CBSE Test Paper 05 Chapter 10 Vector Algebra

1. Unit Vector is

- a. A vector whose direction angle β is unity
- b. A vector whose direction angle γ is unity
- c. A vector whose direction angle $\boldsymbol{\alpha}$ is unity
- d. A vector whose magnitude is unity
- 2. If a vector \vec{r} is expressed in component form as $\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$ then the magnitude of the vector \vec{r} is

a.
$$\sqrt{2x^2 + y^2 + z^2}$$

b. $\sqrt{x^2 + y^2 + z^2}$
c. $\sqrt{x^2 + 2y^2 + z^2}$
d. $\sqrt{x^2 + y^2 + 2z^2}$

3. Find a vector in the direction of the vector $5\,\hat{i}-\hat{j}+2\hat{k}$ which has a magnitude of 8 units

a.
$$\frac{40}{\sqrt{30}}\hat{i} + \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$$

b.
$$-\frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$$

c.
$$\frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$$

d.
$$\frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} - \frac{16}{\sqrt{30}}\hat{k}$$

4. Find the value of x for which $x\left(\hat{i}+\hat{j}+\hat{k}
ight)$ is a unit vector

a.
$$\pm \frac{1}{\sqrt{2}}$$

b.
$$\pm \frac{1}{\sqrt{3}}$$

c.
$$\pm \frac{1}{\sqrt{7}}$$

d.
$$\pm \frac{1}{\sqrt{5}}$$

5. Magnitude of the vector $ec{a} = \hat{i} + \hat{j} + \hat{k}$ is

- a. $\sqrt{3}$
- b. $1 \sqrt{3}$
- c. $\sqrt{2}$
- d. $1 + \sqrt{3}$
- 6. If $|\vec{a}|$ = 4 and -3 $\leq \lambda \leq$ 2, then the range of $|\lambda \overline{a}|$ is _____.
- 7. If vectors \vec{a} and \vec{b} represent the adjacent sides of a triangle, then its area is given by
- 8. The unit vector in the direction of \vec{a} is given by _____.
- 9. Write the angle between vectors a and b with magnitudes $\sqrt{3}$ and 2 respectively, having $\vec{a} \cdot \vec{b} = \sqrt{6}$.
- 10. Write the direction ratios of the vector $3\vec{a}+2\vec{b}$, where $\vec{a}=\hat{i}+\hat{j}-2\hat{k}$ and $\vec{b}=2\hat{i}-4\hat{j}+5\hat{k}$.
- 11. Find a vector in the direction of vector $2\hat{i}-3\hat{j}+6\hat{k}$ which has magnitude 21 units.
- 12. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is \perp to \vec{c} is then find the value of λ .
- 13. Find a vector of magnitude 11 in the direction opposite to that of \overrightarrow{PQ} , where P and Q are the points (1, 3, 2) and (-1, 0, 8) respectively.
- 14. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ .
- 15. Dot product of a vector with vectors $\hat{i} \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ are respectively 4, 0 and 2. Find the vector.
- 16. Find the sine of the angle between the vectors. $\vec{a}=2\,\hat{i}-\hat{j}+3\hat{k}, \vec{b}=\hat{i}+3\,\hat{j}+2\hat{k}.$
- 17. Prove that $[\vec{a}, \vec{b} + \vec{c}, \vec{d}] = \begin{bmatrix} \vec{a} & \vec{b} & \vec{d} \end{bmatrix} + \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix}$.
- 18. Find the area of the Δ with vertices A (1, 1, 2) B (2, 3, 5) and C (1, 5, 5).

CBSE Test Paper 05 Chapter 10 Vector Algebra

Solution

- d. A vector whose magnitude is unity Explanation: The vector whose magnitude is always 1 or unity is called a Unit Vector.
- 2. b. $\sqrt{x^2 + y^2 + z^2}$ Explanation: If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then, $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$ 3. c. $\frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$ Explanation: Let $\vec{a} = 5\hat{i} - \hat{j} + 2\hat{k}$, then, $8\hat{a} = 8\frac{\vec{a}}{|\vec{a}|}$ $= 8.\frac{5\hat{i} - \hat{j} + 2\hat{k}}{\sqrt{5^2 + (-1)^2 + 2^2}}$ $= \frac{8(5\hat{i} - \hat{j} + 2\hat{k})}{\sqrt{30}}$ $= \frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$ 4. b. $\pm \frac{1}{\sqrt{3}}$ Explanation: As $x(\hat{i} + \hat{j} + \hat{k})$ is a unit vector, therefore, $|x(\hat{i} + \hat{j} + \hat{k})| = 1 \Rightarrow x\sqrt{1 + 1 + 1} = 1 \Rightarrow x = \frac{1}{\sqrt{3}}$
- 5. a. $\sqrt{3}$

Explanation: We have : $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, then, $\left|\overrightarrow{a}\right| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$

- 6. [0, 12]
- 7. $\frac{1}{2} | \vec{a} imes \vec{b} |$ 8. $\hat{a} = \frac{\vec{a}}{|\vec{a}|}$
- 9. We are given that $|\vec{a}| = \sqrt{3}, |\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = \sqrt{6}$. Now, the angle between \vec{a} and \vec{b} is given by

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{\sqrt{6}}{\sqrt{3} \times 2} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{3} \times 2} = \frac{\sqrt{2}}{2} \text{ (simplifying)}$$

$$\Rightarrow \quad \cos \theta = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4} \quad \left[\because \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \right]$$

$$\therefore \quad \theta = \frac{\pi}{4}$$

10. Here, we are given that
$$\vec{a} = \hat{i} + \hat{j} - 2\hat{k}$$

 $\vec{b} = 2\hat{i} - 4\hat{j} + 5\hat{k}$. Therefore, we have
 $3\vec{a} + 2\vec{b} = 3(\hat{i} + \hat{j} - 2\hat{k}) + 2(2\hat{i} - 4\hat{j} + 5\hat{k})$
 $= (3\hat{i} + 3\hat{j} - 6\hat{k}) + (4\hat{i} - 8\hat{j} + 10\hat{k})$
 $= 7\hat{i} - 5\hat{j} + 4\hat{k}$

Hence, direction ratio of vectors $3ec{a}+2b$ are 7, - 5 and 4.

11. We have to find a vector in the direction of vector $2\hat{i} - 3\hat{j} + 6\hat{k}$ which has magnitude 21 units.

Let
$$ec{a}=2\hat{i}-3\hat{j}+6\hat{k}$$

Then, $|ec{a}|=\sqrt{(2)^2+(-3)^2+(6)^2}$ $=\sqrt{4+9+36}=\sqrt{49}$ = 7 units

Now unit vector in the direction of the given vectors \vec{a} is given as

$$egin{aligned} \hat{a} &= rac{\hat{a}}{|ec{a}|} = rac{1}{7}(2\hat{i}-3\hat{j}+6\hat{k}) \ &= rac{2}{7}\hat{i}-rac{3}{7}\hat{j}+rac{6}{7}\hat{k} \end{aligned}$$

Now, the vector of magnitude equal to 21 units and in the direction of \vec{a} is given by $21\hat{a} = 21\left(\frac{2}{7}\hat{i} - \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}\right) = 6\hat{i} - 9\hat{j} + 18\hat{k}$

12.
$$\vec{a} + \lambda \vec{b} = \left(2\hat{i} + 2\hat{j} + 3\hat{k}\right) + \lambda \left(-\hat{i} + 2\hat{j} + \hat{k}\right)$$

 $= (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}$
 $\left(\vec{a} + \lambda \vec{b}\right).\vec{c} = 0 \left[\because \vec{a} + \lambda \vec{b} \perp \vec{c}\right]$
 $\left[(2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}\right].\left(3\hat{i} + \hat{j}\right) = 0$
 $3(2 - \lambda) + (2 + 2\lambda) = 0$
 $-\lambda = -8$
 $\lambda = 8$

13. The vector with initial point P(1, 3, 2) and terminal point Q(-1, 0, 8) is given by

$$\overrightarrow{PQ} = (-1-1)\hat{i} + (0-3)\hat{j} + (8-2)\hat{k} = -2\hat{i} - 3\hat{j} + 6\hat{k}$$

Thus, $\overrightarrow{QP} = -\overrightarrow{PQ} = 2\hat{i} + 3\hat{j} - 6\hat{k}$

$$\Rightarrow \left|\overrightarrow{QP}\right| = \sqrt{2^2 + 3^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7$$

 \longrightarrow

Therefore, unit vector in the direction of $QP^{'}$ is given by

$$\widehat{QP} = rac{\overrightarrow{QP}}{\left|\overrightarrow{QP}
ight|} = rac{2\hat{i}+3\hat{j}-6\hat{k}}{7}$$

Hence, the required vector of magnitude 11 in direction of \overrightarrow{QP} is 11 $\overrightarrow{QP} = 11\left(\frac{2i+3j-6k}{7}\right) = \frac{22}{7}\hat{i} + \frac{33}{7}\hat{j} - \frac{66}{7}\hat{k}$

14. Given:
$$\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}, \vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$$
 and $\vec{c} = 3\hat{i} + \hat{j}$
Now $\vec{a} + \lambda \vec{b} = 2\hat{i} + 2\hat{j} + 3\hat{k} + \lambda \left(-\hat{i} + 2\hat{j} + \hat{k}\right) =$
 $= 2\hat{i} + 2\hat{j} + 3\hat{k} - \lambda\hat{i} + 2\lambda\hat{j} + \lambda\hat{k}$
 $\Rightarrow \vec{a} + \lambda \vec{b} = (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}$
Again, $\vec{c} = 3\hat{i} + \hat{j} = 3\hat{i} + \hat{j} + 0\hat{k}$
Since, $\left(\vec{a} + \lambda \vec{b}\right)$ is perpendicular to \vec{c} therefore, $\left(\vec{a} + \lambda \vec{b}\right)$. $\vec{c} = 0$
 $\Rightarrow 6 - 3\lambda + 2 + 2\lambda = 0 \Rightarrow -\lambda + 8 = 0$
 $\Rightarrow -\lambda = -8 \Rightarrow \lambda = 8$

15. According to the question,

$$\dot{b} = \hat{i} - \hat{j} + \hat{k},$$

 $\vec{c} = 2\hat{i} + \hat{j} - 3\hat{k}$ and
 $\vec{d} = \hat{i} + \hat{j} + \hat{k}$
let the required vector is $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$
Given, $\vec{a} \cdot \vec{b} = 4, \ \vec{a} \cdot \vec{c} = 0$ and $\vec{a} \cdot \vec{d} = 2$
Now, $\vec{a} \cdot \vec{b} = 4$
 $\Rightarrow a_1 - a_2 + a_3 = 4....(i)$
 $\vec{a} \cdot \vec{c} = 0$
 $\Rightarrow 2a_1 + a_2 - 3a_3 = 0...(ii)$
and $\vec{a} \cdot \vec{d} = 2$
 $\Rightarrow a_1 + a_2 + a_3 = 2...(iii)$

On subtracting Eq. (iii) from Eq. (i), we get $-2a_{2}=2$ $\Rightarrow a_2 = -1$ On substituting $a_2 = -1$ in Eq. (ii) and (iii), we get $2a_1 - 3a_3 = 1$...(iv) $a_1 + a_3 = 3 \dots (v)$ On multiplying Eq. (v) by 3 and then adding with Eq. (iv), we get $5a_1 = 1 + 9 = 10$ \Rightarrow a₁ = 2 On substituting $a_1 = 2$ in Eq. (v), we get $a_3 = 1$. . . the vector is $ec{a}=2\,\hat{i}-\,\hat{j}+\hat{k}.$ 16. $\vec{a} = \sqrt{4+1+9} = \sqrt{14}$ $\vec{b} = \sqrt{1+9+4} = \sqrt{14}$ $ec{a} imes ec{b} = egin{bmatrix} \dot{i} & \dot{j} & \hat{k} \ 2 & -1 & 3 \ 1 & 3 & 2 \ \end{bmatrix} = -11 \hat{i} - \hat{j} + 7 \hat{k}$ $\left|ec{a} imesec{b}
ight| = \sqrt{(-11)^2 + (-1)^2 + (7)^2}$ $=\sqrt{171}=3\sqrt{19}$ $\sin heta = rac{\left|ec{a} imes ec{b}
ight|}{\left|ec{a}
ight|ec{b}ec{b}
ight|} = rac{3\sqrt{19}}{\sqrt{14}\sqrt{14}} = rac{3}{14}\sqrt{19}$ 17. According to the question, To prove $[\vec{a}, \vec{b} + \vec{c}, \vec{d}] = \begin{bmatrix} \vec{a} & \vec{b} & \vec{d} \end{bmatrix} + \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix}$. LHS = $[\vec{a}.\vec{b}+\vec{c}.\vec{d}] = \vec{a}.\{(\vec{b}+\vec{c})\times\vec{d}\}$ by definition of scalar triple product, we get $\vec{a} = ec{a}.(ec{b} imesec{d}+ec{c} imesec{d})$ $=ec{a}.(ec{b} imesec{d})+ec{a}.(ec{c} imesec{d})=\left[ec{a} \quad ec{b} \quad ec{d}
ight]+\left[ec{a} \quad ec{c} \quad ec{d}
ight]$

18. A (1, 1, 2) B(2, 3, 5) C (1, 5, 5)

$$\overrightarrow{OA} = \hat{i} + \hat{j} + 2\hat{k}$$

$$\overrightarrow{OB} = 2\hat{i} + 3\hat{j} + 5\hat{k}$$

$$\overrightarrow{OC} = \hat{i} + 5\hat{j} + 5\hat{k}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 4\hat{j} + 3\hat{k}$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 4\hat{j} + 3\hat{k}$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3 \end{vmatrix}$$

$$= -6\hat{i} - 3\hat{j} + 4\hat{k}$$

Area of $\Delta ABC = \frac{1}{2} \begin{vmatrix} \overrightarrow{AB} \times \overrightarrow{AC} \end{vmatrix}$

$$= \frac{1}{2} \sqrt{(-6)^2 + (-3)^2 + 4^2}$$

$$= \frac{1}{2} \sqrt{61} \text{ sq. unit}$$