• Construction of perpendicular bisector of a line segment

Perpendicular Bisector: A line that bisects a line segment at 90° is called the perpendicular bisector of the line segment.

Example: Construct a perpendicular bisector of the line segment AB of length 8.2 cm.

Solution:

(1) Draw a line segment AB = 8.2 cm using a ruler.

(2) Draw two arcs taking A and B as centres and radius more than 4.1 cm on both sides of AB. Let the arcs intersect at points P and Q. Join PQ.

PQ is the required perpendicular bisector of line segment AB.

Note: We can verify the validity of construction of perpendicular bisector of a line segment using congruence.

• Construction Of Bisector Of An Angle

Bisector of an angle: A ray that divides an angle into two equal parts is called the bisector of the angle.

Example: Construct 55° by bisecting an angle of measure 110°.

Solution:

(i) With the help of a protractor, draw $\angle POQ = 110^{\circ}$.

(ii) Draw an arc of any radius taking O as centre. Let this arc intersect the arms OP and OQ at points X and Y respectively.

(iii) Taking X and Y as centres and radius more than half of XY, draw arcs to intersect each other, say at R. Join ray OR.

Now, OR is the bisector of \angle POQ i.e., \angle POR = \angle ROQ = 55°

Note: We can verify the validity of construction of angle bisector using congruence.

- The steps for the construction of angles of measures 60° and 120° are as follows:
- 1. Draw a line *l* and mark a point 0 on it.
- 2. Place the pointer of the compass at O and draw an arc of convenient radius that cuts *l* at P.
- 3. With the same radius, draw an arc with centre P that cuts the previous arc at Q.
- 4. Similarly, with the same radius, draw an arc with centre Q that cuts the arc at R.
- 5. Join OQ and OR to get \angle QOP = 60° and \angle ROP = 120°.

• Now, 30° is nothing but half of angle 60°. Therefore, 30° angle can be obtained by drawing the bisector of \angle QOP.

Similarly, we can draw other angles of measures 45° , 90° , 135° , and 150° using the above method.

• Construction of a triangle when the length of base, base angle and the sum of other two sides are given

Let us suppose that base BC, $\angle B$ and (AB + AC) of $\triangle ABC$ are given.

Step 1: Draw BC and construct∠B at point B.

Step 2: Draw an arc on BX, which cuts it at point P, such that BP = AB + AC. Join PC and draw its perpendicular bisector. Let this perpendicular bisector intersect BP at A.

Now, $\triangle ABC$ is the required triangle.

• Construction of triangle when the length of base, base angle and the difference between the other two sides are given

Let us suppose base BC, $\angle B$, and (AB – AC) are given.

Step 1: Draw BC and construct $\angle B$ at point B.

Step 2: Draw an arc on BX, which cuts it at point P, such that BP = AB – AC. Join PC and draw its perpendicular bisector. Let this perpendicular bisector intersect BX at point A. Join AC.

Now, \triangle ABC is the required triangle. **Note:** We can easily verify both the constructions.

• Construction of a triangle when its perimeter and base angles are given

Let us suppose that the perimeter and base angles, $\angle B$ and $\angle C$ of $\triangle ABC$ are given.

Step 1: Draw a line segment PQ of length equal to the perimeter of the triangle and draw the base angles at points P and Q.

Step 2: Draw the angle bisectors of $\angle P$ and $\angle Q$. Let these angle bisectors intersect each other at point A.

Step 3: Draw the perpendicular bisectors of AP and AQ. Let these perpendicular bisectors intersect PQ at points B and C respectively. Join AB and AC.

Now, $\triangle ABC$ is the required triangle.

Note: We can easily verify our construction using congruence.