THERMODYNAMICS **PROCESSES**

- Isothermal Process $dt = -. \Delta U = 0$
- Isochoric Process $\Delta V = 0$
- Adiabatic Process $\Lambda q = 0$
- · Cyclic Process $\Delta U_{cyclic} = 0$

THERMODYNAMICS PROPERTIES

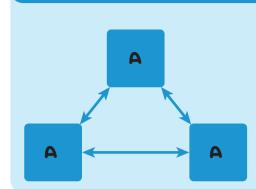
INTENSIVE PROPERTIES P. T. N

Properties of the System which only depend on the nature of matter

STATE FUNCTION Δυ. ΔΗ. ΔΘ

Properties of the System which only depend on the nature of matter

EXTENSIVE PROPERTIES V. U. H


Properties of the System which depend on the Path of the System

PATH FUNCTION HEAT WORK

Properties of the System which depend on the Path of the System

ZEROTH LAW OF THERMODYNAMICS

THERMODYNAMICS

If two thermodynamics States are in thermal equilibrium with a third one. then they are in thermal equilibrium with each other.

GIBB'S FREE ENERGY

The net energy available to do useful work and is a measure of 'free energy'.

Standard free energy of a reaction: $\Delta r G^\circ = \Sigma \Delta_f G^\circ_{products} - \Sigma \Delta_f G^\circ_{reactants}$

Gibb's - Helmholtz equation $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}\Delta G^{\circ} = NFE_{cell}^{o}$

Sign of

Positive

Negative

Postive

Negative Negative

Negative

Positive

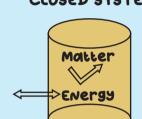
Postive

TYPES OF SYSTEM

OPEN SYSTEM

<--->Matter

⇒Energy


 $\Delta H = \Delta U + \Delta (PV)$ $\Delta H = \Delta U + \Delta N_a RT$

Reactants \rightarrow Products

 $\Delta_{\text{rus}} H^{\circ}$, $\Delta_{\text{vap}} H^{\circ}$, $\Delta_{\text{SUB}} H^{\circ}$

Lattice enthalpy = $\Delta_{lattice}H^{\circ}$

ENTHALPY of reaction (AN_H)

ENTHALPY

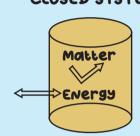
 $\Delta_{\mathbf{r}} \mathbf{H} = \mathbf{e} \sum \mathbf{a}_{i} \mathbf{H} \ \mathbf{Products} - \sum \mathbf{b}_{i} \mathbf{H} \ \mathbf{reactants}$

STANDARD ENTHALPY

OF REACTIONS (AH°)

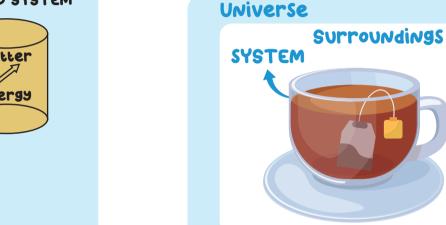
Standard enthalpy of fusion = A...H°

Standard enthalpy of phase change


Standard enthalpy of combustion AH°

HESS' LAW CONSTANT

HEAT SUMMATION


 $\Delta_{r}H = \Delta_{r}H_{1} + \Delta_{r}H_{2} + \Delta_{r}H_{3}$

CLOSED SYSTEM

ISOLATED SYSTEM

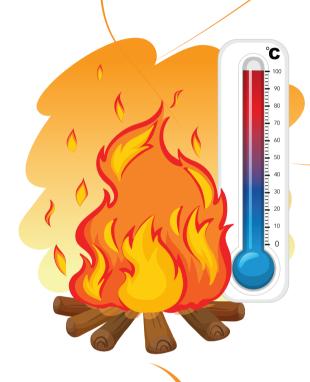
HEAT CAPACITY

Amount of heat required to raise the

temperature of a System by 1°C.

Molar heat capacity \Rightarrow 9 = NC \triangle T

Specific heat capacity \Rightarrow 9 = mc Δ T


Molar heat capacity 1°C.

MEYERS'S

FORMULA

 $C_p - C_v = R$

WORK (W)

when there is difference

between presence of the

System and surroundings.

W_vV

the work done is known as

 $\mathbf{W}_{\mathsf{PV}} = -\mathbf{P}_{\mathsf{ext}} \Delta \mathbf{V}$ ISOTHERMAL

Expansion: $V_i > V_f$ Compression: $V_f < V_i$	

GIBB'S ENERGY CHANGE

& EQUILIBRIUM

log K < 0 Products

log K = 0 Equilibrium reached

reactants

Mixture contains

log K > 0 Mixture contains

 Δ r $G^{\circ} = -2.303$ RT log K

ISOTHERMAL IRREVERSIBLE WORK	REVERSIBLE $w_{rev} = -2.303 \text{wRT tog} \left(\frac{v_2}{v_1} \right)$
$\omega_{rev} = \frac{NR}{r-1}(T_2 - T_1)$ ADIABATIC REVERSIBLE	$\begin{aligned} & \textbf{ADIABATIC} \\ & \textbf{IRREVERSIBLE} \\ & \omega_{irrev} = -P_{ext} R \left(\frac{P_1 T_1 - P_2 T_2}{P_1 P_2} \right) \end{aligned}$

FREE EXPANSION

when an ideal gas expands in vacuum then, P_{ext} = 0.

SECOND LAW OF

∴ W=0

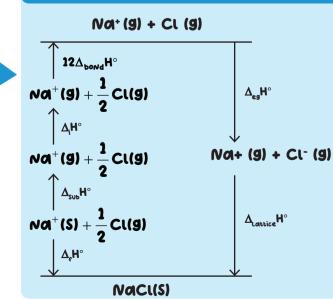
FIRST LAW OF THERMODYNAMICS

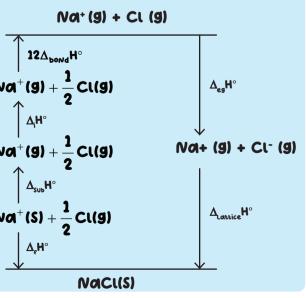
INTERNAL

ENERGY

Total energy within

the SubStance


Law of conservation of energy total energy of an isolated


Mathematically. $\Delta U = 9 + W$

EORN HABER CYCLE

POISSON'S

RATIO

SIGN CONVENTION

HEAT (Q)

Exchange of energy

due to temperature

differnece.

Heat absorbed by the System = +ve

Heat evolved by the System = -ve

work done by the System = -ve

work done on the

System = +ve

At constant volume **∆**U = **q**₀

At constant pressure

CALORIMETRY

 $(\triangle U) = CV \times \triangle T \times M$ $(\triangle U) = CV \times \triangle T \times M$

THERMODYNAMICS The entropy of the universe is always increasing in the course of every s

Pontaneous or natural change.

THIRD LAW OF THERMODYNAMICS

The Entropy of a perfectly crystalline Substance at OK or absolute zero is taken to be zero.

 $\Delta S = \int_0^T C_P d \ln T$

SPONTANEITY

DG < 0. rocess is spontaneous

 $\Delta G = \Delta H - T \Delta S$

Always

Negative

Always

Negative

+ve @ low temp.

-ve @ low temp.

+ve @ low temp.

DG > 0. rocess is non-spontaneous

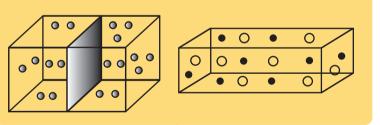
DG < 0. rocess is equilibrium

Equilibrium reached

Spontaneous at all temp

Non-Spontaneous at all

temperature


Non-Spontaneous at all

Spontaneous at low

SPONTANEOUS AT LOW

temperature

temperature

ENTROPY

This is the measure of the degree of randomness or disorder of the system.

 $\Delta S = \frac{q_{rev}}{T(Reversible Process)}$

 $\Delta S_{Total} = \Delta S_{SyeStem} + \Delta S_{Surroundings}$

Entropy changes during phase transformation

 $\Delta_{\text{FUSion}}\mathbf{S} = \frac{\Delta_{\text{FUSion}}\mathbf{H}}{\mathbf{T_m}}, \Delta_{\text{ValP}}\mathbf{S} = \Delta_{\text{ValP}}\mathbf{S} = \frac{\Delta_{\text{ValP}}\mathbf{H}}{\mathbf{T_m}}$

 $\Delta_{ extbf{r}} extbf{S}^{\circ} = \Sigma extbf{S}^{\circ}_{ extbf{products}} - \Sigma extbf{S}^{\circ}_{ extbf{reactants}}$