Time allowed: 45 minutes

Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

If A is any square matrix, then

(a) A + A' is skew symmetric matrix

(b) A – A' is symmetric

(c) AA' is symmetric

(d) AA' is skew symmetric

2. The value of determinant $\begin{vmatrix} 0 & xy^2 & xz^2 \\ x^2y & 0 & yz^2 \\ x^2z & zy^2 & 0 \end{vmatrix}$ is

(a) 2 xyz

(c) 0

(d) 4 xyz

3. If $B\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$ is a equal matrix then what is matrix B?

(a) $\begin{bmatrix} 4 & 2 \\ 1 & 1 \end{bmatrix}$

(b) $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$

(d) I

4. If $f(x) = (x-2)^2$ then f''(0) is equal to

(c) - 2

(d) 2

5. A point on the ellipse $4x^2 + 9y^2 = 36$ where the tangent is equally inclined to the axis is

(a) $\left(\frac{9}{\sqrt{13}}, \frac{4}{\sqrt{13}}\right)$ (b) $\left(-\frac{9}{\sqrt{13}}, \frac{4}{\sqrt{13}}\right)$ (c) $\left(\frac{9}{\sqrt{13}}, -\frac{4}{\sqrt{13}}\right)$

(d) All of these

6. $\int \frac{dx}{x\sqrt{x^4-1}}$ is equal to

(a) $\frac{1}{2} \sec^{-1}(x^2) + C$ (b) $\sec^{-1}(x^2) + C$

(d) $\tan^{-1}(x^2) + C$

7. The integral $\int \frac{x^9 dx}{(4x^2+1)^6}$ is equal to

	(a) $\frac{1}{5x} \left(4 + \frac{1}{x^2}\right)^{-5}$	+ C (b)	$\frac{1}{5}\left(4+\frac{1}{x^2}\right)^{-5}+C$	(c) $\frac{1}{10x}$	(5) ⁻⁵ +C	(d) $\frac{1}{10} \left(\frac{1}{x^2} \right)$	+4)-5 +C	
8.	$\int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} dx$ is equal to							
	(a) $\frac{\sqrt{2x^4 - 2x^2 + x^2}}{x^2}$	$\frac{1}{C} + C$ (b)	$\frac{\sqrt{2x^4 - 2x^2 + 1}}{x^3} +$	C (c) $\frac{\sqrt{2x^2}}{2x^2}$	$\frac{4-2x^2+1}{x}+C$	(d) $\frac{\sqrt{2x^4-2}}{2x^4}$	$\frac{x^2+1}{2}+C$	
9.	The value of $\int_0^{\pi/2} \log\left(\frac{4+3\sin x}{4+3\cos x}\right) dx$ is							
	(a) 2	(b)	3	(c) 0		(d) -2		
10.	The area of the region bounded by the curves $x = at^2$ and $y = 2at$ between the ordinate corresponding to $t = 1$ and $t = 2$ is							
	(a) $\frac{56}{3}a^2$ sq. uni	its (b)	$\frac{40}{3}a^2$ sq. units	(c) 5π sq	ı. units	(d) None of	these	
11.	Which of the following is not a homogeneous function of x and y ?							
	(a) $x^2 + 2xy$	(b) 2	x – y	(c) \cos^2	$\left(\frac{y}{x}\right) + \frac{y}{x}$	(d) $\sin x - \cos x$	os y	
12.	Solution of the	Solution of the differential equation $\frac{dx}{x} + \frac{dy}{y} = 0$ is						
	$(a) \frac{1}{x} + \frac{1}{y} = C$	(b) lo	$\log x. \log y = C$	(c) xy = 0	С	(d) x + y = 0	:	
13. A point out of following points lie in plane represented by $2x + 3y \le 12$ is								
	(a) (0, 3)	(b) (3	3, 3)	(c) (4, 3)		(d) (0, 5)		
14.	4. The probability distribution of a discrete random variable X is given below:							
	X	1	2	4	2A	3.4	5 <i>A</i>	
	P(X)	$\frac{1}{2}$	1 5	3 25	1 10	1 25	1 25	
	If $E[X] = 2.94$ then the value of A is							
	(a) 3	(b) 4		(c) 5		(d) 6		
15.	In a box containing 100 bulbs, 10 are defective. The probability that out of a sample of 5 bulbs, none is defective is							
	(a) 10 ⁻¹	(b) ($(\frac{1}{2})^5$	(c) $\left(\frac{9}{10}\right)$	5	$(d) \ \left(\frac{9}{10}\right)$		
			Seci	tion-B (B1)				
16.	Let R be the rela	ation in the set	(1, 2, 3, 4) given	by				

 $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$ then

(b) $(3, 8) \in R$

18. The domain of the function $f: R \to R$ defined by $f(x) = \sqrt{x^2 - 4}$ is (b) (-2, 2)

17. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$. Choose the correct answer.

(b) reflexive and transitive but not symmetric.

(c) $(-\infty, -2] \cup [2, \infty)$ (d) $(-\infty, \infty)$

(d) $(8,7) \in R$

(d) equivalence relation.

(c) $(6, 8) \in R$

(a) reflexive and symmetric but not transitive.

(c) symmetric and transitive but not reflexive.

R is

(a) $(2, 4) \in R$

(a) [-2, 2]

19.		on on Z as $a * b = a - b$ then	() .	(d) 3		
	(a) 1	(b) -1	(c) 2 x = 1	. ,		
20.			$\frac{Q-1}{2}$ and $g:Q\to R$ be a	nother function defined by		
	$g(x) = x + 2$ then $gof\left(\frac{5}{2}\right)$ is equal to					
	(a) 2	(b) 1	(c) $\frac{5}{2}$	(d) none of these		
21.	$\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5} - \tan^{-1}\frac{3}{5}$	8 is equal to				
	(a) $\frac{\pi}{4}$	(b) $\frac{-\pi}{4}$	(c) $\frac{3\pi}{4}$	(d) $\frac{\pi}{2}$		
22.	Find the value of $\tan \left[2 \tan^{-1} \frac{1}{2} - \cot^{-1} 3 \right]$					
	(a) $\frac{9}{13}$	(b) $\frac{4}{9}$	(c) = 9/13	(d) 0		
23.	$\cot\left(\frac{\pi}{4} - 2\cot^{-1}3\right)$ is equal	al to				
	(a) 7	(b) -7	(c) 5	(d) 0		
24.	What is the value of $\tan \left[\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)\right] + \tan \left[\frac{1}{2}\cos^{-1}\left(\frac{4}{5}\right)\right]$?					
	(a) $\frac{5}{6}$	(b) = 5/6	(c) 1/2	(d) 0		
25.	If $A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$. The matrix 'C' such that $A + B + C$ is null matrix, is					
	(a) $\begin{bmatrix} -3 & 4 & -1 \\ -3 & 0 & -1 \end{bmatrix}$	$(b) \begin{bmatrix} 1 & 2 & 3 \\ -1 & -2 & 3 \end{bmatrix}$	(c) [-1 -2 3] 1 2 -3]	(d) None of these		
26.	If A and B are square matrices of the same order, then the value of $(A + B)$ $(A - B)$ is equal to					
	(a) $A^2 - B^2$		(b) $A^2 + BA + AB - B^2$			
	(c) $A^2 - B^2 + BA - AB$		(d) $A^2 - BA + B^2 + AB$			
27.	The value of the determine	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	(a) 15	(b) $\frac{15}{2}$	(c) 10	(d) 0		
28.	If $A = \begin{bmatrix} 3 & 1 \\ 2 & -3 \end{bmatrix}$, then $ adj $	A is				
	(a) $\frac{-1}{19}A$	(b) $\frac{1}{19}A$	(c) A	(d) -11		
29.	The function $f(x) = x +$	The function $f(x) = x + x-2 $ is				
	(a) differentiable at $x = 0$	and at $x = 2$	(b) differentiable at $x = 0$ but not at $x = 2$.			
	c) not differentiable at $x = 0$ and at $x = 2$. (d) none of these					
30.	The value of <i>c</i> in Rolle's Theorem for the function $f(x) = x^2 + 2x - 8$, $\forall x \in [-2, 3]$ is					
	(a) - 2	(b) -1	(c) 3	(d) none of these		

	(a) tan ² x	(b) sec x	(c) $\frac{\tan x}{\sin x}$	$(d) \sec^3 x$		
32.	The function $f(x) = \frac{x^2 - x - 6}{x - 3}$ is not defined for $x = 3$. In order to make $f(x)$ continuous at $x = 3$, $f(3)$ should					
	be defined as					
	(a) 1	(b) 3	(c) 5	(d) none of these		
33.	If $xy = a^2$ and $S = b^2x + c^2y$ where a, b and c are positive constants then the minimum value of S is					
	(a) abc	(b) $bc\sqrt{a}$	(c) 2abc	(d) none of these		
34.	$\int \frac{dx}{e^x + e^{-x}}$ is equal to					
	(a) $\tan^{-1}(e^x) + C$	(b) $\tan^{-1}(e^{-x}) + C$	(c) $\log (e^x - e^{-x}) + C$	$(d) \log \left(e^x + e^{-x}\right) + C$		
35.	$\int \frac{\cos 2x dx}{(\sin x + \cos x)^2} \text{ is equa}$	1 to				
	(a) $\frac{-1}{\sin x + \cos x} + C$		(b) $\log \sin x + \cos x + C$			
	(c) $\log \sin x - \cos x + C$		$(d) \ \frac{1}{\left(\sin x + \cos x\right)^2} + C$			
36.	If $x = \int_0^y \frac{dt}{\sqrt{1 + 9t^2}}$ and $\frac{d^2y}{dx^2} = ay$, then a is equal to					
	(a) 3	(b) 6	(c) 9	(d) 1		
37.	The area of the region ab	ove x-axis, included betwe	een the parabola $y^2 = ax$ and	the circle $x^2 + y^2 = 2ax$ is		
	(a) $\left(\frac{\pi}{4} - \frac{2}{3}\right)$ sq. units	(b) $a^2 \left(\frac{\pi}{4} - \frac{2}{3}\right)$ sq. units	(c) $\frac{2}{3}\pi$ sq. units	(d) $a^2 \left(\frac{\pi}{4} + \frac{2}{3}\right)$ sq. units		
38.	Given that $\frac{dy}{dx} = ye^x$ such that at $x = 0$, $y = e$. The value of $y(y > 0)$ when $x = 1$ will be					
	(a) e ^e	(b) log C	(c) 1	(d) 0		
39.	Read the following statements.					
	Statement I : The differential equation $\frac{dy}{dx} + \frac{2x}{(1+x)^2}y = \frac{1}{(1+x^2)^2}$ is linear differential equation.					
	Statement II : The differential equation $\frac{dx}{dy} + Px = Q$, where P and Q are functions of y , is a linear differential					
	equation.					
	Choose the correct option:					
	(a) Statement I is correct but statement II is not correct.					
	(b) Statement II is correct but statement I is not correct.					
	(c) Both statements I and II are correct.					
	(d) None of these					

31. The derivative of $\tan x$ w.r.t. $\sin x$ is

Statement I : The unit vector perpendicular to both $\hat{i} - \hat{j}$ and $\hat{i} + \hat{j}$ forming right handed system is \hat{k} .

Statement II : $\hat{a} = \frac{\hat{a}}{|\hat{a}|}$ is a unit vector.

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these
- If the sum of two unit vectors is also a unit vector then the angle between the two vectors is

- 42. If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$ and the vectors $A(1, a, a^2)$, $B(1, b, b^2)$, $C(1, c, c^2)$ are non-coplanar then the value of

(a) -2

- 43. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors defined by the relationship $\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]'}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]'}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}, \text{ then the value of } \vec{p} \cdot (\vec{a} + \vec{b}) + \vec{q} \cdot (\vec{b} + \vec{c}) + \vec{r} \cdot (\vec{c} + \vec{a}) \text{ is }$
- 44. The image of the point (1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ is
 - (a) (2, 0, 5)
- (b) (1, 3, 4)
- (c) (1, 0, 7)
- 45. The distance of the point (-1, -5, -10) from the point of intersection of the line $\vec{r} = 2\hat{i} \hat{j} + 2\hat{k} + \lambda (3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\vec{r} \cdot (\hat{i} - \hat{j} + \hat{k}) = 5$ is
 - (a) 14 units
- (b) 12 units
- (c) 140 units
- (d) 13 units
- 46. If a line makes an angle of 300, 600, 900 with the positive direction of x, y, z-axes, respectively, then the direction cosines are

(a)
$$\pm \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$$

(a)
$$\pm \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$$
 (b) $\pm \left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}, 5\right)$ (c) $\pm \left(\frac{\sqrt{3}}{5}, \frac{1}{2}, \sqrt{5}\right)$ (d) $\pm \left(\frac{\sqrt{7}}{2}, \frac{-5}{2}, 3\right)$

(c)
$$\pm \left(\frac{\sqrt{3}}{5}, \frac{1}{2}, \sqrt{5}\right)$$

(d)
$$\pm \left(\frac{\sqrt{7}}{2}, \frac{-5}{2}, 3\right)$$

- 47. The Cartesian form of the plane $\vec{r} \cdot \{5\hat{i} \hat{j} + 2\hat{k}\} = 8$ is
 - (a) 5x 2y 3z = 6
- (b) 5x y 3z = 8
- (c) 5x y + 2z = 8
- (d) None of these
- 48. The probability that a student is not a swimmer is 1/5. Then the probability that out of five students, four are swimmer is
 - (a) ${}^{5}C_{4}\left(\frac{4}{5}\right)^{4}\frac{1}{5}$
- (b) $\left(\frac{4}{5}\right)^4 \frac{1}{5}$
- (c) ${}^{5}C_{1}\left(\frac{4}{5}\right)^{4}\frac{1}{5}$
- (d) none of these
- 49. If A and B are two events such that P(A) ≠ 0 and P(B/A) = 1, then
 - (a) A ⊂ B
- (b) B ⊂ A
- (d) $A = \Phi$

- 50. If P(A/B) > P(A), then which of the following is correct?
 - (a) P(B/A) < P(B)
- (b) $P(A \cap B) < P(A) \cdot P(B)$ (c) P(B/A) > P(B)
- (d) P(B/A) = P(B)