

RACTICE PROBLEMS

DPP No. 35

Max. Time : 32 min.

Complex Number, Continuity & Derivability, Application of Derivatives, Sequence & Series **Topics**:

Type of Questions		М.М.	, Min.
Single choice Objective (no negative marking) Q.1,2,3,4	(3 marks, 3 min.)	[12,	12]
Subjective Questions (no negative marking) Q,5,6,7,8	(4 marks, 5 min.)	[16,	20]

- 1. The angle at which the curve $y = 2 e^{2x}$ intersects the y-axis is (A) tan-1 4 (B) cot⁻¹ 4 (C) tan-1 2 (D) cot⁻¹ 2
- The subnormal at any point on the curve $xy^n = a^{n+1}$ is constant for: 2. (B) n = 1 (A) n = 0(C) n = -2 (D) no value of n

2

Let the sequence a_1 , a_2 , a_3 ,, a_{2n-1} , a_{2n} form an A.P. Then the value of, 3.

$$a_{1}^{2} - a_{2}^{2} + a_{3}^{2} - \dots + a_{2n-1}^{2} - a_{2n}^{2} \text{ is :}$$
(A) $\frac{2n}{n-1} \left(a_{2n}^{2} - a_{1}^{2}\right)$
(B) $\frac{n}{2n-1} \left(a_{1}^{2} - a_{2n}^{2}\right)$
(C) $\frac{n}{n+1} \left(a_{1}^{2} + a_{2n}^{2}\right)$
(D) $\frac{n}{n-1} \left(a_{1}^{2} + a_{2n}^{2}\right)$

4. Let
$$f(x) = \max \left\{ |x^2 - 2|x||, |x| \right\}$$
 and $g(x) = \min \left\{ |x^2 - 2|x||, |x| \right\}$, then

(A) both f(x) and g(x) are non differentiable at 5 points.

(B) f(x) is not differentiable at 5 points and g(x) is non differentiable at 7 points.

(C) number of points of non differentibility for f(x) and g(x) are 7 and 5 respectively.

(D) both f(x) and g(x) are non differentiable at 3 and 5 points respectively.

5. If
$$f(x) = \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right) - \ln(x^2 + x + 1) + (k^2 - 5k + 3)x + 10$$
 is a decreasing function for all $x \in \mathbb{R}$,

find the permissible values of k.

- Using monotonicity find range of the function $f(x) = \sqrt{x-1} + \sqrt{6-x}$. 6.
- 7. The centre of a square is at the point with complex number $z_0 = 1 + i$ and one of its vertices is at the points $z_1 = 1 - i$. The complex numbers which correspond to the other vertices are _____, ____& ____.

8. Find the length of arc given by
$$\operatorname{Arg}\left(\frac{z-1}{z+2i}\right) = \pi/3$$

Answers Key

1. (B) **2.** (C) **3.** (B) **4.** (B)
5.
$$k \in \left[\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right]$$
 6. $\left[\sqrt{5}, \sqrt{10}\right]$
7. $-1 + i \cdot 1 + 3i \cdot 3 + i$ **8.** $\frac{\sqrt{5}}{\sqrt{3}} \cdot \frac{4\pi}{3}$