific weight is defined as weight per unit volume. The 

specific weight of a fluid, ω ρ= = =
W

V

mg

V
g ,  where g 

is the acceleration due to gravity and W, V, m and r are 
respectively the weight, volume, mass and density of the 

fluid. The S.I. unit of specific weight is kg

m s
or

N

m2 2 3
.  For 

practical calculations, the specific weight of water is taken 

to be 9 81. .
kN

m3

Specific Gravity (Relative Density) 
Specific gravity of a fluid is the ratio of the density of the fluid 
to the density of a standard fluid. The standard fluid is taken 
to be pure water at 4°C. Sometimes for gases, the standard 
fluid is taken to be air at standard temperature and pressure.
Specific gravity of a fluid, 

SGfluid
fluid

standard fluid

fluid

standard fluid

= =
ρ

ρ
ω

ω

Where w is the specific weight? Specific gravity is a dimen-
sionless quantity, i.e., it has no units. For practical calcula-
tions, the specific gravities of water and mercury are taken 
to be 1 and 13.6 respectively.

Example 5:  The specific weight of a body of fluid A is 
twelve times that of a body of fluid B. The acceleration due 
to gravity acting on the fluid A is four times that acting on 
the fluid B. If the specific gravity of fluid B is 1.2, then the 

density of fluid A: in
g

cm
is

3

⎛
⎝⎜

⎞
⎠⎟

(A)	 57.6	 (B)	 3.6	 (C)	 14.4	 (D)	0.4

Solution:

Specific weight of fluid 

Specific weight of fluid 

A

B
A

B

=
ω
ω

		  =
ρ
ρ

A A

B B

g

g
� (1)

		  It is given that 
ω
ω

A

B

A

B

g

g
= =

12

1

4

1
 and 

		  From equation (1), we have 
ρ
ρ

A

B

=
3

1

		  Specific gravity of fluid A

		    = specific gravity of fluid B A

B

×
⎛
⎝⎜

⎞
⎠⎟

ρ
ρ

		    = 1.2 × 3 = 3.6.

Density of fluid A = (specific gravity of fluid A) × (density 
of pure water at 4°C)

 = 3.6 × 1 = 3 6. .
g

cm3

Example 6:  When two immiscible liquids A and B are poured 
into a cylindrical container, then these separate out into two 
distinct layers of different heights as shown in the following 
figure. The specific gravity of liquid A is thrice that of the 
liquid B. If the ratio h1 : h2 is 2 : 1, then the ratio of the mass 
of the liquid A to the mass of the liquid B in the container is

h1B

A h2

(A)	 1 : 6	 (B)	 2 : 3	 (C)	 6 : 1	 (D)	3 : 2

Solution:
If mA and mB are the masses of the liquids A and B 

respectively in the container, then m

m

SG V

SG V
A

B

A A

B B

= ,  where 

SG is the fluid’s specific gravity and V is the volume of the 

fluid. Since the specific gravity of liquid A is greater than 
that of liquid B (SGA = 3 × SGB), liquid A is denser. Hence, 
the height h2 corresponds to the liquid A, i.e., VA = h2 × a, 
where a is the area of the container base and VB = h1 × a

∴ = =
m

m

SG h

SG h
A

B

A

B

2

1

3

2
.

Viscosity
Viscosity is the property of the fluid by virtue of which 
it resists fluid flow, i.e., viscosity represents the inter-
nal resistance (fluid friction) of a  fluid to motion (or the 
fluidity) or to shearing stresses. The S.I. unit of viscosity 

is 
kg

ms
or

Ns

m2
 or Pa.s. Another unit (in C.G.S. units) for 

viscosity is poise.
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1 0 1poise
Ns

m2
= .

Viscosity of water, for practical calculations, is taken to be 1 
centipoise or 0.01 poise. The device that measures viscosity 
is  called a viscometer. 

Variation of Viscosity of Fluids with 
Temperature
The cohesive forces and molecular momentum transfer 
result in viscous forces in fluids.

Since temperature affects the cohesive forces and molec-
ular momentum transfer, viscosity of fluids are affected by 
variations in temperature.

For Liquids
As liquids have a closely packed molecular structure (com-
pared to gases), cohesive forces dominate over the molecu-
lar momentum transfer. With increase in temperature, the 
cohesive forces decrease in liquids, which in turn decreases 
the viscosity?
Hence viscosity of liquids decreases with increase in tem-
perature and vice versa.

The relation between viscosity and temperature in 
liquids is:

μ μ
α β

=
+ +

⎡

⎣
⎢

⎤

⎦
⎥0 2

1

1 t t
,

where
m = viscosity of liquid at t°C, in poise
m0 = viscosity of liquid at 0°C, in poise
a, b = constants for the liquid
The viscosity of water at 1°C is 1 centipoise.
Liquids with increasing order of viscosity are gasoline, 
water, crude oil, castor oil etc.

Gases
In the case of gases, the molecular momentum transfer 
dominates over the cohesive forces. As the temperature 
increases, molecular momentum transfer also increases.

Hence the viscosity of gases increases with increase in 
temperature and vice versa. 

The relation between viscosity and temperature for gases is:

m = m0 + at - bt2

where
m = viscosity of gas at t°C, in poise
m0 = viscosity of gas at 0°C, in poise
a, b = constants for the gas

The relation between absolute temperature (T) and dynamic 
viscosity of an ideal gas is given by Sutherland equation,

Which is 
μ
μ0 0

3

2 0=
⎛
⎝⎜

⎞
⎠⎟

+
+

T

T

T S

T S

( )

( )
,

where
m = viscosity at absolute temperature T
m0 = viscosity at absolute temperature T0
S = Sutherland temperature of the gas (in Kelvin)

Velocity Gradient
Consider the flow of a fluid over a solid surface as shown in 
the figure below. Consider in this fluid flow, two fluid lay-
ers which are at a distance ‘dy’ apart. The upper fluid layer 
(at y + dy) is assumed to move at a velocity of u + du while the 
lower fluid layer (at y) is assumed to move at a velocity of u.

y

y

u

u + duy + dy

u

Upper
layer
Lower
layer

Solid Surface

dy

Then, the velocity gradient 

=
+ −
+ −

=
( )

( )

u du u

y dy y

du

dy

du

dy

u

y

u u

y y
y y y y≈ =

−
−

= =Δ
Δ

2 1

2 1

This equation is valid when y2 is very close to y1 or for a 
linear velocity profile.

Now consider a fluid layer between two very large paral-
lel plates, separated by a distance � , as shown in the follow-
ing figure. 

y = 

y = 0

y

x



Upper plate u = Vu
Force F

Velocity Vu

Velocity
V


(Vu > V


)

u = V


Lower plate

Let a constant parallel force F be applied to the upper plate 
which would move it at a constant speed Vu, after the initial 
dynamics. This force would move the fluid layer in contact 
with the upper plate at the same speed Vu in the direction 
of motion of the upper plate (due to no-slip condition). 
Similarly, if the lower plate moves with a velocity V� ) the 
fluid in contact with the lower plate would move with the 
same velocity V� in the direction of motion of the lower plate.
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If the fluid flow between the plates is steady and laminar, 
then a linear velocity profile is seen to develop in the fluid 
layer. That is, the fluid velocity between the plates varies 
linearly between V�  and Vu.

For the linear velocity profile, the velocity gradient 

du

dy

V V V Vu u=
−
−

=
−� �

� �0

The linear velocity profile is given by u y
y

V Vu( ) ( )= −
� �

Case 1: When the lower plate is held fixed

In this case, V� = 0. Therefore, the velocity gradient

 

du

dy

Vu=
�

Case 2: When the lower plate moves in the direction oppo-
site to that of the upper plate motion

In this case, velocity gradient 

du

dy

V V V Vu u=
− −

=
+( )� �

� �

For a fluid element, it can be shown that the velocity gradi-
ent is equivalent to the rate of deformation or the rate of 
angular displacement or the rate of shear strain.

Newton’s Law of  Viscosity
When two fluid layers move relative to each other, the vis-
cosity and the relative velocity causes a shear stress to act 
between the fluid layers. The top fluid layer causes a shear 
stress on the adjacent lower layer while the lower fluid layer 
causes a shear stress on the adjacent top layer. Newton’s law 
of viscosity states that the shear stress acting on a fluid layer 
is directly proportional to the rate of deformation or the 
velocity gradient, i.e.,

τα τ μdu

dy

du

dy
or =

where m is known as the coefficient of viscosity or the 
dynamic viscosity or the absolute viscosity or simply as vis-
cosity. Fluids which follow this law are generally referred to 
as Newtonian fluids.

For most fluids, shear stress is directly proportional to 
the velocity gradient or the rate of deformation or the rate of 
angular displacement or the rate of shear strain. 

Direction for questions 7 and 8: A fluid flowing over a flat 
solid surface develops a parabolic velocity distribution. The 
vertex of the parabolic distribution is situated 10 cm away 
from the solid surface, where the fluid velocity is 1.5 m/s. 
The shear stress at a point 5 cm from the solid surface is 

determined to be 30
N

m2
.  The fluid follows Newton’s law 

of viscosity.

Example 7:  The viscosity of the fluid is 
(A)	 0.2 poise	 (B)	 2 poise
(C)	 0 poise	 (D)	 0.1 poise

Solution:
Let the parabolic velocity distribution be

		  u ( y) = ay 2 + by + c� (1)

Solid surface

10 cmy

Vertex of the
parabola

(u = 1.5 m/s)

At y = 0, u = 0 (no slip condition)
\ From equation (1), we have c = 0

		  \ u ( y) = ay 2 + by� (2)

At y u= =0 1 10 1 5. ( ), . m cm
m

s
\ From equation (2), we have: 

		      150 = a + 10 b� (3)

At the vertex of the parabolic velocity distribution, i.e., at  

y = 0.1 m (10 cm), we have, 
du

dy
= 0

Hence, from equation (2), we have,

		  2a + 10b = 0� (4)

Solving equations (3) and (4), we get a = -150 and b = 30

		  \ u( y) = -150 y 2 + 30 y� (5)

At y = 0.05 m (5 cm),

τ = 30
N

m2

		  i.e., 30
0 05

=
⎛
⎝⎜

⎞
⎠⎟ =

μ du

dy
y .

� (6)

∵  Fluid follows Newton’s law of viscosity.
Inserting the differential of equation (5) in equation (6) 

and substituting the value of y by 0.05, we get

μ = =2 0 2
Ns

m
 poise

2
.

Example 8:  The shear stress at the solid surface is 

(A)	 30
N

m2
	 (B)	 10

N

m2

(C)	 60
N

m2 	 (D)	 0
N

m2

Solution:

Now, shear stress τ μ=
du

dy
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From equation (5), 
du

dy
y= − +300 30

At the solid surface, y = 0
\ Shear stress at the wall 

=
⎛
⎝⎜

⎞
⎠⎟ =

μ du

dy
y 0

= × =2 30 60
N

m2
.

Example 9:  A square thin plate, of length 80 cm and mass 
30 kg, slides parallel to a solid plane surface inclined at 
an angle of 60° to the horizontal. A Newtonian fluid layer 
of thickness 2 mm is present in between the plate and the 
plane surface. Had the plane been horizontal, a constant 
force of 192 N would have been required to move the plate 
at a constant velocity of 3 m/s. If the fluid’s velocity profile 
can be assumed to be linear,  then the constant force to be 
applied, parallel to the inclined plane, on the plate to make 
it slide at a instant velocity of 6 m/s is
(A)	 254.87 N	 (B)	 129.13 N
(C)	 384 N	 (D)	 89.7 N

Solution:
When the plane is horizontal

Stationary plane

y



Plate (area = A) u = V
Force F

Velocity V

Here, shear stress τ μ= =
F

A

du

dy
∵Fluid is Newtonian

Since the velocity profile is linear, 
du

dy

V
=
�

				           
∴ =F

AVμ
� � (1)

Given F = 192 N, V = 3 m/s, 
A = 0.8 × 0.8 m2 and l = 0.002 m. Substituting these values 

in equation (1), we get μ = 0 2.
Ns

m2 .

When the plane is inclined: Constant force to be applied on 
the plate to make it slide down with a constant velocity of 
6 m/s,

F
AV

= =
× × ×

=
μ
�

0 2 0 8 0 8 6

0 002
384

. . .

.
 N

Part of this constant force to be applied will be taken care of 
by the component of the weight of the plate in the downward 
direction parallel to the inclined plane surface, i.e., by W sin 60° 

Fluid Plate

W sin 60°W cos 60°
60°

60°

W

\ Constant force to be applied 
= 384 - W sin 60°

= − × ×384 30 9 81
3

2
. = 129.13 N

Example 10:  In a journal bearing of length 500 mm, 
a 200 mm diameter shaft is rotating at 1000 r.p.m. The 
uniform space between the shaft and the journal bearing 
is completely filled with an oil (Newtonian fluid) having a 
viscosity of 900 centipoise. If energy is being dissipated as 

heat at the rate of 15 5
kJ

sec
. ,  while overcoming friction and 

the velocity profile in the oil is linear, then the thickness of 
the oil layer between the shaft and the bearing is 
(A)	 5 mm	 (B)	 1 mm
(C)	 2 mm	 (D)	 3 mm

Solution:
The rate of energy dissipation as heat, while overcoming 
friction, can be considered to be the power dissipated as heat 
or the power utilized (or lost) to overcome the resistance 
imparted by the fluid viscosity.

δ



Oil (viscosity = µ)

d

If the shaft is rotating at N rpm., then the tangential velocity 

of the shaft, u
dN

=
π
60

,  where d is the diameter of the

shaft ∴ =
× ×

u
π 0 2 1000

60

. = 10 472.
m

s

We have F A
d

dy
= μ ϑ

		  0 9 0 2 0 5
10 472

. . .
.

× × ⎛
⎝⎜

⎞
⎠⎟δ

� (1)

But F × u = P = 15500

F = =
15500

10 472
1480 14

.
. ,

\ From (1) δ  = 2 mm.
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Example 11:  A solid cylinder of diameter d, length �  and 
density rc falls due to gravity inside a pipe of diameter D. 
The clearance between the solid cylinder and the pipe is filled 
with a Newtonian fluid of density r and m. For this clearance 
fluid, the terminal velocity of the cylinder is determined to 
be V, assuming a linear velocity profile. However, if the 
clearance fluid was changed to a Newtonian fluid of density 
2r and viscosity 2m, then for an assumed linear velocity 
profile, the terminal velocity of the cylinder was determined 
to be V1. From the results of these experiments, one may 
write that
(A)	 V1 = V	 (B)	 V = 2 V1
(C)	 2 V = V1	 (D)	 V = 4 V1

Solution:
Resolving the forces acting on the cylinder, F = W - Fd or 
ma = W - Fd ,

W

F = ma

Viscous drag (Fd)

where m, W and a are the mass, weight and  acceleration 
respectively of the solid cylinder.

When the cylinder attains terminal velocity, a = 0

				             \ W – Fd = 0� (1)

Now Fd = t A

Since the fluid is Newtonian,

				       F
V

D d
dld =

−
×

μ π

2

� (2)

for the first experiment
Now the weight of the cylinder,

		  W g
d

c= × × ×ρ π
2

4
� � (3)

Substituting equations (2) and (3) in equation (1) and 
rearranging, we get: 

V
g d D dc=

× −ρ
μ
( )

8

\ The terminal velocity of the cylinder does not depend on 
the density of the fluid.

Hence
V

V
V V1

1
2

2= =
μ
μ

.or

Aliter: At the condition of terminal velocity force of the 
drag is the weight. Force of drag

F = 6pam v
Where m = the Coeff of viscosity
\ FD a mv
\ m v1 = m2 v2

v
v

2
1 1

2

=
μ
μ

=
μ

μ
1 1

12

v =
v1

2

                                       v
v

2
1

2
= .

Example 12:  A vertical gap, of width 5 cm and of an infinite 

extent, contains a Newtonian fluid of viscosity 3
Ns

m2
 and 

specific gravity 0.5. A metal plate (1.5 m × 1.5 m × 0.5 cm) 
with a weight of 50 N is to be lifted with a constant velocity 
of 0.5 m/s as shown in the following figure. 

Metal plate

Vertical gap
containing a fluid

If the plate is lifted such that the plate is parallely apart from 
the left side of the gap by a distance of 2 cm always, then the  
force required to pull the plate, neglecting  buoyancy effects 
and assuming  linear velocity profiles, is

(A)	 468.81 N	 (B)	 929 N
(C)	 353.75 N	 (D)	 390.25 N

Solution:
The shear force acting on the left side of the metal plate, 

F A
V

d
�

�
= × ×

−⎛
⎝⎜

⎞
⎠⎟

μ 0
,  where A is the surface area of the 

plate, m is the fluid viscosity, V is the constant velocity with 
which the plate moves and d �  is the distance of the plate 
from the left side of the vertical gap.

∴ = × × ×F� 1 5 1 5 3
0 5

0 02
. .

.

.
= 168.75 N

The shear force acting on the right side of the metal plate,

F A
V

d
r

r

= × ×
−⎛

⎝⎜
⎞
⎠⎟

,μ 0  where dr is the distance of the plate 

from the right side of the vertical gap.
Here, dr = 0.05 - 0.02 - 0.005 = 0.025 m

∴ = × × ×Fr 1 5 1 5 3
0 5

0 025
. .

.

.
= 135 N.

If buoyancy effects were not neglected, then an upward 
thrust experienced by the metal plate due to buoyancy 
should be accounted for in the calculations to follow.
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F

W
(weight)

Shear force
(F


)
Shear force

(Fr )

FB upward
thrust by
buoyancy

(neglected)

\ Force required to lift the plate 
= F + Fr + W - FB
= 168.75 + 135 + 50 (∵  FB is neglected)
= 353.75 N.

Classification of Fluids
Fluids can be classified into the following types.

	 1.	 Ideal fluid (hypothetical fluid) or perfect fluid.
	 2.	 Real fluid (practical fluids).
	 3.	 Newtonian fluid.
	 4.	 Non-Newtonian fluid.

These an explained as follows:

	 1.	 Ideal Fluid or Perfect fluid: These fluids have zero 
viscosity (i.e., inviscid) and are incompressible (ie 
constant density). These fluids do not offer shear resist-
ance when the fluid is set in motion. Though ideal flu-
ids are hypothetical (i.e., they do not exist in reality), 
this concept is used in mathematical analysis of flow 
problems.

	 2.	 Real Fluid: Real fluids have non-zero viscosity and 
hence they offer resistance when set in motion. Real 
fluids have variable density and hence they have some 
compressibility. There is surface tension also for real 
fluids.

	 3.	 Newtonian Fluid: These are real fluids. These fluids 
obey Newton’s law of viscosity i.e., the shear stress in 
the fluid is directly proportional to the rate of shear 
strain (which is also known as velocity gradient). For 
such fluids, the graph of shear stress versus velocity 
gradient is a straight line passing through the origin 
(point of zero shear stress and zero velocity gradients). 
The slope of the graph is constant and represents the 
constant viscosity of the fluid at a given temperature.

		  Air, water, light oils, gasoline etc are examples 
of  Newtonian fluids.

τ μ=
du

dy for Newtonian fluids, where:

t = fluid shear stress
m = viscosity of fluid and

du

dy
=  velocity gradient (or rate of shear strain)

		  The density of Newtonian fluids can be constant or vari-
able (i.e., they can be compressible or incompressible).

	 4.	 Non-Newtonian Fluid: These are real fluids in which 
the shear stress is not equal to rate of shear strain i.e., 
these fluids do not obey the Newton’s law of viscosity.

   i.e., τ μ≠
du

dy
for non-Newtonian fluids.

		  The relation between shear stress and velocity gradient 

for non-Newtonian fluid isτ =
⎛
⎝⎜

⎞
⎠⎟

+A
du

dy
B

n

,  where A 

and B are constants that depend upon type of fluid and 
condition of flow.

		    The non-Newtonian fluids can further be classified 
as shown below:

Time independent non-Newtonian fluids  These are of two 
types. The first type of fluids start flowing as soon as a shear 
stress is applied and do not require any minimum shear 
stress to cause flow. Dilatent fluids and Pseudoplastic flu-
ids belong to this category.

For Dilatent fluids, n > 1, A = m and B = 0
For example, Butter, Quick sand

For Pseudoplastic fluids, n < 1, A = m and B= 0
For example, Lipsticks, paints, blood, paper pulp, rubber 

solution, polymeric solutions etc.
The second type of time independent non-Newtonian 

fluids are called Ideal plastics or Bingham plastic fluids. 
For these fluids, the flow occurs only when the shear stress 
exceeds the yield stress. Once this yield stress is exceeded, 
increase in shear stresses is proportional to the velocity gra-
dient. Hence for Bingham plastic fluids, n = 1, A = m and B 
≠ 0 but independent of time.

E.g., Tooth paste and gel, drilling mud, sewage sludge etc.

Time dependent non-Newtonian f luids  For these fluids, 
flow occurs only when the shear stress exceeds the yield 
stress.

For Thixotropic fluids, n < 1, A = m and B ≠ 0. Also B is 
a function of time (t). Hence, shear stress is of the form 

τ μ=
⎛
⎝⎜

⎞
⎠⎟

+
du

dy
f t

n

( ).

E.g., Printer ink, enamels.

Viscosity increases with time for such fluids.
For Rheopectic fluids, n > 1, A = m and B ≠ 0 and B is a 
function of time (t).

∴ =
⎛
⎝⎜

⎞
⎠⎟

+τ μ du

dy
f t

n

( )

Viscosity decreases with time for such fluids. 
For example, Gypsum solution in water, Bentonite solution
For non-Newtonian fluids also, the density may be con-

stant or variable, hence non-Newtonian fluids can be incom-
pressible or compressible.
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The variation of shear stress with velocity gradient for 
various types of fluids is shown below.

Initial
stress

B

Shear
stress

E
la

st
ic

 s
oi

ld Thixotropic

Pseudo plastic
Newtonian fluid

Dilatent fluid

Ideal fluid

Ideal plastic
(Bingham plstic)
Rheopectic

→ (Velocity gradient)du
d y

Apparent Viscosity  The slope of the shear stress versus 
velocity gradient curve at a point is the apparent viscosity 
of the respective fluid at that point.

Kinematic Viscosity  Kinematic viscosity(γ )of a fluid is 
the ratio of the dynamic viscosity (m) to the density (r) of 

the fluid, i.e., γ μ
ρ

= .  The S.I. unit of kinematic viscosity is 

m

s

2

.  Another unit (in C.G.S. units) for kinematic viscosity 

is stoke 1 10 4stoke
1cm

s

m

s

2 2

= = −

Example 13:  The kinematic viscosity of air at 70°C is 

2 11 10 5. × − m

s

2
. If the Sutherland temperature for air is 

110.4° K, then the kinematic viscosity of air at 50°C is

(A)	 2 11 1
m

s
5

2

. .× −0 	 (B)	 1 9 10 5. × − m

s

2

(C)	 1 5 10 5. × − m

s

2
	 (D)	 3 10 5× − m

s

2

Solution:
Sutherland equation relating absolute temperature and the 
dynamic viscosity of an ideal gas is

μ
μo o

oT

T

T S

T S
=

⎛
⎝⎜

⎞
⎠⎟

+
+

⎛
⎝⎜

⎞
⎠⎟

3

2

m → Viscosity at absolute temperature T
mo → viscosity at absolute temperature To
S → Sutherland temperature.

For air, 
ρ
ρ0

=
T

T
o

(∵  air is assumed as an ideal gas at 

constant pressure.)

Now
γ
γ

μρ
ρμ

μ
μo

o

o o o

T

T
= =

⎛
⎝⎜

⎞
⎠⎟

∴ =
⎛
⎝⎜

⎞
⎠⎟

+
+

⎛
⎝⎜

⎞
⎠⎟

γ
γ o o

oT

T

T S

T S

5

2
,

Where S = 110.4°K, T = 323.15°K,

To o= ° = × −343 15 2 11 10 5. , .K  
m

s

2

γ and g is the kinematic 

viscosity.
\ Kinematic viscosity of air at

50 1 8996 10 5° = = × −C
m

s

2

γ . .

Example 14:  Between two large fixed parallel plane 
surfaces, a thin plate is pulled, parallel to the lower plane 
surface, with a constant force. The space between the plate 
and the plane surface is filled with two types of oil where 
the top oil (oil at the top side of the plate) and the bottom oil 
(oil at the bottom side of the plate) have different kinematic 
viscosities. The distance between the plate and the lower 
plane surface is one fourth the distance between the two 
plane surfaces. In this horizontal position, the force required 
to drag the plate is the minimum compared to that required 
for any other horizontal positions. If the ratio of the specific 
mass of the top oil to that of the bottom oil is 1: 3, then the 
corresponding ratio of their kinematic viscosities, should be
(A)	 27 : 1	 (B)	 9 : 1
(C)	 3 : 1	 (D)	 1 : 3

Solution:
For a thin plate, it can be assumed that the plate thickness 
is negligible

Top oil

Viscocity = m1
Density = ρ1

Bottom oil

Viscocity = µ2
Density = ρ2

h

y

Thin plate (area = A)

Upper fixed plane surafce

Lower fixed plane surafce

Velocity = V

Given 
ρ
ρ

1

2

1

3

1

4
= = and 

y

h
.

The oils are assumed to be Newtonian fluids. A linear 
velocity profile is assumed to be present in the oils. 
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Shear force on the top side of the plate, 

F A
du

dy
A

V

h y
t = =

−
μ μ1

Similarly shear force on the bottom side of the plate, 

F A
v

y
b = μ2

Total force required to drag the plate, 

= + =
−

+
⎡

⎣
⎢

⎤

⎦
⎥F F AV

h y y
t b

μ μ1 2

For the required force to be minimum for a given horizontal 

position of the plate , 
∂
∂

=
F

y
0

⇒
−

−
−

=
μ μ1

2
2

2
0

( )h y y

∴ =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
μ
μ

1

2

2

2

3

4

1

4

9

Ratio of Kinematic viscosities
r

r
1

2

1

1

2

2

9 3 27= = × =
μ
ρ

ρ
μ

Since
1

,
4

y

h
=  from equation (2) we get 

μ
μ

1

2

9=

kinematic viscosity of the top oil

kinematic viscosity of thhe bottom oil
µ ρ
ρ µ

= × = × = =1 2

1 2

 9 3 27 or 27 :1.

Vapour Pressure
Vapour pressure of a liquid, at a particular temperature, is the 
pressure exerted by its vapour in phase equilibrium (when 
the vapour is saturated) with the liquid at that temperature. 
As the temperature increases, vapour pressure also increases. 
When the vapour pressure of a liquid is equal to the external 
environmental pressure, the liquid will start to boil.

This property plays a role in the phenomenon called 
cavitation. Cavitation, which is highly undesirable due to 
its destructive properties, is the formation and collapse of 
vapour bubbles in liquid flow systems. Vapour bubbles are 
formed at locations where the pressure in the liquid flow 
system is below the vapour pressure of the liquid.

Difference Between Vaporisation and Boiling
The translational momentum of some surface molecules of 
the liquid enable them to overcome the molecular attractive 
force and these molecules escape into the free space above 
the liquid surface to become vapour. This process is vapori-
sation and it can occur at all temperatures. Vaporisation can 
be minimized by increasing the pressure over the free sur-
face of liquid.

When the pressure above the liquid free surface is less 
than or equal to the vapour pressure of the liquid at that 
temperature, there is continuous escape of liquid molecules 
from the free surface into the space above the liquid surface. 
This process is called boiling.

Bulk Modulus (K)
It is also known as bulk modulus of elasticity, coefficient of 
compressibility or bulk modulus of compressibility.

K V
P

V

P
= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

ρ
ρ

The SI unit of the bulk modulus is 
N

m2
or Pascal. It is also 

defined as the ratio of the compressive stress to the volu-
metric strain. Bulk modulus increases for gases as pressure 
and temperature increases. As temperature increases bulk 
modulus decreases for liquids.

Lower the value of the bulk modulus of a fluid, more 
compressible is the fluid considered to be. For a truly incom-
pressible fluid (i.e., fluid whose volume cannot be changed), 
K = infinity. Liquids are usually considered to be incom-
pressible, i.e., they have a large value of bulk modulus.

The reciprocal of the bulk modulus is called as the com-

pressibility (a), i.e., α =
1

k

Gases are usually considered to be compressible, i.e., 
they have a large value of compressibility.

Isothermal bulk modulus,

K V
P

V
T

T

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟ (i.e., at constant temperature T)

Adiabatic bulk modulus 

K V
P

V
s

S

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

(i.e., at constant entropy S).

Isothermal Compressibility, 

αT
TV

V

P
=

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

1
(i.e., at constant temperature T)

Adiabatic Compressibility,

αs
SV

V

P
=

− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

1
(i.e., at constant entropy S)

Example 15:  In a piston cylinder arrangement containing 
gas A, it is found that to reduce is othermally the volume of 
the gas to 75% of its original volume, an additional pressure 
of 2 atm is required. In another piston cylinder arrangement 

containing gas B density
kg

m3
=⎛

⎝⎜
⎞
⎠⎟

1 5. , it is found that the 

density of the gas  can be increased by 1 5
kg

m3
. at a constant 

temperature, if a pressure change of 6 bar is provided. From 
these observations, one can state that 
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(A)	 Gas A and gas B have equal isothermal compressibility.
(B)	� Gas A is 1.2 times more isothermally compressible 

than gas B.
(C)	� Gas B is 1.35 times more isothermally compressible 

than gas A.
(D)	� Enough information is not available for the comparison 

of the isothermal compressibility of the two gases.

Solution:
For gas A, let V1 and V2 be the original volume and the 
volume of the gas after compression respectively.
Given, V2 = 0.75 V1

⇒ =
−

= −
ΔV

V

V V

V
2 1

1

0 25.

DP = 2 at m = 2 × 1.01325 bar

K V
P

V
TA

T

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

         

≅ −

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Δ

Δ

P
V

V T

       

2 1.01325
8.106 bar

0.25

×
≅ − ≅

−
For gas B,

   
ρ = 1 5.

kg

m3

 ΔP = 1 5.
kg

m3

Δρ
ρ

= 1

DP = 6 bar

∴ =
∂
∂

⎛
⎝⎜

⎞
⎠⎟

≅ ≅K
P

TB
T

ρ
ρ

6

1
6 bar

∴ = =
K

K
TA

TB

8 106

6
1 35

.
.

\ gas B is 1.35 times more isothermally compressible than 
gas A.

Coefficient of  Volume Expansion ( b)
It is also known as volume expansivity.

β
ρ

ρ
=

∂
∂

⎛
⎝⎜

⎞
⎠⎟

= −
∂
∂

⎛
⎝⎜

⎞
⎠⎟

1 1

V

V

T TP P

.  The S.I unit of the co-

efficient of volume expansion is 
1

°
⎛
⎝⎜

⎞
⎠⎟K

.

Example 16:  If the isothermal compressibility and volume 
expansivity of  a fluid are aT and b respectively, then the 

fractional change in the volume 
dV

V

⎛
⎝⎜

⎞
⎠⎟ of the fluid for a 

change in temperature (dT) and change in pressure (dP) is 
equal to.
(A)	 aTdT – b dP
(B)	 bdT – aTdP
(C)	 aTdT + b dP
(D)	 aTdP + bdT

Solution:
The volume of the fluid (V) is a function of temperature (T) 
and pressure (P). This can be written as V = V(T, P)
Differentiating, we get 

	         dV
V

T
dT

V

P
dP

P T

=
∂
∂

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂

⎛
⎝⎜

⎞
⎠⎟ � (1)

Now αT
TV

V

P
= −

∂
∂

⎛
⎝⎜

⎞
⎠⎟

1
and β =

∂
∂

⎛
⎝⎜

⎞
⎠⎟

1

V

V

T P

Substituting the above relations for aT and b in equation (1) 
and rearranging, we get

dV

V
dT dPT= −β α

Surface Tension
The layer of molecules at the surface of a liquid, in contact 
with a gas (or another immiscible liquid), tends to behave 
like a stretched membrane (membrane on which a tensile 
force is exerted).

Gas
Surface molecules

Liquid

Inward pull

This behaviour is a result of the inward pull, arising due 
to the cohesive forces (intermolecular forces of attraction 
between molecules of the same liquid), experienced by the 
liquid’s surface molecules.

At the liquid surface, the tensile force dF acting paral-
lely to the plane of the surface (or tangentially to the sur-
face) over a surface length d �  is given by the equation, 
df d= σ � , where s is called as the (coefficient of) surface 

tension of the liquid. Hence, surface tension is equal to the 
magnitude of the (tensile) force acting tangentially at the 

surface per unit length of the surface. The S.I. unit of sur-

face tension is 
N

m
.

Imagine a metallic frame in which a liquid film is main-
tained as shown in the following figure.
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Rod

Liquid film

New area

When the rod is slightly pulled down, the liquid film gets 
stretched over a larger area. The work done for creating the 
new area is the surface energy.

Surface energy

New area created
Surface tension=

\ Surface Energy per unit area = surface tension

Surface tension (in 
N

m
or

J

m2 ) thus also represents 

the amount of (stretching) work required to increment the 
surface area by an unit amount. Surface tension of a liquid 
decreases with temperature and becomes zero at the critical 
point. The effect of pressure on the surface tension of a liq-
uid can be considered to be negligible. Surface tension of a 
liquid can be increased or decreased by adding impurities. 
For example, surface tension of water can be decreased or 
increased by adding surfactants or NaCl respectively.

Example 17:  A solid cylindrical needle 

density
g

cm3
=⎛

⎝⎜
⎞
⎠⎟

7 8. of length 5 cm is placed very gently 

on the surface of a body of water (surface tension = 73 
dynes/cm) such that it floats on the water surface. Neglect 
buoyancy effects and surface tension effects at the circular 
faces of the needle. The maximum diameter that the needle 
can have, such that it will still be able to float on the water 
surface, is
(A)	 1.56 mm	 (B)	 4.88 mm
(C)	 5.26 mm	 (D)	 1.31 mm

Solution:

F q q F

W

Needle

Water

Let F be the force, due to surface tension of water, acting 
along the length of the needle on either side as shown in the 
above figure. Let W be the weight of the needle.

Now F = sL , where s is the surface tension of water and 
L is the length of the needle.

If q is the angle that the force F makes with the vertical, 
then writing a force balance on the needle gives:

W = F cos q + F cos q 
     = 2 s L cos q� (1)

If d and r are the diameter and density of the needle, then 
from equation (1) we can write

π ρ σ θd
L g L

2

4
2= cos

d
g

=
8σ θ

πρ
cos

The maximum value of d (dmax) is obtained when q = 0° 
(provided all other parameters are fixed).

   ∴ =d
g

max
8σ

πρ

=
×

× ×
= −8 0 073

3 14 7800 9 81
1 10 5.

. .
dyne N

= 1.56 mm.

Example 18:  A liquid film, exposed to the atmosphere on 
both sides, is present in the area ABCD of the metallic frame 
work shown in the following figure.

A C

B D

Rod

Liquid film

The side CD, of length 10 cm, is movable and can be 
pulled with the help of a rod. The work done to increase 
the length of side BD by 1 mm, still maintaining the 

liquid film surface tension  N/m=( )0 073.  in the area 
ABCD, is 

(A)	 7.3 × 10-6J	 (B)	 1.46 × 10-5J
(C)	 1.46 × 10-4J	 (D)	 7.3 × 10-5J

Solution:
Let L be the length of the side CD. Then, L = 10 cm = 0.1 m
At the side CD, there are two lengths on which surface 
tension acts since the film of liquid is exposed to the 
atmosphere on both sides. Hence the length along which the 
surface tension acts at the side CD = 2L.
\ Work done = s 2L Dx, where s 2L represents the force 
due to surface tension acting at the side CD.
Here Dx = 1 mm = 1 × 10-3 m

.σ = 0 073 N/m

Work done = 0.073 × 2 × 0.1 × 1 × 10-3

= 1.46 × 10-5 J.
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Effects of Surface Tension
	 1.	 A falling rain drop attaining a  spherical shape.
	 2.	 Sap rising in a tree.
	 3.	 Birds being able to drink water from ponds.
	 4.	 Capillary rise.
	 5.	 Dust particles collecting on the surface of a liquid.
	 6.	 Liquid jets breaking up.

Excess Pressure
In liquid droplets, gas bubbles, soap bubbles and liquid jets, 
an amount of pressure in excess to the external pressure is 
present due to surface tension for maintaining the shape.

Liquid droplet or gas bubble

P P P
d

i o− = =Δ
4σ

,

where Pi is the pressure inside the liquid droplet or gas bub-
ble, Po is the pressure outside the liquid droplet or gas bub-
ble, d is the diameter of the (spherical) liquid droplet or gas 
bubble and DP is the excess pressure.

Soap or liquid bubble  A soap or liquid bubble has air both 
inside and outside it and hence it has two free surfaces on 
which surface tension acts.

P P P
d

i o− = =Δ
8σ

,

Where d is the outer diameter of the soap or liquid bubble.

Cylindrical liquid jet

P P P
d

i o− = =Δ
2σ

Where d is the diameter of the cylindrical jet.

Example 19:  The pressures inside and outside of a water 
bubble and water drop are found to be the same. If d is the 
diameter of the water bubble and if the bubble and drop 
are at the same temperature, then the diameter of the water 
drop is
(A)	 d	 (B)	 3d
(C)	 2d	 (D)	 d/2

Solution:
Since the inside and outside pressures of the water drop are 
equal to that of the water bubble, we have Excess pressure 
inside the water drop = Excess pressure inside the water 
bubble.

i.e., 
4 8σ σ
d dd b

= ,  where dd and db  are the diameters of the 

water drop and water bubble respectively.

∴ = =d
d d

d
b

2 2
.

Example 20:  Two cylindrical liquid jets A and B have the 
surface tensions sA and sB respectively such that sA = 2sB . 
The jets A and B are exposed to the respective external 

pressures PA and PB, such that P P
d

B A
B

B

− =
2σ

,  where dB is 

the diameter of the cylindrical jet B. If the two jets have the 
same inside pressure, then the diameter of the cylindrical 
jet A is
(A)	 dB	 (B)	 2 dB
(C) 0.5 dB	 (D)	 4 dB

Solution:
Given sA = 2 sB and 

		  P P
d

A B
B

B

− =
2σ

� (1)

Jets A and B have the same inside pressure, hence

		
2 2σ σA

A
A

B

B
B

d
P

d
P+ = + , � (2)

where dA is the diameter of the cylindrical jet A.

P P
dA

B A
A

B− = −
2

2
σ σ

But                         –P P
dB

B A
B=

2σ

Equating,

  ∴ = −
2 2 2σ σ σB B

dB

A

dA dB

4 2σ σB A

dB dA
=

\dA = dB.

Capillarity
When a small diameter tube is inserted into a body of liquid, 
the liquid rises or falls in the tube giving rise to the phenom-
enon known as capillarity. Capillarity is due to the forces of 
cohesion (attraction between the same molecules) between 
the liquid molecules and the forces of adhesion (attraction 
between different molecules) between the liquid and solid 
(constituting the tube) molecules.

The rise of the liquid is called as the capillary rise while 
the fall is called as the capillary drop or capillary depres-
sion. Capillarity or capillary effect can be termed to be a 
consequence of surface tension.

The strength of capillarity (or capillary effect) is quanti-
fied by a parameter called as the contact (or wetting) angle 
(q). The contact angle is defined as the angle between the 
solid surface and the tangent to the liquid surface at the 
point of contact between the two surfaces. The surface 
tension force acts along the tangent towards the solid sur-
face. The magnitude of the capillary rise of a liquid (surface 

M04_TRIS7308_C01.indd   401 27/06/2017   19:31:57



3.402  |  Part III  •  Unit 4  •  Fluid Mechanics

tension = s, density = r) having a contact angle q with a 
tube of constant diameter d is given by

h
gd

=
4σ θ

ρ
cos

The contact angle of water with clean glass is nearly zero, i.e., 
q ≈ 00. (If q 0, then it is called complete or perfect wetting.)

For glass tubes with diameters greater than 1 cm the cap-
illarity effect of water is negligible.

Liquid wets solid surface

Meniscus

Tube

Liquid

Tangent

h > o

q

	 1.	 Contact angle q is greater t
	 2.	 Contact angle q is less than 90°.
	 3.	 When a small diameter tube made of the solid is dipped 

in the liquid, capillary rise occurs.
	 4.	 Magnitude of cohesive forces < magnitude of adhesive 

forces.
	 5.	 For example, water - glass.
	 6.	 Capillary drop = h.

Liquid does not wet solid surface

Tube

Meniscus
liquid

Tangent

h < 0

q

	 1.	 Contact angle q is greater than 90°.
	 2.	 When a small diameter tube made of the solid is dipped 

in the liquid, capillary drop occurs.
	 3.	 Magnitude of adhesive forces < magnitude of cohesive 

forces.
	 4.	 Liquid is termed as a non-wetting liquid.
	 5.	 For example, mercury–glass
	 6.	 Capillary drop = |h|

Example 21:  When tube A is dipped into the body of a 
liquid, the liquid makes a contact angle of 30° with the tube. 
When tube B of different material having twice the diameter 
of tube A, is dipped into the same liquid body, the liquid 
makes a contact angle of 120° with the tube. The ratio of the 

capillary rise seen in one of the tubes to the capillary drop 
seen in the other is; 
(A)	 0.28	 (B)	 1.73	 (C)	 3.46	 (D)	0.58

Solution:
Let dA and qA be the diameter and contact angle for tube A.
Let dB and qB be the diameter and contact angle for tube B.
Given dB = 2dA, qA

 = 30° and qB = 120°
Since qA < 90°, capillary rise (hr) will be seen when tube A 
is dipped.

		  ∴ =h
gd

r
A

A

4σ θ
ρ
cos

� (1)

Since qB > 90°, capillary drop (hd) will be seen when tube 
B is dipped.

∴ =
−

h
gd

r
B

B

4σ θ
ρ

cos

(Negative sign is introduced since hd is already referred to 
as capillary drop)
From equations (1) and (2), we have 

∴ =
− ×

×
h

h

d

d
r

d

A B

B A

cos

cos

θ
θ

 

                            =
− ° ×

° ×
=

cos

cos
. .

30 2

120
3 46

d

d
A

A

Example 22:  The maximum diameter that a capillary tube 
can have to ensure that a capillary rise of at least 6 mm is 
achieved when the tube is dipped into a body of liquid with 

surface tension = 0 08.  
N

m
 and density = 900 

kg

m3
, is 

(A)	 3 mm	 (B)	 6 mm
(C)	 5 m	 (D)	 8 mm

Solution:

The capillary rise h
gd

=
4σ θ

ρ
cos

,  where s, q, r, g and d have 

their usual meanings.

\ diameter of the capillary tube d
gh

=
4σ θ

ρ
cos

Here, q is taken to be 0°. The diameter d gets the maximum 
value (dmax) when h is minimum (i.e., h = hmin)
Given hmin = 6 mm

∴ = =
×

× ×
d

gh
max

min

.

. .

4 4 0 08

900 9 81 0 006

σ
ρ

                                               = 6 mm.

Pressure
Pressure is defined as a normal force exerted by a fluid per 
unit area. The normal stress on any plane through a fluid 
element of rest is equal to the fluid pressure. The S.I. unit of 

pressure is Pascal (Pa) or 
N

m2
.

1 1Pa
N

m2
=
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Other units for pressure are atm (1 atm = 101325 Pa), psi 
(1atm = 14.696 psi) and bar (1 bar = 105 Pa). Pressure is a 
scalar quantity. At a point on a surface which is in contact 
with a fluid, the pressure force exerted by the fluid is normal 
to the surface.

Atmospheric, Absolute and 
Gauge Pressure
Atmospheric pressure (Patm) is the pressure exerted on a 
surface by a planet’s atmosphere (e.g., the Earth’s atmos-
phere) present above the surface.

Absolute pressure (Pabs) is the pressure measured rela-
tive to an absolute vacuum (where Pabs = 0). At any given 
position, the actual pressure is the absolute pressure.

Gauge pressure (Pgauge) is the pressure indicated by a 
pressure – measuring device (or pressure gauge) relative 
to the local atmospheric pressure. This is stated with the 
assumption that the pressure gauge is cali berated with the 
local atmospheric pressure as reference.

Pgauge = Pabs – Patm

If Pabs < Patm, then Pgauge is negative and the negative of 
the gauge pressure is called as the vacuum pressure (Pvac). 
Pressure gauges measuring vacuum pressures are called as 
vacuum gauges.

Pvac = Patm - Pabs

Pressure Varying with Elevation or 
Depth (for Static Fluids)
Consider a static body of liquid (density = r, specific weight 
= w) of height h present in a container as shown in the fol-
lowing figure.

z = h 4

2

1
z

Elevation

Depth

3

z = z2

z = z1

z = 0

The variation of pressure P in the liquid with respect to the 
elevation z is given by

		      
dP

dz
g= − = −ρ ω � (1) 

Equation (1), called as the hydrostatic (differential) equa-
tion, corresponds to the hydrostatic law which states that 
“The rate of increase of pressure in a vertically downward 
direction must be equal to the specific weight of the fluid.

Conventionally at z = 0, elevation = 0 and depth = h, 
while at z = h, elevation = h and depth = 0. If P1 and P2 are 

the pressures at points 1 ( z = z1) and 2 (z = z2), from equa-

tion (1) we have P P P gdz
z z

z z

2 1
1

2− = = −
=

=
∫Δ ρ � (2)

For liquids, usually the density is considered to be constant 
upto certain large depths. If the acceleration due to gravity 
(g) is also constant with respect to the elevation z, then

       P2 - P1 = rg (z1 - z2) = - rg Dz � (3)

where Dz (= z2 - z1) is sometimes called as the pressure head 
and is interpreted as the height of a column of liquid of den-
sity r required to provide a pressure difference of P1 - P2.

If the surface of the liquid in the container is exposed to 
the atmosphere and r and g are assumed to be constant with 
respect to z, then

Pabs at point 4 = Patm
Pabs

 at point  2 = Patm
 + rg (h - z2)

Pgauge at point 1 = rg (h - z1)
Pabs at point 3 = Patm + rgh
Equation (1) is also applicable for gases. However, as 

gases have a low density, the variation of pressure with 
height (for small to moderate heights) can be considered to 
be negligible for a gas.

Pressure Varying Horizontally (for Static Fluids)
For a fluid resting inside a container, pressure does not 
depend on the shape or cross-section of the container. Also, 
the pressure is the same at all points on any horizontal plane 
considered in the fluid present in the container.

Consider three containers, open to the atmosphere, of 
different shapes where the free surface of the liquids in 
them are at the same level as shown in the following figure.

h1
EA B

Liquid 2 (density = ρ2)

Liquid 2 (density = ρ1)

Fh2 C D

The points A, B, C, D, E and F all lie on the same horizontal 
plane .Here,

PA = PB = PE = PF and PC = PD
Since r2 > r1, it can be seen that Pc

 > PB
 and hence PC ≠ PB.

Pascal’s Law
Pascal’s law states that the pressure at a point in a static fluid 
has the same magnitude in all directions. This is also true 
for non-static fluids which have no shear stress, for exam-
ple, for fluids which move like rigid bodies where there is 
no relative motion between the fluid elements.

Another version of Pascal’s law states that when there is 
an increase in pressure at any point in a confined fluid, there 
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is an equal increase in the pressure at every other point in 
the confined fluid. Pascal’s law forms the underlying princi-
ple of the hydraulic jack and hydraulic press.

Example 23:  A hydraulic press has a plunger of 5 cm 
diameter. If the weight lifted by the hydraulic press is twice 
the force applied at the plunger, then the diameter of the ram 
of the hydraulic press is; 
(A)	 5 cm	 (B)	 10 cm

(C)	 5 2  cm 	 (D)	 10 2 cm

Solution:
Let the force applied at the plunger be F. Then weight lifted 
by the hydraulic press, W = 2F.� (1)
Let d and D be the diameters of the plunger and ram 
respectively and let a and A be their respective areas.

		  ∴ = =a
d

A
Dπ π2 2

4 4
 and � (2)

From Pascal’s law, 
F

a

W

A
= � (3)

Substituting equations (1) and (2) in equation (3), we get

D d= 2

Given d D= ∴ =5 5 2 cm  cm.

When the plunger and the Ram are of circular Cross sec-
tion and ‘F’ is the load applied at the plunger, Load lifted 
at the ram is

= ×
F

Ad

D
2

2

4

4

π
= F

D

d

2

2

Here, F
D

d
F

2

2
2=

∴ =D d2 .

NOTE

Example 24:  Oil weight density = 8 5.  kN/m3 is present in 
a tank up to a depth of 6 m. It is observed that an immiscible 
liquid, with a depth of 2 m, is present in the tank below 
the oil. The reading on the pressure gauge connected to 
the tank’s bottom  is 70 kPa. The specific gravity of the 
immiscible liquid is:
(A)	 0.982	 (B)	 0.968
(C)	 0.873	 (D)	 0.893

Solution:
Let the weight density of the immiscible liquid and the oil is 
wL and wO respectively.

Pressure at the bottom of the tank,

Pb = 6 × wO + 2 × wL

Given P kPa kb O= =70 8 5 and 
N

m3
ω .

∴ =
× − × ×ωL

70 10 6 8 5 10

2

3 3.
=  

N

m3
9500

Specific gravity of the liquid, SG
g

L
L=
×

ω
ρω

,

Where ρω =⎛
⎝⎜

⎞
⎠⎟

1000
kg

m3  is the density of pure water at 4°C.

∴ =
×

=SGL
9500

1000 9 81
0 968

.
. .

Manometry (Some Cases to Measure 
the Gauge Pressure)
Manometers are pressure measuring devices which employ 
liquid columns in vertical or inclined tubes to measure 
pressure. Manometers are classified as (i) simple manom-
eters and (ii) differential manometers.

Simple Manometers
A simple manometer consists of a tube whose one end is 
connected to a point where the pressure is to be measured 
and the other end is open to the atmosphere. The common 
types of simple manometers are (a) piezometer (b) u-tube 
manometer and (c) single column manometer.

For the following discussion, consider P1 and PA
 to be 

the pressures at points 1 and A respectively.

Piezometer

h

Liquid (density = ρ)
A

Analysis : P1 – Patm + hrg
PA = P1, since the points A and 1 are at the same elevation 
and in the same liquid.

∴ = +P P hpgA atm

It is implicitly assumed here that surface tension effects 
(capillary rise) are negligible.

NOTE

U-tube manometer
I.

A

xFluid
(density = ρ1)

Liquid
(density = ρ2)

x

B
h2

h1 C
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Analysis: Along the section XX,
Pressure at point B = pressure at point C 
(∵points B and C are at the same elevation and in the same 
liquid )

i.e., PA
 + h1 r1 g = Patm + h2 r2 g

P P h h gA atm= + −( )2 2 1 1ρ ρ

II.

A

Fluid (density = ρ1)

Liquid (density = ρ2)

h2

h1

P P h h gA atm= − +( )1 1 2 2ρ ρ

PA is vacuum pressure

NOTE

III.

A

Fluid (density = ρ1)
q

Liquid (density = ρ2)

h2
h1

L

P P g h h

P g L h
A atm

atm

= + −
= + −

( )

( sin )
2 2 1 1

2 1 1

ρ ρ
θρ ρ

Vertical Single Column Manometer

A

Fluid
(density = ρ1)

Reservoir

Right limb

Liquid (density = ρ2)

h1

h2

P P
a h

A
g g

h g

A atm= +
×

−

+

2
2 1

2 2

( )ρ ρ

ρ

Where A and a are the cross – sectional areas of the reser-
voir and the right limb respectively.

Inclined Single Column Manometer

A

Fluid
(density = ρ1)

Reservoir
Right limb

Liquid (density = ρ2)

q

h1

h2
L

P P
a h

A
g g

h g h g

P P
a L

A
g

A atm

A atm

= +
×

−

+ −

= +
×

−

2
2 1

2 2 1 1

2 1

( )

sin
(

ρ ρ

ρ ρ
θ ρ ρ 

gg

L g h g

)

sin+ − θρ ρ2 1 1

Where A and a are the cross-sectional areas of the reservoir 
and the right limb respectively.

Differential Manometers
Differential manometers are the devices used for measuring 
the difference between the pressure at a given point in a fluid 
and the pressure at some other point in the same or differ-
ent fluid. A differential manometer consists of a u-tube, in 
which a heavy liquid is present, where two ends are con-
nected to points whose pressure difference is to be meas-
ured. Most common types of differential manometers are 
(i) u-tube differential manometer and (ii) inverted u-tube 
differential manometer.

For the following discussion, consider PA and PB to be 
the pressures at the points A and B respectively.

U-tube differential Manometer

A
Fluid

(density = ρ3)

Fluid
(density = ρ1)

Liquid (density = ρ2)

h

B

y
x

P P h g y g x gA B− − − + −( )ρ ρ ρ ρ2 1 3 1
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Inverted u-tube Manometer
Liquid (density = ρ2)

h1

A

h2

h

B

Fluid
(density = ρ1)

Fluid
(density = ρ3)

P P h g h g h gA B− = − −1 1 2 3 2ρ ρ ρ

Example 25:  A closed tank consists of oil (density = r1) 
and compressed air as shown in the following figure. A 
u-tube

h1

PG

h2

h3

xx

Oil

Air

h4

manometer using a liquid with density = r2, is connected to 
the tank. The variation of pressure with height is negligible 
in the tank volume occupied by air. If the pressure reading 
in the pressure gauge connected to the top of the tank is PG, 
then an expression for the height of oil in the tank can be

(A)	 h
P

g
hG

3
1

2 1
4

ρ
ρ ρ

⎛
⎝⎜

⎞
⎠⎟

− −

(B)	 h
P

g
h

g
3

2

1 1
4

ρ
ρ ρ

⎛
⎝⎜

⎞
⎠⎟

− −

(C)	 h
P

g
hG

3
2

1 1
2

ρ
ρ ρ

⎛
⎝⎜

⎞
⎠⎟

− −

(D)	 h
P

g
hG

3
1

2 2
4

ρ
ρ ρ

⎛
⎝⎜

⎞
⎠⎟

− −

Solution:
Equating pressures at a point in the left limb and at a point 
in the right limb, where both the points lie on a horizontal 

plane passing through the meniscus of the liquid (density = 
r2) in the left limb of the u-tube manometer, gives
Pair + (h1 + h2) r1 g = Patm + h3 r2 g � (1)
Now PG = Pair – Patm� (2)
From the figure in the question it can be shown that the 
height of the oil in the tank, h = h1 + (h2 – h4)� (3)
Substituting equations (2) and (3) in equation (1) and 
rearranging, we get

h h
P

g
hG=

⎛
⎝⎜

⎞
⎠⎟

− −3
2

1 1
4

ρ
ρ ρ

 

Example 26:  A fluid (weight density = w1) flows through a 
pipe as shown in the following figure. A differential u-tube 
manometer, with a liquid of weight density = w2, is fitted to 
the pipe in order to determine the pressure difference (PA 
– PB) where PA and PB are the pressures at the  respective 
points A and B on the pipe. 

h2

h1

A B

→ Fluid flow

From the set of variables {h1, h2, w1, w2}, the set of the least 
number of variables whose values are to be known in order 
to determine the required pressure difference ( PA – PB) is
(A)	 {h1, h2, w1, w2}
(B)	 {h1, w1, w2}
(C)	 {h2 , w2}
(D)	 {h2, w1, w2)

Solution:
Equating pressures at a point in the left limb and at a point 
in the right limb, where both points lie on a horizontal plane 
passing through the meniscus of the liquid (weight density 
= w2 in the left limb of the differential u-tube manometer, 
gives 
PA - h1

 w1 = PB - (h1 + h2) w1 + h2 w2
or PA - PB = h2 (w2 - w1)
\ The set of variables whose values are to be known = {h2, 
w1, w2} 

Example 27:  An inclined single column manometer is 
connected to a pipe transporting a liquid of specific weight 

( ) . ,ω1 9 81=
kN

m3
 as shown in the following figure. The area 

of the reservoir is very large compared to the area of the 
right limb of the manometer. The specific weight (w2) of 

the manometric fluid is 13 6. .
kN

m3 . The length (L) of the 

manometric fluid in the right limb, above the manometric 
fluid’s surface in the reservoir, is 100 cm. The gauge pressure 
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(P) at the point A in the pipe is 3.857 kPa. If the value of h 
is 30 cm, then the right limb of the manometer is inclined to 
the horizontal at an angle of 
(A)	 45°	 (B)	 60°
(C)	 30°	 (D)	 15°

A

Pipe

Reservoir

Right limb

Manometric fluid

h1

Solution:
Let q be the angle at which the right limb is inclined to the 
horizontal.
If a and A are the respective cross-sectional areas of the right 
limb and the reservoir, then p is very small and negligible 
(∵  A > > > a).
For the inclined column manometer, one can write

P
a

A
L L

h

= × × − +

−

sin ( ) sinθ ω ω θω

ω

2 1 2

1

Since 
a

A
 is negligible, 

P = L sin q w2 - hww1

∴ =
+

sinθ ω
ω

P h

L
1

2

=
× + × ×

× ×
3 857 10 0 3 9 81 10

1 13 6 10

3 3

3

. . .

.
i.e., q = 30°.

Exercises

Practice Problems 1
Direction for questions 1 to 20:  Select the correct alterna-
tive from the given choices.

	 1.	 A flat thin disk (diameter = 100 cm) is rotated at 1200 
r.p.m. at a distance of 2 mm from a flat horizontal sta-
tionary surface. If the gap between the horizontal disk 
and the surface is filled with a Newtonian fluid of 4 poise 
viscosities, then the torque required to rotate the disk is 

	 (A)	 1.52 KN-m	 (B)	 1.87 KN-m
	 (C)	 2.47 KN-m	 (D)	 3.94 KN-m

	 2.	 Three thin plates are oriented parallel to each other 
with the lowest plate being fixed. The top plate, located 
at a distance of x meters above the fixed plate, is towed 
with a speed of V1 m/s. The middle plate is located at a 
distance of y meters above the fixed plate. The viscosity 
of the Newtonian fluid in between the fixed plate and 
the middle plate is twice that of the Newtonian fluid 
between the middle plate and the top plate. If the mid-
dle plate moves with a constant speed of V2 m/s, then 

the fraction 
V

V
1

2

is equal to:

	 (A)	 3
2

−
x

y
	 (B)	 2

2
+

x

y

	 (C)	 2 −
x

y 	 (D)	 − +2
2x

y
	 3.	 A 10 kg block is sliding down a plane in clined at an 

angle of angle of 30° to the horizontal. The block is 
separated from the plane by a 1 mm thick layer of oil 
(Newtonian) of viscosity 2 poise. It is to be assumed 
that the velocity distribution in the oil is linear and that 
the block has already reached the terminal velocity. The 
area of the block in contact with the oil is 0.1 m2. The 
present velocity of the block is:

	 (A)	 2.4525 m/s	 (B)	 0.24525 m/s 
	 (C)	 4.905 m/s	 (D)	 0.4905 m/s

	 4.	 For an ideal gas (density = r) at pressure P and tem-
perature T, the isothermal compressibility is equal to: 

	 (A)	 P    (B)  T    (C) 
I

P
    (D) 

I

T
Direction for questions 5 and 6: A set of n identical spheri-
cal drops of radius r of a liquid (surface tension = s) com-
bine to form a single large spherical drop of radius R.

	 5.	 An expression for R is:
	 (A)	 R = rn1/2	 (B)	 R = rn1/3

	 (C)	 R = nr	 (D)	 R = n2r

	 6.	 The energy released during the combination process is 
equal to: 

	 (A)	 4ps r2(1-n-1/3)	 (B)	 4ps r2(n-1/3-1)
	 (C)	 4ps r2n(1-n-1/3)	 (D)	 4ps r2(n2/3-n)

	 7.	 The work done in blowing a soap bubble of 5 cm diam-
eter, where the surface tension of the soap solution is 
40 × 10-3 N/m, is: 

	 (A)	 3.14 × 10-4 J	 (B)	 0.00785 J
	 (C)	 0.0157 J	 (D)	 6.28 × 10-4 J

	 8.	 A stream of bubbles is generated by introducing air 
through a nozzle into a tank of water. The ratio of the 
maximum diameter to the minimum diameter of the 
bubbles generated is 2 : 1. The pressure of the water sur-
rounding the nozzle remains constant and is denoted by 
Po. If Pmin is the minimum air pressure at the nozzle, 
then the maximum air pressure at the nozzle is equal to 

	 (A)	
P Pmin + 3

2
0 	 (B)	

2

2
0P Pmin +

	 (C)	
2

2
0( )minP P+

	 (D)	
3

2
0P Pmin +
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	 9.	 The maximum diameter of a metallic (density = r) 
spherical ball that can float in a constant temperature 
liquid (surface tension = s) bath is proportional to

	 (A)	 σρ 	 (B)	
1

σρ

	 (C)	
ρ
σ 	 (D)	

σ
ρ

	10.	 Two parallel glass plates, each of width W and negligi-
ble thickness, are dipped vertically into a body of liquid 
(surface tension = s, density = r). If the distance between 
the plates is t and the contact angle is q, then the capillary 
rise of the liquid between the plates is given by: 

	 (A)	
2σ θ

ρ
cos

W g
	 (B)	

2σ θ
ρ
cos

t g

	 (C)	
4σ θ

ρ
cos

t g
	 (D)	

σ θ
ρ
cos

t g

	11.	 The weight density w(in N/m3) of a liquid in a large 
open container varies with the depth h (in m) as: w = 70 
+ 0.3 h. The pressure at a depth of 5 m is:t 

	 (A)	 101325 Pa
	 (B)	 353.75 Pa
	 (C)	 101678.75 Pa
	 (D)	 101501.88 Pa

	12.	 Air (density = 1.2 kg/m3) and a liquid (density = 900 kg/m3) 
is present in a closed tank as shown in the following fig-
ure. The pressure gauge P1 reads 5 k Pa. Person A cal-
culates the pressure reading in the gauge P2 to be P2,A. 
Person B considers the specific weight of air to be negli-
gible and calculates the pressure reading in the gauge P2 
to be P2,B. The difference between P2,A and P2,B is

	 (A)	 23.54 Pa	 (B)	 0 Pa
	 (C)	 -23.54 Pa	 (D)	 47.08 Pa

Air

R

Air

P2P1

6 m

6 m

4 m

4 m

QP

Liquid

	13.	 An inclined u-tube manometer, using a manometric liq-
uid of density rm, is connected to an open tank containing 
a liquid of density rw , as shown in the following figure. 
If the ratio rm ; rw is 2 : 1, then the right limb of the u-tube 
manometer is inclined to the horizontal by an angle of

	 (A)	 sin− ⎛
⎝⎜

⎞
⎠⎟

1 3h

L
	 (B)	 sin− ⎛

⎝⎜
⎞
⎠⎟

1 h

L

	 (C)	 sin− ⎛
⎝⎜

⎞
⎠⎟

1

3

h

L
	 (D)	 1sin

L

h
−  

  

hmh

hm

L

	14.	 A manometer connects two pipelines, one containing 
an oil (specific gravity = 0.86) and the other containing 
water as shown in the figure. The manometric readings 
are shown in the figure. If the density of air is taken to 
be 1.2 kg/m3 and the difference of pressures (PA – PB) is 
10 kPa then the value of h (in cm) is

	 (A)	 10	 (B)	 6
	 (C)	 7	 (D)	 8

h
3 cm

A

Water

Air

Mercury

B Oil

5 cm

1 cm

	15.	 Two spherical soap bubbles, one having a smaller 
diameter than the other, are present at the two ends 
of a hollow horizontal cylindrical tube. A restric-
tion at the centre of the tube prevents the flow of air 
between the two bubbles. If the restriction is removed, 
then which one of the following is the ONLY possible 
consequence?

	 (A)	 Smaller bubble grows in size.
	 (B)	 Both the bubbles do not change in size.
	 (C)	 Larger bubble grows in size.
	 (D)	 Larger bubble could grow or shrink in size. 

Direction for questions 16 and 17: A 500 mm diameter 
shaft is rotating at 300 r.p.m. in a bearing of length 150 mm. 
The thickness of the lubricant (Newtonian fluid) film is 
2 mm. The torque required to overcome the friction in the 
bearing is 647.7 Nm. A linear velocity profile is approxi-
mately developed in the lubricant.

	16.	 The viscosity of the lubricant is 
	 (A)	 0.8 Ns/m

2	 (B)	 1.8 Ns/m2

	 (C)	 3.8 Ns/m
2	 (D)	 2.8 Ns/m2

	17.	 The power utilized in overcoming the viscous resist-
ance is 

	 (A)	 10.21 kW	 (B)	 20.35 kW
	 (C)	 30.68 kW	 (D)	 15.29 kW

	18.	 A tank to which a manometer is attached contains water 
as shown in the following figure. A stopcock is present 

		  2 m away from the water surface in the manometer. The 
stopcock is closed and water is added to the tank up 
to the level of the stopcock. If the air trapped in the 
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manometer (due to the closing of the stopcock) is com-
pressed isothermally, then the increase in the elevation 
of water in the manometer is:

2 m

Water

Stopcock

Air

Tank

	 (A)	 0.2848 m	 (B)	 0 m
	 (C)	 5.234 m	 (D)	 0.1172 m

	19.	 A metal dome with a pipe on top is filled with water as 
shown in the following figure. The metal dome and the 
pipe weighs 7 kN. The radius of the hemispherical metal 
dome is 2 �while the diameter of the pipe is 0.2 � . If the 
value of �  is 100 cm, then the force (Fb) that must be 
exerted through the bolts to hold the dome in place is:

Bolts
Fb Fb

2 3 



6  Pipe

Metal dome

Water

	 (A)	 957121.8 N
	 (B)	 647923.6 N
	 (C)	 -647923.6 N
	 (D)	 -957121.8 N

	20.	 In the setup shown in the figure below, the weight 
of the small and large piston is 1000 N and 1500 N 
respectively. If the force applied to the small piston 
(diameter = 5 cm) is 100 N, then the magnitude of the 
force that can be resisted by the large piston (diameter 
= 10 cm) is:

	 (A)	 100 N
	 (B)	 2006.9 N
	 (C)	 2473.2 N
	 (D)	 2591.8 N

Small
piston

Oil (specific gravity = 0.8)

Large
piston

5 m

Practice Problems 2
Direction for questions 1 to 20:  Select the correct alterna-
tive from the given choices.

	 1.	 The viscous torque on a disk of radius R1, rotating at 
an angular velocity of w1 inside a container containing 
a Newtonian fluid of viscosity m as shown in the figure 
below, is determined to be T1. To determine the viscous 
torque, a linear velocity profile is assumed and the shear 
on the outer disk edges is neglected. For another disk 
of radius R2 rotating at an angular velocity of w2 inside 
the same container containing the same fluid, the viscous 
torque on the disk is determined to be T2. If the clear-
ance of the disk surfaces from the container edges are the 
same in both cases, w2 = 8w1, and R2 = 0.5R1, then:

R

Newtonian
fluid
(viscosity = μ)

h

ω

h

Container

Disk

		  T2 is equal to:

	 (A)	  2 T1	 (B)	 0.25 T1
	 (C)	 0.5 T1	 (D)	 4 T1

	 2.	 A thin square plate (10 cm × 10 cm) is pulled with a 
force of 1.625 N horizontally through a 6 mm thick 
layer of Newtonian fluid (viscosity = 1poise) between 
two plates, where the top plate is stationary and the 
bottom plate is moving with a velocity of 0.5 m/s, 
as shown in the following figure. If a linear velocity 
profile is assumed, then the minimum distance from 
the bottom plate, at which the velocity of the fluid is 
zero, is 

Stationary plate

2 mm Force = 1.625 N

Velocity = 0.5 m/s

4 mm
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	 (A)	 6 mm	 (B)	 5 mm
	 (C)	 2 mm	 (D)	 0.8 mm

	 3.	 A block ( meters × b meters × h meters) weighing W 
Newtons is moved at a constant velocity of V m/s up a 
plane, inclined at an angle of 30° to the horizontal, by 
a force F applied in the horizontal direction. If an oil 
(Newtonian fluid of viscosity m poise) film of thickness 
t mm, separates the block and the inclined surface, then 
W is equal to: 

	 (A) 3
2

F
bv

t
−

μ�
	 (B)	 3

200
F

bv

t
−

μ�

	 (C)	 F
bv

t
−

2μ� 	 (D)	 F
bv

t
−

200μ�

	 4.	 On the free surface of a body of liquid resting inside 
an open container, a constant shear force is applied. 
Which one of the following events is most unlikely to 
follow afterwards?

	 (A)	 The liquid deforms continuously.
	 (B)	� A liquid flow pattern develops inside the container.
	 (C)	 The liquid changes its shape.
	 (D)	 The liquid remains at rest.

	 5.	 If the straight line plots, between shear stress (t) and 

rate of deformation
du

dy

⎛
⎝⎜

⎞
⎠⎟

,  for three fluids 

		  A (viscosity = mA), B (viscosity = mB) and C (viscosity 
= mC are as given in the below figure, then

O

A

τ

B
C

du
dy

	 (A)	 mC > mA	 (B)	 mC < mB < mA
	 (C)	 mC > mB < mA	 (D)	 mC < mB > mA 

	 6.	  For which of the following fluids, the apparent viscos-
ity can be considered to be independent of the rate of 
shear strain and equal to the fluid’s viscosity?

	 (A)	 Ketchup	 (B)	 Water
	 (C)	 Cornstarch solution	 (D)	 Blood

	 7.	 For an ideal gas (density = r) at pressure P and tem-
perature T, the coefficient of volume expansion is equal 
to 

	 (A)	 T	 (B)	 P

	 (C)	
1

T
	 (D)	

1

P

Direction for questions 8 and 9: A spherical drop of liq-
uid (surface tension = s) of radius 10 cm is split into small 
identical spherical drops of radius 2 cm under isothermal 
conditions.

	 8.	 The number of the small spherical drops formed is 
	 (A)	 25	 (B)	 15
	 (C)	 35	 (D)	 125

	 9.	 The volume of the liquid of the large drop still uncon-
verted to small spherical drops is

	 (A)	 4189 cm3	 (B)	 33.51 cm3

	 (C)	 0 cm3	 (D)	 3351 cm3

	10.	 If 5 × 10-4 J of energy is expended in blowing up a soap 
bubble, using a soap solution having a surface tension 
of 50 × 10-3 N/m, then the diameter of the bubble is

	 (A)	 4 cm	 (B)	 2 cm
	 (C)	 8 cm 	 (D)	 3 cm

	11.	 Small liquid droplets, at 20°C, of constant diameter are 
sprayed using a spray nozzle into the atmosphere. The 
average diameter of the droplets is 100 mm. If the sur-
face tension of the liquid at 20°C is 2.69 × 10-2 N/m, 
then the pressure inside the droplets is

	 (A)	 1076 Pa
	 (B)	 102401 Pa
	 (C)	 101325 Pa

	 (D)	 101863 Pa

	12.	 The maximum diameter of a metallic (density = r ) 
spherical ball that can float in a constant temperature 
liquid (surface tension = s) bath is d1. If the density r 
is made eightfold and the surface tension s is doubled, 
then the maximum diameter becomes d2 . Then, one 
can write that

	 (A)	 d2 = 2d1	 (B)	 4d2
 = d1

	 (C)	 2d2 = d1	 (D)	 d2 = 4d1

	13.	 A glass tube, of diameter 2 mm, is used to measure 
the pressure in a water tank as shown in the following 
figure.

20 cm

		  If the surface tension of water is 0.073 N/m, then the 
height of water in the tube to be used to determine the 
pressure in the tank, when surface tension effects in the 
tube are not negligible,

	 (A)	 18.51 cm	 (B)	 20 cm
	 (C)	 19.25 cm	 (D)	 10 cm

	14.	 A hydraulic jack has a large piston of diameter 15 cm 
and a small piston of 5 cm diameter. The small piston is 
above the large piston by a height h. If a force of 100 N 
applied on the small piston lifts a load of 990 N placed 
on the large piston, then the value of h (in cm) is:
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	 (A)	 14	 (B)	 67
	 (C)	 40	 (D)	 52

	15.	 A liquid is present in a tank fitted with two pressure 
gauges as shown in the following figure. If the readings 
in the pressure gauges are P1 = 60 kPa and P2 = 80 KPa, 
then the density of the liquid (in kg/m3) is

4 m

7 m
P2

P1

	 (A)	 679.58	 (B)	 701.28
	 (C)	 504.32	 (D)	 462.95	 

	16.	 The inclined differential manometer, with the right 
limb inclined at an angle of q to the horizontal, con-
tains a manometric liquid of specific weight wm. The 
manometer is fitted to the two pipes as shown in the 
following figure.

A B

Manometric
liquid

		  The pressure differential between the two points A 
and B in the respective pipes, which both contain 
the same liquid of specific weight wb, is zero. It is 
observed that wm= 2wb. When a pressure differential 
of P (= PA - PB) occurs, then the manometer gives a 
differential reading of Dh (measured along the inclined 
tube). If all the variables are in the S.I units, then Dh is 
equal to

	 (A)	 P

mω θsin
	 (B)	

P

bω θsin

	 (C)	
3P

mω θsin
	 (D)	

P

b2ω θsin

	17.	 Two pipes transporting water are connected by a 
manometer as shown in the figure. The specific grav-
ity of the manometric fluid is 2. If the difference in 
pressures at the points B and A is 10 kPa, then the 
value of h is

h

A

B

1.5 m

	 (A)	 52 cm	 (B)	 89 cm	
	 (C)	 48 cm	 (D)	 62 cm

	18.	 Two open containers contain liquids in them such that 
the free surface of the liquid in contact with the atmos-
phere is at the same elevation in both the containers. 
The pressure at a point in the first container and the 
pressure at a point in the second container can be

	 (A)	� Equal only if the two points are at the same 
elevation.

	 (B)	 Equal or unequal.
	 (C)	 Equal only if the two points are at the same depth.
	 (D)	 Equal only if the two points are in the same liquid.

	19.	 Two tanks A and B are present in the configuration as 
shown in the following figure. The pressure readings 
at the Bourdon pressure gauges P1 and P2 are 3 atm 
and 2 atm respectively. If the atmospheric pressure 
outside tank B is 1 at m, then the absolute pressure in 
tank A is

A

B

P2

P1

	 (A)	 6 atm	 (B)	 4 atm
	 (C)	 2 atm	 (D)	 3 atm

	20. Which one of the following statements is NOT correct?
	 (A)	� Liquids wetting a solid surface have acute contact 

angles.
	 (B)	 Non-wetting liquids have obtuse contact angles. 
	 (C)	� For hydrophilic surfaces, water has a large contact 

angle.
	 (D)	� For hydrophobic surfaces, water has a large con-

tact angle.

	21.	 A cylindrical tank is filled with water upto a height h. 
An air bubble of diameter d is present at the bottom of 
the tank. If dn is be diameter of the bubble after it has 
traveled a distance of h/2 while rising to the surface, 
then

	 (A)	 dn > d	 (B)	 dn  = d/2
	 (C)	 dn = d	 (D)	 dn < d
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Direction for questions 22 and 23: A shaft of diameter d is 
rotating at a speed of N r.p.m. in a bearing of length . The 
thickness of the lubricant (Newtonian fluid) film is t where 
the viscosity of the lubricant is m. The torque and power 
required to rotate the shaft was determined to be T and P. 
After doubling the length of the bearing and reducing the 
speed of the shaft to half its value, the torque and power 
required to rotate the shaft was determined to be T1 and P1. 
A linear velocity profile could always be assumed in the 
lubricant.

	22.	 The relationship between the required torques T and T1 
is

	 (A)	 2 T1 = T	 (B)	 T = T1
	 (C)	 T1 = 2T	 (D)	 T1 = 8T

	23.	 The relationship between the required powers P and P1 
is 

	 (A)	 P = P1	 (B)	 P1 = 2P
	 (C)	 2P1 = P	 (D)	 P1 = 3P

	24.	 A frictionless piston-cylinder device, shown in the 
following figure, has a piston of mass 5 kg and a 
cross-section at area of 50 cm2. A compressed spring 
above the piston exerts a force of 50 N on the piston. 
If the atmospheric pressure is 100 kPa, the reading 
on the pressure gauge attached at the bottom of the 
cylinder is

Spring

Piston

P
CylinderGas

	 (A)	 -80190 Pa	 (B)	 19810 Pa
	 (C)	 100000 Pa	 (D)	 10000 Pa

	25.	 The air space above a tube, shown in the following 
figure, is pressurized to 70 kPa vaccum. Water from a 
large reservoir fills the tube to a certain height. If the air 
space pressure is reduced to 50 kPa, then the height of 
the water in the tube will

Air space

Tube

Water

	 (A)	 Not change.
	 (B)	 Increase by one metre.
	 (C)	 decrease by 2.82 metres.
	 (D)	 decrease by 2.04 metres.

	26.	

Tube
1

Tube
2

Tube
3 xx

		  In the three capillary tube structure shown above, water 
is present in all the three tubes. The height of the free 
surface of water in tubes 1, 2 and 3, from the horizontal 
line x x, are h1, h2 and h3 respectively. If the diameter of 
the tubes 1, 2 and 3 are d1,  d2 and d3 respectively such 
that d3 > d2 > d1, then

	 (A)	 h3 > h2 > h1

	 (B)	 h1 < h3 < h2

	 (C)	 h3 < h2 < h1

	 (D)	 h1 > h2 < h3

	27.	 A tank to which a manometer is attached contains 
water as shown in the following figure. A stopcock is 
present h metres away from the surface of the water 
in the manometer. The stopcock is closed and water 
is added to the tank upto the level of the stopcock. If 
the trapped air in the manometer (due to the closing of 
the stopcock) is compressed isothermally and that the 
increase in the elevation of water in the manometer is 
0.3 m, then the value of h is equal to 

	 (A)	 1.06 m
	 (B)	 4.06 m
	 (C)	 1.03 m
	 (D)	 2.06 m

h

Stop cock

Air

Water

Tank

	28.	 In the following figure, the hemispherical dome has a 
radius, r = 100 cm. The dome weighs about 1000 N. 

		  The specific gravity of the liquid inside the closed 
structure is 1. If the reading on the pressure gauge is 
29.62 kPa, then it could be stated that the metal at the 
base of the hemispherical dome 

	 (A)	 is in tension.
	 (B)	 is in compression.
	 (C)	 is neither in tension nor in compression.
	 (D)	 can be in tension or in compression.
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r

P

2 r

r

	29.	 In a hydraulic jack configuration, a load W placed 
on the large piston (area = A) is balanced by a force 
F applied on the small piston (area = a) such that 
the bases of both the pistons (whose weights can be 
assumed to be negligible) are at the same horizontal 
level. The specific weight of the liquid used in the jack 
is w. If the load on the large piston is doubled, then the 
vertical distance between the bases of the two pistons 
will be equal to

	 (A)	
W

aω
	 (B)	

F

Aω

	 (C)	
W

Aω
	 (D)	

F

Wa

2

ω
	30.	 Two open containers, having the same base area, are 

filled with the same liquid such that the elevation of 
the free surface of the liquid from the base is same for 
both the containers. However, the volume of the liquid 
in the second container is twice the volume of the liq-
uid in the first container. The ratio of the pressure force 
exerted at the base of the first container to that exerted 
at the base of the second container is:

	 (A)	 2:1
	 (B)	 1:1
	 (C)	 1:2
	 (D)	� Not possible to be determined with the given 

conditions.

Previous Years’ Questions

	 1.	 An incompressible fluid (kinematic viscosiy, 7.4 × 
10-7 m2/s, specific gravity 0.88) is held between two 
parallel plates. If the top plate is moved with a veloc-
ity of 0.5 m/s while the bottom one is held station-
ary, the fluid attains a linear velocity profile in the gap 
of 0.5 mm between these plates; the shear stress in 
Pascals on the surface of top plate is� [2004]

	 (A)	 0.651 × 10-3	 (B)	 0.651
	 (C)	 6.51	 (D)	 0.651 × 103

	 2.	 For a Newtonian fluid� [2006]
	 (A)	 Shear stress is proportional to shear strain
	 (B)	 Rate of shear stress is proportional to shear strain
	 (C)	 Shear stress is proportional to rate of shear strain
	 (D)	� Rate of shear stress is proportional to rate of 

shear strain

	 3.	 For an incompressible flow field, V
��

, which one of the 
following conditions must be satisfied?� [2014]

	 (A)	 ∇⋅ =V
��

0 	 (B)	 ∇ × =V
��

0

	 (C)	 ( )V V
�� ��

⋅∇ = 0 	 (D)	
∂
∂

+ ⋅∇ =
V

t
V V

��
�� ��

( ) 0

	 4.	� An inverted U-tube manometer is used to measure 
the pressure difference between two pipes A and B, 
as shown in the figure. Pipe A is carrying oil (specific 
gravity = 0.8) and pipe B is carrying water. The densi-
ties of air and water are 1.16 kg/m3, respectively. The 
pressure difference between pipes A and B is _______ 
kPa.� [2016]

		  Acceleration due to gravity g = 10 m/s2.

80 mm

100 mm

A

B

200 mm

Air

Water

Oil
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Answer Keys

Exercises
Practice Problems 1
	 1.  C	 2.  A	 3.  A	 4.  C	 5.  B	 6.  C	 7.  D	 8.  A	 9.  D	 10.  B
	11.  C	 12.  A	 13.  C	 14.  D	 15.  C	 16.  D	 17.  B	 18.  A	 19.  D	 20.  D

Practice Problems 2
	 1.  C	 2.  D	 3.  B	 4.  D	 5.  A	 6.  B	 7.  C	 8.  A	 9.  D	 10.  A
	11.  B	 12.  C	 13.  A	 14.  D	 15.  A	 16.  B	 17.  C	 18.  B	 19.  A	 20.  A
	21.  A	 22.  B	 23.  C	 24.  B	 25.  D	 26.  C	 27.  D	 28.  A	 29.  C	 30.  B

Previous Years’ Questions
	 1.  B	 2.  C	 3.  A 	 4.  –2.2 kPa

M04_TRIS7308_C01.indd   414 27/06/2017   19:32:25


	PART III Mechanical Engineering 
	UNIT IV Fluid Mechanics 
	Chapter 1 Fluid Properties and Manometry 



