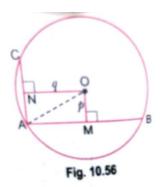
HOTS (Higher Order Thinking Skills)

Que 1. AB and AC are two chords of a circle of radius r such that AB = 2AC. If P and g are the distances of AB and AC from the centre. Prove that $4q^2 = p^2 + 3r^2$.



Sol. Draw OM \perp AB and ON \perp AC

Join OA.

In right $\triangle OAM$,

 $OA^2 = OM^2 + AM^2$ $r^2 = p^2 + \left(\frac{1}{2}AB\right)^2$ (:: OM \perp AB, :: OM bisects AB) ⇒ $\frac{1}{4}AB^2 = r^2 - p^2$ or $AB^2 = 4r^2 - 4p^2$...(i) \Rightarrow

In right ∆OAN,

 \Rightarrow

$$OA^{2} = ON^{2} + AN^{2}$$

$$r^{2} = q^{2} + \left(\frac{1}{2}AC\right)^{2} \quad (\because ON \perp AC, \therefore ON \text{ bisects AC})$$

$$\frac{1}{2}AC^{2} = r^{2} - q^{2} \quad \text{or} \quad \frac{1}{2}\left(\frac{1}{2}AR\right)^{2} = r^{2} - q^{2} \quad (\because A)$$

 $\frac{1}{4}AC^{2} = r^{2} - q^{2} \qquad \text{or} \qquad \frac{1}{4}\left(\frac{1}{2}AB\right)^{2} = r^{2} - q^{2} \quad (\because AB = 2AC)$ $\frac{1}{16}AB^{2} = r^{2} - q^{2} \qquad \text{or} \qquad AB^{2} = 16r^{2} - 16p^{2} \quad \dots (\text{ii})$ \Rightarrow

⇒

From (i) and (ii), we have

$$4r^{2} - 4p^{2} = 16r^{2} - 16q^{2}$$

Or
$$r^{2} - p^{2} = 4r^{2} - 4q^{2}$$

Or
$$4q^{2} = 3r^{2} + p^{2}$$

Que 2. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is

equal to half the difference of the angles subtended by the chords AC and DE at the center.

Sol. Given:
$$AD = CE$$

To prove: $\angle ABC = \frac{1}{2}(\angle DOE - \angle AOC)$
In $\triangle AOD$ and $\triangle COE$
 $AD = CE$ (Given)
 $AO = OC$ and $DO = OE$ (Radii of same circle)
 $\therefore \quad \triangle AOD \cong \triangle COE$ (By SSS congruence criterion)
 $\Rightarrow \quad \angle 1 = \angle 3, \angle 2 = \angle 4$ (CPCT) ...(i)
But $OA = OD$ and $OC = OE \Rightarrow \angle 1 = \angle 2$ and $\angle 3 = \angle 4$...(ii)
From (i) and (ii), we have
 $\angle 1 = \angle 2 = \angle 3 = \angle 4$ ($\equiv x \text{ say}$)
Also, $OA = OC$ and $OD = OE$
 $\Rightarrow \quad \angle 7 = \angle 8 (= z \text{ say}) \text{ and } \angle 5 = \angle 6 (= y \text{ say})$
Now, $ADEC$ is a cyclic quadrilateral
 $\Rightarrow \quad \angle DAC + \angle DEC = 180^{\circ}$
 $\Rightarrow \quad x + z + x + y = 180^{\circ} \Rightarrow y = 180^{\circ} - 2x - z$...(iii)
In $\triangle AOC, \angle AOC = 180^{\circ} - 2y$
And in $\triangle AOC, \angle AOC = 180^{\circ} - 2z$
 $\therefore \quad \angle DOE - \angle AOC = (180^{\circ} - 2y) - (180^{\circ} - 2z) = 2z - 2y)$
 $= 2z - 2(180^{\circ} - 2x - z)$ (Using (iii))
 $= 4z + 4x - 360^{\circ}$...(iv)
Again, $\angle BAC + \angle CAD = 180^{\circ} \Rightarrow \angle BAC = 180^{\circ} - (z + x)$...(v)

Similarly,
$$\angle BAC = 180^{\circ} - (z + x)$$
 ...(vi)
In $\triangle ABC$, $\angle ABC = 180^{\circ} - \angle BAC - \angle BCA$
 $= 180^{\circ} - 2[180^{\circ} - (z + x)]$ (Using (v) and (vi))
 $= 2z + 2x - 180^{\circ} = \frac{1}{2}(4z + 4x - 360^{\circ})$...(vii)

From (iv) and (vii), we have

 $\angle BAC = \frac{1}{2} (\angle DOE - \angle AOC)$

Que 3. Bisectors of angles A, B and C of a triangle ABC intersects its circumcircle at D, E and F respectively. Prove that angles of triangle DEF are $90^{0} - \frac{A}{2}$, $90^{0} - \frac{B}{2}$ and $90^{0} - \frac{C}{2}$.

Sol. We have $\angle BED = \angle BAD$ (Angles in the same segment) $\Rightarrow \angle BED = \frac{1}{2} \angle A$...(i) Also, $\angle BEF = \angle BCF$ (Angles in the same segment) $\Rightarrow \angle BEF = \frac{1}{2} \angle C$...(ii) From (i) and (ii) $\angle BED + \angle BEF = \frac{1}{2} \angle A + \frac{1}{2} \angle C$ $\angle DEF = \frac{1}{2} (\angle A + \angle C)$ $\Rightarrow \angle DEF = \frac{1}{2} (\angle A + \angle C)$ $\Rightarrow \angle DEF = \frac{1}{2} (180^{\circ} - \angle B)$ ($\because \angle A + \angle B + \angle C = 180^{\circ}$) $\Rightarrow \angle DEF = 90^{\circ} - \frac{1}{2} \angle B$