CBSE Test Paper-01

Class - 12 Chemistry (Haloalkanes and Haloarenes)

- 1. What is inversion of configuration?
 - a. secondary butyl chloride
 - b. w-butyI bromide
 - c. tert-butyl chloride
 - d. iso-butyl iodide
- 2. Bromomethane, Chloromethane, Dibromomethane. 1 Chloropropane, Isopropyl chloride, 1 Chlorobutaneare all
 - a. Completely soluble in organic solvents
 - b. Slightly soluble in organic solvents
 - c. Insoluble in organic solvents
 - d. Completely soluble in water
- 3. Triiodomethane (Iodoform) is
 - a. Pesticide
 - b. Refrigerant
 - c. antiseptic drug
 - d. degreasing agent
- 4. Reactions with iodine in preparation of aryl iodide from arenes require the presence of
 - a. diazonium salt
 - b. an oxidizing agent
 - c. a reducing agent
 - d. ZnCl₂ catalyst
- 5. Anisole reacts with a mixture of concentrated sulphuric and nitric acids to yield a mixture of ortho and paranitroanisole

$$OCH_3$$
 H_2SO_4
 HNO_3
 OCH_3
 OC

a. None of these

- b. minor product is orthonitroanisole
- c. major product is paranitroanisole
- d. ortho and para in equal amounts.
- 6. What is meant by axis of symmetry?
- 7. Give IUPAC names of:

$$CH_3 - CH - CH_2 - Cl$$

8. Give IUPAC name of:

$$CH_3-CH-CH_2-CH_2-Br \ |_{Br}$$

- 9. Give the structure of 1,3-dichloro -2-(bromomethyl) propane
- 10. Complete the following reaction equation:

i.
$$C_6H_5N_2^+Cl^+ + KI \rightarrow$$

ii.
$$H = C + Br_2 \xrightarrow{CCl_4} \dots$$

- 11. Write the structure of the major organic product in the following reaction: $CH_3CH_2CH_2OH + SOCl_2 \rightarrow \\$
- 12. A hydrocarbon C_5H_{10} does not react with chlorine in dark but gives a single monochloro compound C_5H_9Cl in bright sunlight. Identify the hydrocarbon.
- 13. Write the structural formula of the organic compounds A and B in the following sequence of reaction.

$$CH_3 - CH - CH_2 - CH_3 \xrightarrow{alc.KOH} {
m A} \ {
m A} \xrightarrow{Br_2} {
m B}$$

- 14. Point out the difference between:
 - i. Chirality and chiral centre.
 - ii. Diastereoisomers and Enantiomers.
- 15. Explain why
 - i. the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride?
 - ii. alkyl halides, though polar, are immiscible with water?
 - iii. Grignard reagents should be prepared under anhydrous conditions?

CBSE Test Paper-01

Class - 12 Chemistry (Haloalkanes and Haloarenes) Solutions

1. (a) secondary butyl chloride

Explanation: Secondary butyl chloride is optically active because it has chiral carbon atom marked*

$$CH_3-\overset{*}{\overset{C}{\overset{H}{\cap}}}-CH_2^--CH_3$$

2. (a) Completely soluble in organic solvents

Explanation: These all are covalent compounds hence are soluble in organic solvents.

3. (c) antiseptic drug

Explanation: The compound finds small scale use as a disinfectant. Around the beginning of the 20th century it was used in medicine as a healing and antiseptic dressing for wounds and sores, although this use is now superseded by superior anticeptics.

4. (b) an oxidizing agent

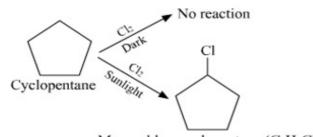
Explanation: Reactions with iodine are reversible in nature and require the presence of an oxidising agent (HNO₃, HIO₄) to oxidise the HI formed during iodination.

5. (c) major product is paranitroanisole

Explanation: OCH₃ is activator and o/p director out of which para is major product.

- 6. It is an imaginary axis around which if the compound is rotated by a minimum angle of rotation, it gives back the original molecule with same configuration.
- 7. 1-Chloropropan-2-ol
- 8. In writing the IUPAC name, we first count the number of C atoms in the longest C chain (parent chain) and assign the locants according to the functional groups attached. Here as we can see the longest chain contains 4 C and it is an alkane, so we name it butane. The -Br (bromo) group is attached at position 1 and 3. So the name of the compound is 1,3-dibromobutane.
- 9. We can understand from the name that the longest C chain contains 3 C (as it is propane). Also at positions 1 and 3, -Cl is attached and at position 2, bromomethyl group i.e. -CH₂Br is attached. So the structure of the given compound must be:

$$CH_2Br \ | \ CH_2-CH-CH_2 \ | \ Cl \ Cl$$

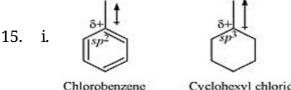

10. i.
$$C_6H_5N_2^+Cl^- + KI \rightarrow C_6H_5I + KCI + N_2$$

11.
$$CH_3CH_2CH_2\ OH + SOCl_2 \rightarrow CH_3CH_2CH_2Cl + SO_2 + HCl_{1-Propanol}$$

12. A hydrocarbon with the molecular formula, C_5H_{10} belongs to the group with a general molecular formula C_nH_{2n} . Therefore, it may either be an alkene or a cycloalkane. Since hydrocarbon does not react with chlorine in the dark, it cannot be an alkene. Thus, it should be a cycloalkane. Further, the hydrocarbon gives a single monochloro compound, C_5H_9Cl by reacting with chlorine in bright sunlight. Since a single monochloro compound is formed, the hydrocarbon must contain H-atoms that are all equivalent. Also, as all H-atoms of a cycloalkane are equivalent, the hydrocarbon must be a cycloalkane. Hence, the said compound is cyclopentane.

Cyclopentane (C_5H_{10}) The reactions involved in the question are:

Mono-chlorocyclopentane (C₅H₉Cl)


Thus A is but-2-ene and B is 2,3-dibromobutane

14. i. **Chirality**: Chirality is the property of a molecule, containing a carbon attached to four different groups, having a non-superimposable mirror image.

Chiral centre: The carbon which is attached to four different groups is called chiral centre.

ii. **Diastereoisomers:** Those pairs of stereoisomers which are not mirror images of each other. They differ in optical rotation.

Enantiomers: They are non-superimposable mirror images of each other. They have optical rotation equal in magnitude but opposite in sign.

Cyclohexyl chloride Chlorobenzene

In chlorobenzene, the Cl-atom is linked to a sp² hybridized carbon atom. In cyclohexyl chloride, the Cl-atom is linked to a sp³ hybridized carbon atom. Now, sp² hybridized carbon has more s-character than sp³ hybridized carbon atom. Therefore, the former is more electronegative than the latter. Therefore, the density of electrons of C - Cl bond near the Cl-atom is less in chlorobenzene than in cyclohexyl chloride. Moreover, the - R effect of the benzene ring of chlorobenzene decreases the electron density of the C - Cl bond near the Cl-atom. As a result, the polarity of the C - Cl bond in chlorobenzene decreases. Hence, the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride.

- ii. To be miscible with water, the solute-water force of attraction must be stronger than the solute-solute and water-water forces of attraction. Alkyl halides are polar molecules and so held together by dipole-dipole interactions. Similarly, strong Hbonds exist between the water molecules. The new force of attraction between the alkyl halides and water molecules is weaker than the alkyl halide-alkyl halide and water-water forces of attraction. Hence, alkyl halides (though polar) are immiscible with water.
- iii. Grignard reagents are very reactive. In the presence of moisture, they react to give alkanes.

$$RM gX - \delta + \delta - \atop RM gX + H_2O
ightarrow R - H + Mg(OH)X$$

Therefore, Grignard reagents should be prepared under anhydrous conditions.