CBSE Test Paper 02 CH-11 Herons Formula

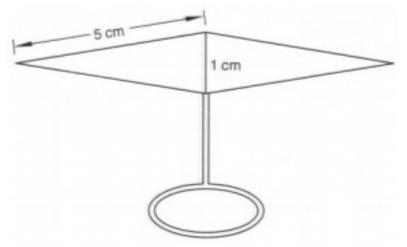
- 1. The perimeter of an equilateral triangle is 48 cm. Its area is
 - a. $60\sqrt{3}$ sq cm
 - b. $72\sqrt{3}$ sq cm
 - c. $64\sqrt{3}$ sq cm
 - d. $18\sqrt{3}$ sq cm
- 2. If the perimeter and base of an isosceles triangle are 11 cm and 5 cm respectively, then its area is
 - a. $\frac{5}{2}\sqrt{11} \ cm^2$
 - b. $\frac{5}{4}\sqrt{11}~cm^2$
 - c. $\frac{5}{8}\sqrt{11} \ cm^2$
 - d. $5\sqrt{11} \ cm^2$
- 3. If the height of a parallelogram having 500 cm^2 as area is 20 cm, then its base is of length
 - a. 50 cm
 - b. 25 cm
 - c. 20 cm
 - d. 15 cm
- 4. The sides of a triangular flower bed are 5 m, 8 m and 11 m. the area of the flower bed is
 - a. $21\sqrt{4}~m^2$

- b. $4\sqrt{21} \ m^2$
- c. $\sqrt{300}$ m^2
- d. $\sqrt{330}~m^2$
- 5. The area of a right-angled triangle is 20 m^2 and one of the sides containing the right triangle is 4 cm. Then the altitude on the hypotenuse is
 - a. 10 cm

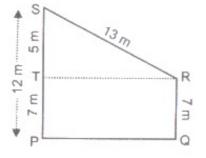
b.
$$\frac{10}{\sqrt{41}}cm$$

c. $\frac{20}{\sqrt{29}}cm$

- d. 8 cm
- 6. Fill in the blanks:


An isosceles right-angled triangle has area of 8 cm², then the length of its hypotenuse is _____.

7. Fill in the blanks:


The sides of a triangle are 25 cm, 17 cm and 12 cm. The length of the altitude on the longest side is equal to _____.

- 8. Find the length of each side of an equilateral triangle having an area of $9\sqrt{3}$ cm².
- 9. Find the area of an isosceles triangle having base 2 cm and the length of one of the equal sides 4 cm.
- 10. Calculate the area of quadrilateral ABCD when length of the diagonal AC = 10 cm and lengths of perpendiculars from B and D on AC be 5 cm and 6 cm respectively.
- 11. If the area of an equilateral triangle is $16\sqrt{3}$ cm², then find the perimeter of the triangle.
- 12. If the area of an equilateral triangle is $36\sqrt{3}$ cm², find its height.

- 13. In a \triangle ABC, AB = 15 cm, BC = 13 cm and AC = 14 cm. Find the area of \triangle ABC and hence its altitude on AC.
- 14. Find the area of the blades of the magnetic compass shown in a given figure. (Take $\sqrt{11}$ = 3.32).

15. Find the area of the trapezium PQRS with height PQ given in Figure.

CBSE Test Paper 02 CH-11 Herons Formula

Solution

1. (c) $64\sqrt{3}$ sq cm **Explanation:** Side= $\frac{48}{3}$ = 16 cm

Area =
$$rac{\sqrt{3}}{4} imes 16 imes 16$$
 = $64\sqrt{3}$ sq cm

2. (b) $rac{5}{4}\sqrt{11}~cm^2$

Explanation: Let each of the equal sides be x cm. Then

- x + x + 5 = 11 $\Rightarrow 2x = 6$ $\Rightarrow x = 3 \text{ cm}$ $s = \frac{3+3+5}{2} = \frac{11}{2} \text{ cm}$ Area = $\sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{\frac{11}{2}(\frac{11}{2}-3)(\frac{11}{2}-3)(\frac{11}{2}-5)}$ $= \sqrt{\frac{11}{2} \times \frac{5}{2} \times \frac{5}{2} \times \frac{1}{2}}$ $= \frac{5}{4}\sqrt{11} \text{ sq. cm}$
- 3. (b) 25 cm

Explanation: Area of parallelogram = Base x Height

- \Rightarrow 500 = Base x 20
- \Rightarrow Base = 25 cm
- 4. (b) $4\sqrt{21} \ m^2$ Explanation: s = $\frac{5+8+11}{2}$ = 12 m

Area of triangle =
$$\sqrt{s\left(s-a
ight)\left(s-b
ight)\left(s-c
ight)}$$

$$= \sqrt{12 (12 - 5) (12 - 8) (12 - 11)}$$
$$= \sqrt{12 \times 7 \times 4 \times 1}$$
$$= 4\sqrt{21} \text{ sq. m}$$
5. (c) $\frac{20}{\sqrt{29}} cm$

Explanation:

Area of right angle triangle = 20 sq. m

$$\Rightarrow \frac{1}{2} \text{ x Base x Height} = 20$$
$$\Rightarrow \frac{1}{2} \text{ x Base x 4} = 20$$

 \Rightarrow Base = 10 cm

Then, Hypotenuse = $\sqrt{10^2+4^2}=2\sqrt{29}$ m

If the altitude drawn to the hypotenuse of a right-angle triangle, then

the length of required altitude = $rac{10 imes 4}{2\sqrt{29}}=rac{20}{\sqrt{29}}$ cm

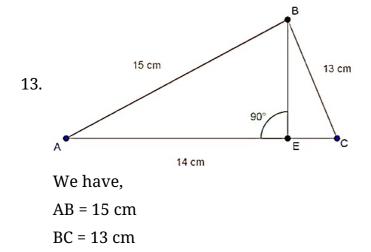
6. $4\sqrt{2}$

- 7. $100\sqrt{3} \text{ m}^2$
- 8. If the side of an equilateral triangle is a. Then, Area of equilateral triangle $= \frac{\sqrt{3}}{4}a^2$ $\frac{\sqrt{3}}{4}a^2 = 9\sqrt{3}\text{cm}^2$ $\Rightarrow a^2 = 36 \text{ cm}^2$ $\Rightarrow a = 6 \text{ cm}$

Hence the side of equilateral triangle is 6 cm.

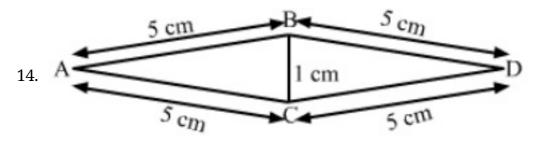
9. Base = a = 2cm and equal side = b = 4cm Area of isosceles triangle = $\frac{a}{4}\sqrt{4b^2 - a^2}$ = $\frac{2}{4}\sqrt{4 \times 4^2 - 2^2} = \frac{2}{4} \times \sqrt{60}$ = $\frac{2}{4} \times 2\sqrt{15}$ $=\sqrt{15}\,\mathrm{cm}^2.$

- 10. Area of quadrilateral ABCD
 - = Area of triangle ABC + Area of triangle ADC = $\frac{1}{2}$ × Base × Height + $\frac{1}{2}$ × Base × Height = $\frac{1}{2}$ × 10 × 5 + $\frac{1}{2}$ × 10 × 6 = 25 + 30 = 55 cm²
- 11. It is given that area of an equilateral triangle is $16\sqrt{3}$ cm². Side of an equilateral triangle = a


Area of an equilateral triangle $= \frac{\sqrt{3}}{4}a^2$ $\Rightarrow \frac{\sqrt{3}}{4}a^2 = 16\sqrt{3}$ $\Rightarrow a^2 = 64$ $\Rightarrow a = 8 \text{ cm.}$

Perimeter of an equilateral triangle = $3a = 3 \times 8 = 24$ cm. Hence the perimeter of an equilateral triangle is 24 cm.

12. It is given that the area of an equilateral triangle is $36\sqrt{3}$ cm² Let side of equilateral triangle is a cm.


Area of an equilateral triangle = $\frac{\sqrt{3}}{4}a^2$ $\frac{\sqrt{3}}{4}a^2 = 36\sqrt{3}$ $\Rightarrow a^2 = 4 \times 36$ $\Rightarrow a = \sqrt{4 \times 36} = 12$ cm

The height of the equilateral triangle $=rac{\sqrt{3}}{2}a=rac{\sqrt{3}}{2} imes 12=6\sqrt{3} ext{cm}$

AC = 14 cm
Now,
Perimeter = 2s = AB + BC + AC

$$\Rightarrow$$
 s = $\frac{1}{2}$ (AB + BC + AC)
= $\frac{1}{2}$ (42) = 21 cm
 \therefore Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{21(21-15)(21-13)(21-14)}$
= $\sqrt{21 \times 6 \times 8 \times 7}$
= $\sqrt{21 \times 8 \times 42}$ = 84 cm²
Let BE be perpendicular on AC.
Now, area of triangle = 84 cm²
 $\Rightarrow \frac{1}{2} \times BE \times AC$ = 48 [area of triangle = $\frac{1}{2} \times b \times h$]
 \Rightarrow BE = $\frac{84 \times 2}{14}$ = 12 cm
 \therefore Length of altitude on AC is 12 cm.

The blades of the magnetic compass are forming a rhombus having all equal sides of 5 cm.

Area of the blades of magnetic compass = area of \triangle ABC + area of \triangle CDB Now for area of \triangle ABC,

Let,
$$2s = AB + BC + CA$$
 (perimeter of $\triangle ABC$)
 $\Rightarrow s = \frac{1}{2}(5 + 1 + 5) = \frac{11}{2} \text{ cm}$
Now, area of $(\triangle ABC) = \sqrt{s(s - AB)(s - BC)(s - CA)}$
 $= \sqrt{\frac{11}{2}(\frac{11}{2} - 5)(\frac{11}{2} - 1)(\frac{11}{2} - 5)}$
 $= 2.49 \text{ cm}^2$
Also, area of $\triangle ABC$ = area of $\triangle CDB$
 \therefore Area of blades of the magnetic field = 2 × (area of $\triangle ABC$)
 $= 2 \times 2.49 = 4.98 \text{ cm}^2$

15. Draw RT \perp PS from the figure, it is clear that

ST = PS - PT = 12 m - 7 m = 5 m Now, from right triangle RTS, we have RS² = RT² + ST² \Rightarrow RT² = RS² - ST² = (13)² - 5² \therefore RT² = 169 - 25 = 144 \Rightarrow RT = $+\sqrt{144} = 12m$ Now area of trapezium PQRS = $(PS + QR) \times RT = \frac{1}{2}(12m + 7m) \times 12m$ $= \frac{1}{2} \times 19m \times 12m = \frac{1}{2} \times 228m^2 = 114m^2$