During periods of strenuous exertion, our
bodies generate excess internal energy
that must be released into our surround-
ings. To facilitate this release, humans
perspire. Dogs and other animals pant to
accomplish the same goal. Both actions
involve the evaporation of a liquid. How
does this process help cool the body?
(Photograph of runner by Jim Cummins/FPG
International; photograph of beagle by Renee
Lynn/Photo Researchers, Inc.)
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21.1 Molecular Model of an Ideal Gas

n Chapter 19 we discussed the properties of an ideal gas, using such macro-
scopic variables as pressure, volume, and temperature. We shall now show that
such large-scale properties can be described on a microscopic scale, where mat-

ter is treated as a collection of molecules. Newton’s laws of motion applied in a sta-
tistical manner to a collection of particles provide a reasonable description of ther-
modynamic processes. To keep the mathematics relatively simple, we shall
consider molecular behavior of gases only, because in gases the interactions be-
tween molecules are much weaker than they are in liquids or solids. In the current
view of gas behavior, called the kinetic theory, gas molecules move about in a ran-
dom fashion, colliding with the walls of their container and with each other. Per-
haps the most important feature of this theory is that it demonstrates that the ki-
netic energy of molecular motion and the internal energy of a gas system are
equivalent. Furthermore, the kinetic theory provides us with a physical basis for
our understanding of the concept of temperature.

In the simplest model of a gas, each molecule is considered to be a hard

sphere that collides elastically with other molecules and with the container’s walls.
The hard-sphere model assumes that the molecules do not interact with each
other except during collisions and that they are not deformed by collisions. This
description is adequate only for monatomic gases, for which the energy is entirely
translational kinetic energy. One must modify the theory for more complex mole-
cules, such as oxygen (Og) and carbon dioxide (COy), to include the internal en-
ergy associated with rotations and vibrations of the molecules.

21.1 _~ MOLECULAR MODEL OF AN IDEAL GAS

5) We begin this chapter by developing a microscopic model of an ideal gas. The

105 model shows that the pressure that a gas exerts on the walls of its container is a
consequence of the collisions of the gas molecules with the walls. As we shall see,
the model is consistent with the macroscopic description of Chapter 19. In devel-
oping this model, we make the following assumptions:

The number of molecules is large, and the average separation between mole-
cules is great compared with their dimensions. This means that the volume of
the molecules is negligible when compared with the volume of the container.
The molecules obey Newton’s laws of motion, but as a whole they move ran-
domly. By “randomly” we mean that any molecule can move in any direction
with equal probability. We also assume that the distribution of speeds does not
change in time, despite the collisions between molecules. That is, at any given
moment, a certain percentage of molecules move at high speeds, a certain per-
centage move at low speeds, and a certain percentage move at speeds intermedi-
ate between high and low.

The molecules undergo elastic collisions with each other and with the walls of
the container. Thus, in the collisions, both kinetic energy and momentum are
constant.

The forces between molecules are negligible except during a collision. The
forces between molecules are shortrange, so the molecules interact with each
other only during collisions.

The gas under consideration is a pure substance. That is, all of its molecules are
identical.

Although we often picture an ideal gas as consisting of single atoms, we can as-

sume that the behavior of molecular gases approximates that of ideal gases rather

Assumptions of the molecular
model of an ideal gas
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Figure 21.1 A cubical box with
sides of length d containing an
ideal gas. The molecule shown
moves with velocity v.

=
<
N

Uy

Figure 21.2 A molecule makes
an elastic collision with the wall of
the container. Its x component of
momentum is reversed, while its y
component remains unchanged. In
this construction, we assume that
the molecule moves in the xy
plane.

CHAPTER 21 TheKinetic Theory of Gases

well at low pressures. Molecular rotations or vibrations have no effect, on the aver-
age, on the motions that we considered here.

Now let us derive an expression for the pressure of an ideal gas consisting of N
molecules in a container of volume V. The container is a cube with edges of length
d (Fig. 21.1). Consider the collision of one molecule moving with a velocity v to-
ward the righthand face of the box. The molecule has velocity components v,, v,,
and v,. Previously, we used m to represent the mass of a sample, but throughout
this chapter we shall use m to represent the mass of one molecule. As the molecule
collides with the wall elastically, its x component of velocity is reversed, while its y
and z components of velocity remain unaltered (Fig. 21.2). Because the x compo-
nent of the momentum of the molecule is mv, before the collision and — muv, after
the collision, the change in momentum of the molecule is

Ap, = —mu, — (mv,) = —2mv,
Applying the impulse —momentum theorem (Eq. 9.9) to the molecule gives
FiAt=Ap, = —2mv,

where F is the magnitude of the average force exerted by the wall on the mole-

cule in the time At The subscript 1 indicates that we are currently considering

only one molecule. For the molecule to collide twice with the same wall, it must

travel a distance 2d in the x direction. Therefore, the time interval between two

collisions with the same wall is At = 2d/v,. Over a time interval that is long com-

pared with A¢ the average force exerted on the molecule for each collision is
—2mv, —2mv, —mv,2

F = = = 21.1
! At 2d/ v, d (21.1)

According to Newton’s third law, the average force exerted by the molecule on the
wall is equal in magnitude and opposite in direction to the force in Equation 21.1:

— mv,> mu,2
Fl,onwall: _F1: - d = d

Each molecule of the gas exerts a force [ on the wall. We find the total force Fex-
erted by all the molecules on the wall by adding the forces exerted by the individ-
ual molecules:

m
F:7(vx12+ vio® + )

In this equation, v, is the x component of velocity of molecule 1, v,o is the x com-
ponent of velocity of molecule 2, and so on. The summation terminates when we
reach Nmolecules because there are N molecules in the container.

To proceed further, we must note that the average value of the square of the
velocity in the x direction for N molecules is

le2 + vx22 + o+ va2
N

sz =

Thus, the total force exerted on the wall can be written

Nm—2
F=—1,
d

Now let us focus on one molecule in the container whose velocity components

are v,, vy, and v,. The Pythagorean theorem relates the square of the speed of this

¥’
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molecule to the squares of these components:
2 — ., 2 2 2
vt = v, + vy + v,

Hence, the average value of v? for all the molecules in the container is related to
the average values of v,?, v)%, and v,? according to the expression

0% = va + vf + vz2

Because the motion is completely random, the average values v,%, v,?, and v,? are

y
equal to each other. Using this fact and the previous equation, we find that

v? = 3,2
Thus, the total force exerted on the wall is Ludwig Boltzmann Austrian
— theoretical physicist (1844—1906)
. ﬁ my? Boltzmann made many important con-
= 3 d tributions to the development of the
kinetic theory of gases, electromag-
Using this expression, we can find the total pressure exerted on the wall: netism, and thermodynamics. His pio-
neering work in the field of kinetic
I ra 1 N — 1 /N — theory led to the branch of physics
pP= I = F = E ? mo= | = ? 7 my known as statistical mechanics.
(Courtesy of AIP Niels Bohr Library, Lande
_ Collection)
pP= 2 <ﬁ><i mv2> (21.2)
3\V/\2
This result indicates that the pressure is proportional to the number of mole- Relationship between pressure and
cules per unit volume and to the average translational kinetic energy of the molecular kinetic energy

molecules, %va. In deriving this simplified model of an ideal gas, we obtain an
important result that relates the large-scale quantity of pressure to an atomic quan-
tity—the average value of the square of the molecular speed. Thus, we have estab-
lished a key link between the atomic world and the large-scale world.

You should note that Equation 21.2 verifies some features of pressure with
which you are probably familiar. One way to increase the pressure inside a con-
tainer is to increase the number of molecules per unit volume in the container.
This is what you do when you add air to a tire. The pressure in the tire can also be
increased by increasing the average translational kinetic energy of the air mole-
cules in the tire. As we shall soon see, this can be accomplished by increasing the
temperature of that air. It is for this reason that the pressure inside a tire increases
as the tire warms up during long trips. The continuous flexing of the tire as it
moves along the surface of a road results in work done as parts of the tire distort
and in an increase in internal energy of the rubber. The increased temperature of
the rubber results in the transfer of energy by heat into the air inside the tire. This
transfer increases the air’s temperature, and this increase in temperature in turn
produces an increase in pressure.

Molecular Interpretation of Temperature

(@ We can gain some insight into the meaning of temperature by first writing Equa-
103 tion 21.2 in the more familiar form

PV = §N<§mﬁ>
Let us now compare this with the equation of state for an ideal gas (Eq. 19.10):

PV = ]\]kBT
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Temperature is proportional to
average kinetic energy

Average kinetic energy per
molecule

Theorem of equipartition of
energy

Total translational kinetic energy
of Nmolecules

CHAPTER 21 TheKinetic Theory of Gases

Recall that the equation of state is based on experimental facts concerning the
macroscopic behavior of gases. Equating the right sides of these expressions, we
find that

2 —
T= —<;mv2> (21.3)
3kp
That is, temperature is a direct measure of average molecular kinetic energy.
By rearranging Equation 21.3, we can relate the translational molecular ki-
netic energy to the temperature:

smv? =3kgT (21.4)

That is, the average translational kinetic energy per molecule is %kBT. Because

— =

sz = %vQ, it follows that
smu2 = SkgT (21.5)
In a similar manner, it follows that the motions in the y and z directions give us
e —

1 -1 172 _1
smu,” = 5kpT and smv,” = skpT

Thus, each translational degree of freedom contributes an equal amount of en-
ergy to the gas, namely, %kBT. (In general, “degrees of freedom” refers to the num-
ber of independent means by which a molecule can possess energy.) A generaliza-
tion of this result, known as the theorem of equipartition of energy, states that

each degree of freedom contributes %kBT to the energy of a system.

The total translational kinetic energy of N molecules of gas is simply N times
the average energy per molecule, which is given by Equation 21.4:

Eqans = N(ém_2> = 3NkgT = 3nRT (21.6)

where we have used kg = R/N, for Boltzmann’s constant and n = N/ N, for the
number of moles of gas. If we consider a gas for which the only type of energy for
the molecules is translational kinetic energy, we can use Equation 21.6 to express

TABLE 21.1 Some rms Speeds

Molar Mass s
Gas (g/mol) at 20°C (m/s)
H, 2.02 1904
He 4.00 1352
H,0 18.0 637
Ne 20.2 602
Ny or CO 28.0 511
NO 30.0 494
COo 44.0 408

SOy 64.1 338




21.2 MolarSpecific Heat of an Ideal Gas 645

the internal energy of the gas. This result implies that the internal energy of an
ideal gas depends only on the temperature.

The square root of v? is called the root-mean-square (rms) speed of the mole-
cules. From Equation 21.4 we obtain, for the rms speed,

; 3kgT 3RT
o = = APy

M

(21 .7) Root-mean-square speed
where M is the molar mass in kilograms per mole. This expression shows that, at a

given temperature, lighter molecules move faster, on the average, than do heavier

molecules. For example, at a given temperature, hydrogen molecules, whose mo-

lar mass is 2 X 1073 kg/mol, have an average speed four times that of oxygen mol-

ecules, whose molar mass is 32 X 1073 kg/mol. Table 21.1 lists the rms speeds for

various molecules at 20°C.

ExaMpLE 21.1 A Tank of Helium

A tank used for filling helium balloons has a volume of
0.300 m® and contains 2.00 mol of helium gas at 20.0°C. Assum-
ing that the helium behaves like an ideal gas, (a) what is the

Solution Using Equation 21.4, we find that the average ki-
netic energy per molecule is

ymv? = SkgT =3 (1.38 X 1072 J/K) (293 K)

total translational kinetic energy of the molecules of the gas?
: . . . = 6.07 X 1072]
Solution Using Equation 21.6 with n = 2.00 mol and T =
293 K, we find that

Exercise Using the fact that the molar mass of helium is
4.00 X 107% kg/mol, determine the rms speed of the atoms
at 20.0°C.

Etrans =

2nRT = 3(2.00 mol) (8.31 J/mol - K) (293 K)

= 7.30 X 103]

Answer 1.35 X 103 m/s.

(b) What is the average kinetic energy per molecule?

| Quick Quiz 21.1 g

At room temperature, the average speed of an air molecule is several hundred meters per
second. A molecule traveling at this speed should travel across a room in a small fraction of
a second. In view of this, why does it take the odor of perfume (or other smells) several P
minutes to travel across the room?

Isotherms

21.2 _~ MOLAR SPECIFIC HEAT OF AN IDEAL GAS

@ The energy required to raise the temperature of n moles of gas from T; to Ty d.e—

105 pends on the path taken between the initial and final states. To understand this,
let us consider an ideal gas undergoing several processes such that the change in
temperature is AT = T, — T; for all processes. The temperature change can be
achieved by taking a variety of paths from one isotherm to another, as shown in
Figure 21.3. Because AT 'is the same for each path, the change in internal energy
AE;, is the same for all paths. However, we know from the first law,
0 = AE;, + W, that the heat Q is different for each path because W (the area un-
der the curves) is different for each path. Thus, the heat associated with a given
change in temperature does not have a unique value.

Figure 21.3 An ideal gas is taken
from one isotherm at temperature
T to another at temperature

T + AT along three different
paths.
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Internal energy of an ideal
monatomic gas is proportional to
its temperature
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We can address this difficulty by defining specific heats for two processes that
frequently occur: changes at constant volume and changes at constant pressure.
Because the number of moles is a convenient measure of the amount of gas, we
define the molar specific heats associated with these processes with the following
equations:

Q= nCyAT (constant volume) (21.8)
0 = nCpAT (constant pressure) (21.9)

where Cy is the molar specific heat at constant volume and Cp is the molar
specific heat at constant pressure. When we heat a gas at constant pressure, not
only does the internal energy of the gas increase, but the gas also does work be-
cause of the change in volume. Therefore, the heat Q ,nseant p must account for
both the increase in internal energy and the transfer of energy out of the system
by work, and so Q constant p18 greater than Q constane v- Thus, Cp is greater than Cy.

In the previous section, we found that the temperature of a gas is a measure of
the average translational kinetic energy of the gas molecules. This kinetic energy is
associated with the motion of the center of mass of each molecule. It does not in-
clude the energy associated with the internal motion of the molecule—namely, vi-
brations and rotations about the center of mass. This should not be surprising be-
cause the simple kinetic theory model assumes a structureless molecule.

In view of this, let us first consider the simplest case of an ideal monatomic
gas, that is, a gas containing one atom per molecule, such as helium, neon, or ar-
gon. When energy is added to a monatomic gas in a container of fixed volume (by
heating, for example), all of the added energy goes into increasing the transla-
tional kinetic energy of the atoms. There is no other way to store the energy in a
monatomic gas. Therefore, from Equation 21.6, we see that the total internal en-
ergy I, of N molecules (or n mol) of an ideal monatomic gas is

Ein = 3NkgT = 3nRT (21.10)

Note that for a monatomic ideal gas, Ej,, is a function of T only, and the functional
relationship is given by Equation 21.10. In general, the internal energy of an ideal
gas is a function of T only, and the exact relationship depends on the type of gas,
as we shall soon explore.

| Quick Quiz 21.2 4

How does the internal energy of a gas change as its pressure is decreased while its volume is
increased in such a way that the process follows the isotherm labeled 7 in Figure 21.4?
(a) Ej, increases. (b) Ej, decreases. (c) E, stays the same. (d) There is not enough infor-
mation to determine AE;,,.

If energy is transferred by heat to a system at constant volume, then no work is
done by the system. That is, W= [P dV = 0 for a constant-volume process. Hence,
from the first law of thermodynamics, we see that

Q= ALy, (21.11)

In other words, all of the energy transferred by heat goes into increasing the in-
ternal energy (and temperature) of the system. A constant-volume process from ¢
to fis described in Figure 21.4, where AT is the temperature difference between
the two isotherms. Substituting the expression for Q given by Equation 21.8 into
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Equation 21.11, we obtain
AE;, = nCy AT (21.12)

If the molar specific heat is constant, we can express the internal energy of a gas as
Eint = nCVT

This equation applies to all ideal gases—to gases having more than one atom per
molecule, as well as to monatomic ideal gases.

In the limit of infinitesimal changes, we can use Equation 21.12 to express the
molar specific heat at constant volume as

l dEint

C:
V7" no At

(21.13)
Let us now apply the results of this discussion to the monatomic gas that we
have been studying. Substituting the internal energy from Equation 21.10 into

Equation 21.13, we find that
Cy=3R (21.14)

This expression predicts a value of Cy = %R = 12.5]J/mol-K for all monatomic
gases. This is in excellent agreement with measured values of molar specific heats
for such gases as helium, neon, argon, and xenon over a wide range of tempera-
tures (Table 21.2).

Now suppose that the gas is taken along the constant-pressure path i— f
shown in Figure 21.4. Along this path, the temperature again increases by AT. The
energy that must be transferred by heat to the gas in this process is Q = nCpAT.
Because the volume increases in this process, the work done by the gas is
W = PAV, where P is the constant pressure at which the process occurs. Applying

TABLE 21.2 Molar Specific Heats of Various Gases

Molar Specific Heat (J/mol - K)?

Gas Cp Cy Cp— Cy vy = Cp/Cy
Monatomic Gases

He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69
Diatomic Gases

H, 28.8 20.4 8.33 1.41
No 29.1 20.8 8.33 1.40
Oy 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cly 34.7 25.7 8.96 1.35
Polyatomic Gases

COy 37.0 28.5 8.50 1.30
SOy 40.4 31.4 9.00 1.29
H,O 35.4 27.0 8.37 1.30
CHy4 35.5 27.1 8.41 1.31

#All values except that for water were obtained at 300 K.
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Isotherms

Figure 21.4 Energy is trans-
ferred by heat to an ideal gas in two
ways. For the constant-volume path
i— f, all the energy goes into in-
creasing the internal energy of the
gas because no work is done. Along
the constant-pressure path i — f”,
part of the energy transferred in by
heat is transferred out by work
done by the gas.
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the first law to this process, we have
AE, = Q— W= nCpAT — PAV (21.15)

In this case, the energy added to the gas by heat is channeled as follows: Part of it
does external work (that is, it goes into moving a piston), and the remainder in-
creases the internal energy of the gas. But the change in internal energy for the
process i — [’ is equal to that for the process i — fbecause E;,, depends only on
temperature for an ideal gas and because AT'is the same for both processes. In ad-
dition, because PV = nRT, we note that for a constant-pressure process,
PAV = nRAT. Substituting this value for PAV into Equation 21.15 with
AE;, = nCy AT (Eq. 21.12) gives

Cp - CV: R (21.16)

This expression applies to any ideal gas. It predicts that the molar specific heat of
an ideal gas at constant pressure is greater than the molar specific heat at constant
volume by an amount R, the universal gas constant (which has the value
8.31 J/mol - K). This expression is applicable to real gases, as the data in Table 21.2
show.

Because Cy = %R for a monatomic ideal gas, Equation 21.16 predicts a value
Cp= gR = 20.8J/mol-K for the molar specific heat of a monatomic gas at con-
stant pressure. The ratio of these heat capacities is a dimensionless quantity y
(Greek letter gamma):

i i C 5/2YR 5
b epeciic heaw fora y=2 - ORAR_5 _ 4 (21.17)
gas ¢y (/2R 3

Theoretical values of Cp and vy are in excellent agreement with experimental val-
ues obtained for monatomic gases, but they are in serious disagreement with the
values for the more complex gases (see Table 21.2). This is not surprising because
the value Cy = gR was derived for a monatomic ideal gas, and we expect some ad-
ditional contribution to the molar specific heat from the internal structure of the
more complex molecules. In Section 21.4, we describe the effect of molecular
structure on the molar specific heat of a gas. We shall find that the internal en-
ergy—and, hence, the molar specific heat—of a complex gas must include con-
tributions from the rotational and the vibrational motions of the molecule.

We have seen that the molar specific heats of gases at constant pressure are
greater than the molar specific heats at constant volume. This difference is a con-
sequence of the fact that in a constant-volume process, no work is done and all of
the energy transferred by heat goes into increasing the internal energy (and tem-
perature) of the gas, whereas in a constant-pressure process, some of the energy
transferred by heat is transferred out as work done by the gas as it expands. In the
case of solids and liquids heated at constant pressure, very little work is done be-
cause the thermal expansion is small. Consequently, Cp and Cy are approximately
equal for solids and liquids.

ExAMPLE 21.2 Heating a Cylinder of Helium

A cylinder contains 3.00 mol of helium gas at a temperature Solution For the constantvolume process, we have
of 300 K. (a) If the gas is heated at constant volume, how

. Ql = nCVAT
much energy must be transferred by heat to the gas for its
temperature to increase to 500 K? Because Cy = 12.5 J/mol-K for helium and AT = 200 K, we
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Q1 = (3.00 mol) (12.5 J/mol-K) (200 K) = 7.50 X 103]

gas at constant pressure to raise the temperature to 500 K? process?

12.5 X 10%]
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obtain Q9 = nCp AT = (3.00 mol) (20.8 J/mol - K) (200 K)

(b) How much energy must be transferred by heat to the  gxereise What is the work done by the gas in this isobaric

Solution Making use of Table 21.2, we obtain Answer W= Q, — Q; = 5.00 X 103].

21.3 _~ ADIABATIC PROCESSES FOR AN IDEAL GAS

As we noted in Section 20.6, an adiabatic process is one in which no energy is
transferred by heat between a system and its surroundings. For example, if a gas is
compressed (or expanded) very rapidly, very little energy is transferred out of (or
into) the system by heat, and so the process is nearly adiabatic. (We must remem-
ber that the temperature of a system changes in an adiabatic process even though
no energy is transferred by heat.) Such processes occur in the cycle of a gasoline
engine, which we discuss in detail in the next chapter.

Another example of an adiabatic process is the very slow expansion of a gas
that is thermally insulated from its surroundings. In general,

an adiabatic process is one in which no energy is exchanged by heat between
a system and its surroundings.

Let us suppose that an ideal gas undergoes an adiabatic expansion. At any
time during the process, we assume that the gas is in an equilibrium state, so that
the equation of state PV = nRT is valid. As we shall soon see, the pressure and vol-
ume at any time during an adiabatic process are related by the expression

PV? = constant (21.18)

where y = Cp/Cy is assumed to be constant during the process. Thus, we see that
all three variables in the ideal gas law— P, V, and T—-change during an adiabatic
process.

Proof That PV Y = constant for an Adiabatic Process

When a gas expands adiabatically in a thermally insulated cylinder, no energy is
transferred by heat between the gas and its surroundings; thus, Q = 0. Let us take
the infinitesimal change in volume to be dV and the infinitesimal change in tem-
perature to be d7T. The work done by the gas is P dV. Because the internal energy
of an ideal gas depends only on temperature, the change in the internal energy in
an adiabatic expansion is the same as that for an isovolumetric process between
the same temperatures, dE;,, = nCydT (Eq. 21.12). Hence, the first law of ther-
modynamics, AE;,, = Q — W, with Q = 0, becomes

dEy, = nCydT = —PdV

Taking the total differential of the equation of state of an ideal gas, PV = nRT, we

Definition of an adiabatic process

Relationship between Pand V for
an adiabatic process involving an
ideal gas
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QuickLab —~

Rapidly pump up a bicycle tire and
then feel the coupling at the end of
the hose. Why is the coupling warm?

pr
Isotherms
P
Adiabatic process
T
P i
! T
| / Iy
v

Figure 21.5 The PVdiagram for
an adiabatic expansion. Note that
Ty < T;in this process.

Adiabatic process

ExAMpPLE 21.3
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see that
PdV+ VdP = nRdT

Eliminating d7 from these two equations, we find that

R
PdV+ VdP= ———PdV
Cy

Substituting R = Cp — Cy and dividing by PV, we obtain

dv dpP Cp— Cy\ dV A%
— t—=——— =0 -y —
\% P Cy \% |4
dP A%
—+y—=0
P \%

Integrating this expression, we have
In P+ yln V= constant
which is equivalent to Equation 21.18:
PV?Y = constant

The PV diagram for an adiabatic expansion is shown in Figure 21.5. Because
v > 1, the PV curve is steeper than it would be for an isothermal expansion. By the
definition of an adiabatic process, no energy is transferred by heat into or out of
the system. Hence, from the first law, we see that AE;,, is negative (the gas does
work, so its internal energy decreases) and so AT also is negative. Thus, we see that
the gas cools (7y< T;) during an adiabatic expansion. Conversely, the tempera-
ture increases if the gas is compressed adiabatically. Applying Equation 21.18 to
the initial and final states, we see that

PV = PVY (21.19)
Using the ideal gas law, we can express Equation 21.19 as
T,vy = Ty (21.20)

A Diesel Engine Cylinder

Air at 20.0°C in the cylinder of a diesel engine is compressed
from an initial pressure of 1.00 atm and volume of 800.0 cm?
to a volume of 60.0 cm®. Assume that air behaves as an ideal
gas with y = 1.40 and that the compression is adiabatic. Find
the final pressure and temperature of the air.

Solution Using Equation 21.19, we find that

AY 800.0 cm?® |40
P=P, (—) = (1.00 atm)<7cng>
Vf 60.0 cm

= 37.6 atm

Because PV = nRT is valid during any process and because

no gas escapes from the cylinder,

PV, pj{/}
T, T
PV, 37.6 60.0 cm?
T, Y - ( atm) ( cm%) (203 K)
PV, (1.00 atm ) (800.0 cm?)
= 826K = 553°C

The high compression in a diesel engine raises the tempera-
ture of the fuel enough to cause its combustion without the
use of spark plugs.
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21.4_~ THE EQUIPARTITION OF ENERGY

We have found that model predictions based on molar specific heat agree quite
well with the behavior of monatomic gases but not with the behavior of complex
gases (see Table 21.2). Furthermore, the value predicted by the model for the
quantity Cp — Cy = R is the same for all gases. This is not surprising because this
difference is the result of the work done by the gas, which is independent of its
molecular structure.

To clarify the variations in Cyand Cpin gases more complex than monatomic
gases, let us first explain the origin of molar specific heat. So far, we have assumed
that the sole contribution to the internal energy of a gas is the translational kinetic
energy of the molecules. However, the internal energy of a gas actually includes
contributions from the translational, vibrational, and rotational motion of the
molecules. The rotational and vibrational motions of molecules can be activated
by collisions and therefore are “coupled” to the translational motion of the mole-
cules. The branch of physics known as statistical mechanics has shown that, for a
large number of particles obeying the laws of Newtonian mechanics, the available
energy is, on the average, shared equally by each independent degree of freedom.
Recall from Section 21.1 that the equipartition theorem states that, at equilibrium,
each degree of freedom contributes %kBT of energy per molecule.

Let us consider a diatomic gas whose molecules have the shape of a dumbbell
(Fig. 21.6). In this model, the center of mass of the molecule can translate in the
x, y, and z directions (Fig. 21.6a). In addition, the molecule can rotate about three
mutually perpendicular axes (Fig. 21.6b). We can neglect the rotation about the y
axis because the moment of inertia /, and the rotational energy %Iwa about this
axis are negligible compared with those associated with the x and z axes. (If the
two atoms are taken to be point masses, then /, is identically zero.) Thus, there are
five degrees of freedom: three associated with the translational motion and two as-
sociated with the rotational motion. Because each degree of freedom contributes,
on the average, %kBT of energy per molecule, the total internal energy for a sys-
tem of N molecules is

Eine = 3NGkgT) + 2NGkhgT) = 3NkgT = 3nRT

We can use this result and Equation 21.13 to find the molar specific heat at con-
stant volume:
i dE;,. 1 d (5 5

Cy = - Y (2 uRrT)=2R
Ve Tar ndT(Q") 9

From Equations 21.16 and 21.17, we find that
Cp=Cy+ R=13R

7
y=&=§—R=l=1.4O

These results agree quite well with most of the data for diatomic molecules
given in Table 21.2. This is rather surprising because we have not yet accounted
for the possible vibrations of the molecule. In the vibratory model, the two atoms
are joined by an imaginary spring (see Fig. 21.6c). The vibrational motion adds
two more degrees of freedom, which correspond to the kinetic energy and the po-
tential energy associated with vibrations along the length of the molecule. Hence,

classical physics and the equipartition theorem predict an internal energy of

Epn = 3NGkpT) + 2N(3kpT) + 2NGkT) = 3Nk T = 3nRT
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(c)

Figure 21.6 Possible motions of
a diatomic molecule: (a) transla-
tional motion of the center of
mass, (b) rotational motion about
the various axes, and (c) vibra-
tional motion along the molecular
axis.
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Figure 21.7 The molar specific heat of hydrogen as a function of temperature. The horizontal
scale is logarithmic. Note that hydrogen liquefies at 20 K.

and a molar specific heat at constant volume of

oo L B 1 d <7 RT>_7R

Y'omodT n dr\2 " 2
This value is inconsistent with experimental data for molecules such as Hy and Ny
(see Table 21.2) and suggests a breakdown of our model based on classical physics.

For molecules consisting of more than two atoms, the number of degrees of
freedom is even larger and the vibrations are more complex. This results in an
even higher predicted molar specific heat, which is in qualitative agreement with
experiment. The more degrees of freedom available to a molecule, the more
“ways” it can store internal energy; this results in a higher molar specific heat.

We have seen that the equipartition theorem is successful in explaining some
features of the molar specific heat of gas molecules with structure. However, the
theorem does not account for the observed temperature variation in molar spe-
cific heats. As an example of such a temperature variation, CV for Ho is ¢ R from
about 250 K to 750 K and then increases steadily to about g R well above 750 K
(Fig. 21.7). This suggests that much more significant v1brat10ns occur at very high
temperatures. At temperatures well below 250 K, Cy has a value of about zR’ sug-
gesting that the molecule has only translational energy at low temperatures.

A Hint of Energy Quantization

The failure of the equipartition theorem to explain such phenomena is due to the
inadequacy of classical mechanics applied to molecular systems. For a more satisfac-
tory description, it is necessary to use a quantum-mechanical model, in which the
energy of an individual molecule is quantized. The energy separation between adja-
cent vibrational energy levels for a molecule such as Hs is about ten times greater
than the average kinetic energy of the molecule at room temperature. Conse-
quently, collisions between molecules at low temperatures do not provide enough
energy to change the vibrational state of the molecule. It is often stated that such de-
grees of freedom are “frozen out.” This explains why the vibrational energy does not
contribute to the molar specific heats of molecules at low temperatures.
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The rotational energy levels also are quantized, but their spacing at ordinary
temperatures is small compared with kg 7. Because the spacing between quantized
energy levels is small compared with the available energy, the system behaves in ac-
cordance with classical mechanics. However, at sufficiently low temperatures (typi-
cally less than 50 K), where kg7 is small compared with the spacing between rota-
tional levels, intermolecular collisions may not be sufficiently energetic to alter the
rotational states. This explains why Cy reduces to %R for Hy in the range from 20 K
to approximately 100 K.

The Molar Specific Heat of Solids

The molar specific heats of solids also demonstrate a marked temperature depen-
dence. Solids have molar specific heats that generally decrease in a nonlinear man-
ner with decreasing temperature and approach zero as the temperature ap-
proaches absolute zero. At high temperatures (usually above 300 K), the molar
specific heats approach the value of 3R = 25]/mol-K, a result known as the
DulLong— Petit law. The typical data shown in Figure 21.8 demonstrate the tempera-
ture dependence of the molar specific heats for two semiconducting solids, silicon
and germanium.

We can explain the molar specific heat of a solid at high temperatures using
the equipartition theorem. For small displacements of an atom from its equilib-
rium position, each atom executes simple harmonic motion in the x, y, and z direc-
tions. The energy associated with vibrational motion in the x direction is

_ 1 2 1, 92
E=gsmu," + 5kx

The expressions for vibrational motions in the y and z directions are analogous.
Therefore, each atom of the solid has six degrees of freedom. According to the
equipartition theorem, this corresponds to an average vibrational energy of
6(%kBT) = 3kgT per atom. Therefore, the total internal energy of a solid consist-
ing of Natoms is

Ein = 3NkgT = 3nRT (21.21)

From this result, we find that the molar specific heat of a solid at constant volume
is
1 dE;,

Co =
V7w dr

= 3R (21.22)
This result is in agreement with the empirical DuLong—Petit law. The discrepan-
cies between this model and the experimental data at low temperatures are again
due to the inadequacy of classical physics in describing the microscopic world.

21.5 _~ THE BOLTZMANN DISTRIBUTION LAW

Thus far we have neglected the fact that not all molecules in a gas have the same
speed and energy. In reality, their motion is extremely chaotic. Any individual mol-
ecule is colliding with others at an enormous rate—typically, a billion times per
second. Each collision results in a change in the speed and direction of motion of
each of the participant molecules. From Equation 21.7, we see that average molec-
ular speeds increase with increasing temperature. What we would like to know now
is the relative number of molecules that possess some characteristic, such as a cer-
tain percentage of the total energy or speed. The ratio of the number of molecules
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Figure 21.8 Molar specific heat
of silicon and germanium. As 7 ap-
proaches zero, the molar specific
heat also approaches zero. (From C.
Kittel, Introduction to Solid State
Physics, New York, Wiley, 1971.)
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Figure 21.9 An atmospheric
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Law of atmospheres
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that have the desired characteristic to the total number of molecules is the proba-
bility that a particular molecule has that characteristic.

The Exponential Atmosphere

We begin by considering the distribution of molecules in our atmosphere. Let us
determine how the number of molecules per unit volume varies with altitude. Our
model assumes that the atmosphere is at a constant temperature 7. (This assump-
tion is not entirely correct because the temperature of our atmosphere decreases
by about 2°C for every 300-m increase in altitude. However, the model does illus-
trate the basic features of the distribution.)

According to the ideal gas law, a gas containing N molecules in thermal equi-
librium obeys the relationship PV = NkpT. It is convenient to rewrite this equation
in terms of the number density n = N/V, which represents the number of mole-
cules per unit volume of gas. This quantity is important because it can vary from
one point to another. In fact, our goal is to determine how ny changes in our at-
mosphere. We can express the ideal gas law in terms of nyas P = nykgT. Thus, if
the number density ny is known, we can find the pressure, and vice versa. The
pressure in the atmosphere decreases with increasing altitude because a given
layer of air must support the weight of all the atmosphere above it—that is, the
greater the altitude, the less the weight of the air above that layer, and the lower
the pressure.

To determine the variation in pressure with altitude, let us consider an atmos-
pheric layer of thickness dy and cross-sectional area A, as shown in Figure 21.9. Be-
cause the air is in static equilibrium, the magnitude PA of the upward force ex-
erted on the bottom of this layer must exceed the magnitude of the downward
force on the top of the layer, (P + dP)A, by an amount equal to the weight of
gas in this thin layer. If the mass of a gas molecule in the layer is m, and if a total
of N molecules are in the layer, then the weight of the layer is given by mgN =
mgnyV = mgnyAdy. Thus, we see that

PA — (P+ dP)A = mgnyAdy

This expression reduces to
dP = — mgnydy

Because P= nykgT and T is assumed to remain constant, we see that dP =
kpT dny. Substituting this result into the previous expression for dP and rearrang-
ing terms, we have

d
ny _ __mg dy
ny kBT

Integrating this expression, we find that
ny(y) = nge "/ ksl (21.23)

where the constant n( is the number density at y = 0. This result is known as the
law of atmospheres.

According to Equation 21.23, the number density decreases exponentially
with increasing altitude when the temperature is constant. The number density of
our atmosphere at sea level is about ny = 2.69 X 10%° molecules/m?. Because the
pressure is P = nykgT, we see from Equation 21.23 that the pressure of our atmos-
phere varies with altitude according to the expression

P = Py mey/knT (21.24)
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where Py = nokgT. A comparison of this model with the actual atmospheric pres-
sure as a function of altitude shows that the exponential form is a reasonable ap-
proximation to the Earth’s atmosphere.
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EXAMPLE 21.4 High-Flying Molecules

What is the number density of air at an altitude of 11.0 km
(the cruising altitude of a commercial jetliner) compared
with its number density at sea level? Assume that the air tem-
perature at this height is the same as that at the ground,
20°C.

Solution The number density of our atmosphere de-
creases exponentially with altitude according to the law of at-
mospheres, Equation 21.23. We assume an average molecular
mass of 28.9 u = 4.80 X 10726 kg. Taking y = 11.0 km, we cal-
culate the power of the exponential in Equation 21.23 to be

mgy _ (4.80 X 10720 kg)(9.80 m/s2) (11 000 m)

Thus, Equation 21.23 gives
ny = nge” "0/ kT = 507128 = 0,278,

That is, the number density of air at an altitude of 11.0 km is
only 27.8% of the number density at sea level, if we assume
constant temperature. Because the temperature actually de-
creases with altitude, the number density of air is less than
this in reality.

The pressure at this height is reduced in the same man-
ner. For this reason, high-flying aircraft must have pressur-
ized cabins to ensure passenger comfort and safety.

=1.28
kg T (1.38 X 10722 J/K) (293 K) 2

Computing Average Values

The exponential function e~ "0/ksT that appears in Equation 21.23 can be inter-
preted as a probability distribution that gives the relative probability of finding a
gas molecule at some height y. Thus, the probability distribution p(y) is propor-
tional to the number density distribution ny(y). This concept enables us to deter-
mine many properties of the atmosphere, such as the fraction of molecules below
a certain height or the average potential energy of a molecule.

As an example, let us determine the average height y of a molecule in the at-
mosphere at temperature 7. The expression for this average height is

f yny(y) dy f ye &/ kT gy
0 0

5}: o0 = oo
f ny(y) dy f e~ e/ kT gy
0 0

where the height of a molecule can range from 0 to ¢. The numerator in this ex-
pression represents the sum of the heights of the molecules times their number,
while the denominator is the sum of the number of molecules. That is, the denom-
inator is the total number of molecules. After performing the indicated integra-
tions, we find that

(knT/mg)* _ kT

r= kgT/ mg - mg

This expression states that the average height of a molecule increases as 7 in-
creases, as expected.

We can use a similar procedure to determine the average potential energy of a
gas molecule. Because the gravitational potential energy of a molecule at height y
is U = mgy, the average potential energy is equal to mgy. Because y = kg7/mg, we
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see that U = mg(kgT/mg) = kgT. This important result indicates that the average
gravitational potential energy of a molecule depends only on temperature, and
noton mor g

The Boltzmann Distribution

Because the gravitational potential energy of a molecule at height yis U = mgy, we
can express the law of atmospheres (Eq. 21.23) as

ny = noe_U/kBT
This means that gas molecules in thermal equilibrium are distributed in space with
a probability that depends on gravitational potential energy according to the expo-
nential factor e~ ks’

This exponential expression describing the distribution of molecules in the at-
mosphere is powerful and applies to any type of energy. In general, the number
density of molecules having energy FE is

ny(E) = nge P/kT (21.25)

This equation is known as the Boltzmann distribution law and is important in
describing the statistical mechanics of a large number of molecules. It states that
the probability of finding the molecules in a particular energy state varies
exponentially as the negative of the energy divided by kgT. All the molecules
would fall into the lowest energy level if the thermal agitation at a temperature 7'
did not excite the molecules to higher energy levels.

ExaAMpPLE 21.5

As we discussed briefly in Section 8.10, atoms can occupy only
certain discrete energy levels. Consider a gas at a temperature
of 2500 K whose atoms can occupy only two energy levels
separated by 1.50 eV, where 1 eV (electron volt) is an energy
unit equal to 1.6 X 10719 J (Fig. 21.10). Determine the ratio
of the number of atoms in the higher energy level to the
number in the lower energy level.

Solution Equation 21.25 gives the relative number of
atoms in a given energy level. In this case, the atom has two
possible energies, F; and Eo, where E; is the lower energy
level. Hence, the ratio of the number of atoms in the higher
energy level to the number in the lower energy level is

ny(Ey) — mge /keT

ny(E))  mge” BT

= ¢~ (Ba=E)/kgT

In this problem, Es — E; = 1.50 eV, and the denominator of
the exponent is

kgT = (1.38 X 10722]J/K) (2 500 K) /1.60 X 10719 ]/eV
= 0.216 eV

Therefore, the required ratio is

Thermal Excitation of Atomic Energy Levels

n(ks) _ 130 eV/0216 6V = 691 — g 64 X 10"
n(ky)

This result indicates that at 7= 2 500 K, only a small fraction
of the atoms are in the higher energy level. In fact, for every
atom in the higher energy level, there are about 1 000 atoms
in the lower level. The number of atoms in the higher level
increases at even higher temperatures, but the distribution
law specifies that at equilibrium there are always more atoms
in the lower level than in the higher level.

Ly

1.50 eV

E; L

Figure 21.10 Energy level diagram for a gas whose atoms can oc-
cupy two energy levels.
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21.6_~ DISTRIBUTION OF MOLECULAR SPEEDS

In 1860 James Clerk Maxwell (1831-1879) derived an expression that describes
the distribution of molecular speeds in a very definite manner. His work and sub-
sequent developments by other scientists were highly controversial because direct
detection of molecules could not be achieved experimentally at that time. How-
ever, about 60 years later, experiments were devised that confirmed Maxwell’s pre-
dictions.

Let us consider a container of gas whose molecules have some distribution of
speeds. Suppose we want to determine how many gas molecules have a speed in
the range from, for example, 400 to 410 m/s. Intuitively, we expect that the speed
distribution depends on temperature. Furthermore, we expect that the distribu-
tion peaks in the vicinity of v.,s. That is, few molecules are expected to have
speeds much less than or much greater than vy, because these extreme speeds re-
sult only from an unlikely chain of collisions.

The observed speed distribution of gas molecules in thermal equilibrium is
shown in Figure 21.11. The quantity N,, called the Maxwell-Boltzmann distri-
bution function, is defined as follows: If Nis the total number of molecules, then
the number of molecules with speeds between v and v + dv is dN = N,dv. This
number is also equal to the area of the shaded rectangle in Figure 21.11. Further-
more, the fraction of molecules with speeds between vand v + dv is N,dv/N. This
fraction is also equal to the probability that a molecule has a speed in the range v
to v + dv.

The fundamental expression that describes the distribution of speeds of N gas
molecules is

m \3/2 \
N, = 47TN<—) v2e v/ 2T (21.26)
27TkBT
where m is the mass of a gas molecule, kg is Boltzmann’s constant, and 7'is the ab-
solute temperature.! Observe the appearance of the Boltzmann factor ¢~ #/*s7 with
E= %va.

As indicated in Figure 21.11, the average speed v is somewhat lower than the
rms speed. The most probable speed vy, is the speed at which the distribution curve
reaches a peak. Using Equation 21.26, one finds that

Orme = V02 = \BkpT/m = 1.73 kg T/ m (21.27)
7= \8kpT/mm = 1.60 \VkpT/m (21.28)
Ump = \N2kgT/m = 1.41 NkgT/m (21.29)

The details of these calculations are left for the student (see Problems 41 and 62).
From these equations, we see that

v >yv>v

rms mp

Figure 21.12 represents speed distribution curves for Ny. The curves were ob-
tained by using Equation 21.26 to evaluate the distribution function at various
speeds and at two temperatures. Note that the peak in the curve shifts to the right

I For the derivation of this expression, see an advanced textbook on thermodynamics, such as that by
R. P. Bauman, Modern Thermodynamics with Statistical Mechanics, New York, Macmillan Publishing Co.,
1992.
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Figure 21.11 The speed distribu-
tion of gas molecules at some tem-
perature. The number of mole-
cules having speeds in the range dv
is equal to the area of the shaded
rectangle, N,dv. The function N,
approaches zero as v approaches
infinity.

Maxwell speed distribution
function

rms speed
Average speed

Most probable speed
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QuickLab

Fill one glass with very hot tap water
and another with very cold water. Put

-

a single drop of food coloring in each
glass. Which drop disperses faster?
Why?

The evaporation process
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Figure 21.12 The speed distribution function for 10° nitrogen molecules at 300 K and 900 K.
The total area under either curve is equal to the total number of molecules, which in this case
equals 10°. Note that v, > v > Ump.

as T increases, indicating that the average speed increases with increasing temper-
ature, as expected. The asymmetric shape of the curves is due to the fact that the
lowest speed possible is zero while the upper classical limit of the speed is infinity.

| Quick Quiz 21.3 g

Consider the two curves in Figure 21.12. What is represented by the area under each of the
curves between the 800-m/s and 1 000-m/s marks on the horizontal axis?

Equation 21.26 shows that the distribution of molecular speeds in a gas de-
pends both on mass and on temperature. At a given temperature, the fraction of
molecules with speeds exceeding a fixed value increases as the mass decreases.
This explains why lighter molecules, such as Ho and He, escape more readily from
the Earth’s atmosphere than do heavier molecules, such as Ny and Oy. (See the
discussion of escape speed in Chapter 14. Gas molecules escape even more readily
from the Moon’s surface than from the Earth’s because the escape speed on the
Moon is lower than that on the Earth.)

The speed distribution curves for molecules in a liquid are similar to those
shown in Figure 21.12. We can understand the phenomenon of evaporation of a
liquid from this distribution in speeds, using the fact that some molecules in the
liquid are more energetic than others. Some of the fastermoving molecules in
the liquid penetrate the surface and leave the liquid even at temperatures well be-
low the boiling point. The molecules that escape the liquid by evaporation are
those that have sufficient energy to overcome the attractive forces of the mole-
cules in the liquid phase. Consequently, the molecules left behind in the liquid
phase have a lower average kinetic energy; as a result, the temperature of the lig-
uid decreases. Hence, evaporation is a cooling process. For example, an alcohol-
soaked cloth often is placed on a feverish head to cool and comfort a patient.
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EXAMPLE 21.6 A System of Nine Particles

Nine particles have speeds of 5.00, 8.00, 12.0, 12.0, 12.0, 14.0, (5,002 + 8.002 4+ 12.02 + 12.02 + 12.02
14.0, 17.0, and 20.0 m/s. (a) Find the particles’ average — _  +14.0% + 14.02 + 17.0% + 20.0®) m
speed. v= 9

= 178 m?2/s?

Solution The average speed is the sum of the speeds di-

vided by the total number of particles: Hence, the rms speed is

(5.00 + 8.00 + 12.0 + 12.0 + 12.0 Opme = Vo2 = V178 m2/s2 = 13.3 m/s
5= + 14.0 + 14.0 + 17.0 + 20.0) m/s
9 (c) What is the most probable speed of the particles?
= 12.7m/s

Solution Three of the particles have a speed of 12 m/s,
two have a speed of 14 m/s, and the remaining have different
(b) What is the rms speed? speeds. Hence, we see that the most probable speed vy, is

. . 12 m/s.
Solution The average value of the square of the speed is

Optional Section

21.7_~ MEAN FREE PATH

Most of us are familiar with the fact that the strong odor associated with a gas such
as ammonia may take a fraction of a minute to diffuse throughout a room. How-
ever, because average molecular speeds are typically several hundred meters per
second at room temperature, we might expect a diffusion time much less than 1 s.
But, as we saw in Quick Quiz 21.1, molecules collide with one other because they
are not geometrical points. Therefore, they do not travel from one side of a room
to the other in a straight line. Between collisions, the molecules move with con-
stant speed along straight lines. The average distance between collisions is called
the mean free path. The path of an individual molecule is random and resembles
that shown in Figure 21.13. As we would expect from this description, the mean
free path is related to the diameter of the molecules and the density of the gas.
We now describe how to estimate the mean free path for a gas molecule. For Figure 21.13 A molecule moving
this calculation, we assume that the molecules are spheres of diameter d. We see through a gas collides with other
from Figure 21.14a that no two molecules collide unless their centers are less than molecules in a random fashion.

a distance d apart as they approach each other. An equivalent way to describe the This behavior is sometimes re-
ferred to as a random-walk process.

The mean free path increases as
the number of molecules per unit

volume decreases. Note that the
% d 4{ motion is not limited to the plane
Equivalent of the paper.
Actual collision
collision

_ .

(a) (b)

Figure 21.14 (a) Two spherical molecules, each of diameter d, collide if their centers are
within a distance d of each other. (b) The collision between the two molecules is equivalent to a
point molecule’s colliding with a molecule having an effective diameter of 24.
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Figure 21.15 In a time ¢ a mole-
cule of effective diameter 2d
sweeps out a cylinder of length ¢,
where v is its average speed. In this
time, it collides with every point
molecule within this cylinder.

Mean free path

Collision frequency

ExAMPLE 21.7
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collisions is to imagine that one of the molecules has a diameter 2d and that the rest
are geometrical points (Fig. 21.14b). Let us choose the large molecule to be one
moving with the average speed v. In a time ¢, this molecule travels a distance vt. In
this time interval, the molecule sweeps out a cylinder having a cross-sectional area
md? and a length ot (Fig. 21.15). Hence, the volume of the cylinder is wd?vt. If nyis
the number of molecules per unit volume, then the number of point-size molecules
in the cylinder is (wd2wt)ny. The molecule of equivalent diameter 2d collides with
every molecule in this cylinder in the time ¢ Hence, the number of collisions in the
time ¢is equal to the number of molecules in the cylinder, (wd?vt)ny.

The mean free path € equals the average distance vt traveled in a time ¢ di-
vided by the number of collisions that occur in that time:

_ vt B 1
(md?vt)ny

wd’ny

Because the number of collisions in a time tis (7d?7¢) ny, the number of colli-
sions per unit time, or collision frequency f, is

f= mwd*uny

The inverse of the collision frequency is the average time between collisions,
known as the mean free time.
Our analysis has assumed that molecules in the cylinder are stationary. When
the motion of these molecules is included in the calculation, the correct results are
1

(=—-— (21.30)
\/§ 7Td2nV

f=2 7wd%¥on, = (21.31)

|l

Bouncing Around in the Air

Approximate the air around you as a collection of nitrogen
molecules, each of which has a diameter of 2.00 X 10710 m,
(a) How far does a typical molecule move before it collides
with another molecule?

Solution Assuming that the gas is ideal, we can use the
equation PV = NkgT to obtain the number of molecules per
unit volume under typical room conditions:

N P

1.01 X 10° N/m?2
Ny = — = = -
YTV T kgT  (1.38 X 1072 ]/K) (203 K)
= 2.50 X 10% molecules/m3

Hence, the mean free path is

(o1
\/§ 7Td2nv
1

V2 7(2.00 X 10719 m)2(2.50 X 102 molecules/m?)

2.95 X 10" m

This value is about 10° times greater than the molecular di-
ameter.

(b) On average, how frequently does one molecule collide
with another?

Solution Because the rms speed of a nitrogen molecule at
20.0°C is 511 m/s (see Table 21.1), we know from Equations
21.27 and 21.28 that v = (1.60/1.73) (511 m/s) = 473 m/s.
Therefore, the collision frequency is

473 m/s

— 20OW/S 910 x 10°
995X 107m > /s

==
¢
The molecule collides with other molecules at the average
rate of about two billion times each second!

The mean free path € is not the same as the average sepa-
ration between particles. In fact, the average separation d be-
tween particles is approximately ny /3. In this example, the
average molecular separation is

1 1

d= - = 3.4 % 107
n/F (25 X 10%)1/3 "




Summary

SUMMARY
The pressure of Nmolecules of an ideal gas contained in a volume V is
N1l —
pP= 2N <— mv2> (21.2)
3 VA2

The average translational kinetic energy per molecule of a gas, %mvz, is related
to the temperature T of the gas through the expression

gmo® = SkpT (21.4)

where kg is Boltzmann’s constant. Each translational degree of freedom (x, y, or z)
has %kBT of energy associated with it.

The theorem of equipartition of energy states that the energy of a system in
thermal equilibrium is equally divided among all degrees of freedom.

The total energy of N molecules (or » mol) of an ideal monatomic gas is

Eing = 3NkgT = 3nRT (21.10)

The change in internal energy for » mol of any ideal gas that undergoes a
change in temperature AT is

AE,, = nCyAT (21.12)

where Cyis the molar specific heat at constant volume.

The molar specific heat of an ideal monatomic gas at constant volume is
Cy= %R; the molar specific heat at constant pressure is Cp = gR. The ratio of spe-
cific heatsis y = Cp/Cy = %

If an ideal gas undergoes an adiabatic expansion or compression, the first law
of thermodynamics, together with the equation of state, shows that

PV?Y = constant (21.18)

The Boltzmann distribution law describes the distribution of particles
among available energy states. The relative number of particles having energy E is

ny(E) = nge kT (21.25)

The Maxwell-Boltzmann distribution function describes the distribution
of speeds of molecules in a gas:

3/2 .
N, = 477N< ) v2e~mv*/ 2k T (21.26)

27TkBT

This expression enables us to calculate the root-mean-square speed, the average
speed, and the most probable speed:

Vrms = V02 = BkpT/m = 178 \kyT/m (21.27)
5 = 8kgT/mm = 1.60 kg T/ m (21.28)
Vmp = N2k T/m = 1.41 VkT/m (21.29)

661
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QUESTIONS

1.

Dalton’s law of partial pressures states that the total pres-
sure of a mixture of gases is equal to the sum of the par-
tial pressures of gases making up the mixture. Give a con-
vincing argument for this law on the basis of the kinetic
theory of gases.

. One container is filled with helium gas and another with

argon gas. If both containers are at the same tempera-
ture, which gas molecules have the higher rms speed? Ex-
plain.

. A gas consists of a mixture of He and Ny molecules. Do

the lighter He molecules travel faster than the Ny mole-
cules? Explain.

. Although the average speed of gas molecules in thermal

equilibrium at some temperature is greater than zero, the
average velocity is zero. Explain why this statement must
be true.

When alcohol is rubbed on your body, your body temper-

6.

ature decreases. Explain this effect.

A liquid partially fills a container. Explain why the tem-
perature of the liquid decreases if the container is then
partially evacuated. (Using this technique, one can freeze
water at temperatures above 0°C.)

. Avessel containing a fixed volume of gas is cooled. Does

the mean free path of the gas molecules increase, de-
crease, or remain constant during the cooling process?
What about the collision frequency?

PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging | |=full solution available in the Student Solutions Manual and Study Guide

8

. A gas is compressed at a constant temperature. What hap-

pens to the mean free path of the molecules in the
process?

If a helium-filled balloon initially at room temperature is

placed in a freezer, will its volume increase, decrease, or
remain the same?

What happens to a helium-filled balloon released into the

11.

12.

14.

15.

16.

air? Will it expand or contract? Will it stop rising at some
height?

Which is heavier, dry air or air saturated with water vapor?
Explain.

Why does a diatomic gas have a greater energy content
per mole than a monatomic gas at the same temperature?

. An ideal gas is contained in a vessel at 300 K. If the tem-

perature is increased to 900 K, (a) by what factor does the
rms speed of each molecule change? (b) By what factor
does the pressure in the vessel change?

A vessel is filled with gas at some equilibrium pressure
and temperature. Can all gas molecules in the vessel have
the same speed?

In our model of the kinetic theory of gases, molecules
were viewed as hard spheres colliding elastically with the
walls of the container. Is this model realistic?

In view of the fact that hot air rises, why does it generally
become cooler as you climb a mountain? (Note that air is
a poor thermal conductor.)

WeB = solution posted at http://www.saunderscollege.com/physics/ [ ] = Computer useful in solving problem -.';j = Interactive Physics

[ ] = paired numerical/symbolic problems

Section 21.1 Molecular Model of an Ideal Gas

1. Use the definition of Avogadro’s number to find the

mass of a helium atom.

2. A sealed cubical container 20.0 cm on a side contains

three times Avogadro’s number of molecules at a tem-

perature of 20.0°C. Find the force exerted by the gas on

one of the walls of the container.

3. In a 30.0-s interval, 500 hailstones strike a glass window

with an area of 0.600 m? at an angle of 45.0° to the win-
dow surface. Each hailstone has a mass of 5.00 g and a
speed of 8.00 m/s. If the collisions are elastic, what are
the average force and pressure on the window?

4. In a time ¢, N hailstones strike a glass window of area A

at an angle 6 to the window surface. Each hailstone has

amass mand a speed v. If the collisions are elastic, what

are the average force and pressure on the window?

5. In a period of 1.00 s, 5.00 X 102 nitrogen molecules

strike a wall with an area of 8.00 cm?. If the molecules

move with a speed of 300 m/s and strike the wall head-
on in perfectly elastic collisions, what is the pressure ex-
erted on the wall? (The mass of one Ny molecule is
4.68 X 10~ % kg.)

6. A 5.00-L vessel contains 2 mol of oxygen gas at a pres-
sure of 8.00 atm. Find the average translational kinetic
energy of an oxygen molecule under these conditions.

A spherical balloon with a volume of 4 000 cm® contains
helium at an (inside) pressure of 1.20 X 10° Pa. How
many moles of helium are in the balloon if each helium
atom has an average kinetic energy of 3.60 X 10722 J?

8. The rms speed of a helium atom at a certain tempera-
ture is 1 350 m/s. Find by proportion the rms speed of
an oxygen molecule at this temperature. (The molar
mass of Og is 32.0 g/mol, and the molar mass of He is
4.00 g/mol.)

(a) How many atoms of helium gas fill a balloon of di-
ameter 30.0 cm at 20.0°C and 1.00 atm? (b) What is the
average kinetic energy of the helium atoms? (c¢) What is
the root-mean-square speed of each helium atom?



10.

A 5.00-liter vessel contains nitrogen gas at 27.0°C and
3.00 atm. Find (a) the total translational kinetic energy
of the gas molecules and (b) the average kinetic energy
per molecule.

wWeB A cylinder contains a mixture of helium and argon gas

12.

in equilibrium at 150°C. (a) What is the average kinetic
energy for each type of gas molecule? (b) What is the
root-mean-square speed for each type of molecule?

(a) Show that 1 Pa = lj/mg. (b) Show that the density
in space of the translational kinetic energy of an ideal
gas is 3P/2.

Section 21.2 Molar Specific Heat of an Ideal Gas

Note: You may use the data given in Table 21.2.

13.

14.

Calculate the change in internal energy of 3.00 mol of
helium gas when its temperature is increased by 2.00 K.
One mole of air (Cy = bR/2) at 300 K and confined in
a cylinder under a heavy piston occupies a volume of
5.00 L. Determine the new volume of the gas if 4.40 k]
of energy is transferred to the air by heat.

wes One mole of hydrogen gas is heated at constant pres-

16.

17.

18.

19.

20.

sure from 300 K to 420 K. Calculate (a) the energy
transferred by heat to the gas, (b) the increase in its in-
ternal energy, and (c) the work done by the gas.

In a constant-volume process, 209 J of energy is trans-
ferred by heat to 1.00 mol of an ideal monatomic gas
initially at 300 K. Find (a) the increase in internal en-
ergy of the gas, (b) the work it does, and (c) its final
temperature.

A house has well-insulated walls. It contains a volume of
100 m3 of air at 300 K. (a) Calculate the energy re-
quired to increase the temperature of this air by 1.00°C.
(b) If this energy could be used to lift an object of mass
m through a height of 2.00 m, what is the value of m?

A vertical cylinder with a heavy piston contains air at

300 K. The initial pressure is 200 kPa, and the initial vol-
ume is 0.350 m®. Take the molar mass of air as

28.9 g/mol and assume that Cy, = 5R/2. (a) Find the
specific heat of air at constant volume in units of
J/kg-°C. (b) Calculate the mass of the air in the cylin-
der. (c) Suppose the piston is held fixed. Find the en-
ergy input required to raise the temperature of the air to
700 K. (d) Assume again the conditions of the initial
state and that the heavy piston is free to move. Find the
energy input required to raise the temperature to 700 K.
A 1-L Thermos bottle is full of tea at 90°C. You pour out
one cup and immediately screw the stopper back on.
Make an order-of-magnitude estimate of the change in
temperature of the tea remaining in the flask that re-
sults from the admission of air at room temperature.
State the quantities you take as data and the values you
measure or estimate for them.

For a diatomic ideal gas, Cy = 5R/2. One mole of this
gas has pressure Pand volume V. When the gas is
heated, its pressure triples and its volume doubles. If
this heating process includes two steps, the first at con-

21.

22.

23.

Problems 663

stant pressure and the second at constant volume, de-
termine the amount of energy transferred to the gas by
heat.

One mole of an ideal monatomic gas is at an initial tem-
perature of 300 K. The gas undergoes an isovolumetric
process, acquiring 500 J of energy by heat. It then un-
dergoes an isobaric process, losing this same amount of
energy by heat. Determine (a) the new temperature of
the gas and (b) the work done on the gas.

A container has a mixture of two gases: n; moles of gas
1, which has a molar specific heat C;; and ny moles of
gas 2, which has a molar specific heat Cy. (a) Find the
molar specific heat of the mixture. (b) What is the mo-
lar specific heat if the mixture has m gases in the
amounts 7y, ng, 73, . . . , N, and molar specific heats
Cy, Co, Cs, . . ., C,, respectively?

One mole of an ideal diatomic gas with Cy = 5R/2 oc-
cupies a volume V; at a pressure P;. The gas undergoes a
process in which the pressure is proportional to the vol-
ume. At the end of the process, it is found that the rms
speed of the gas molecules has doubled from its initial
value. Determine the amount of energy transferred to
the gas by heat.

Section 21.3 Adiabatic Processes for an Ideal Gas

24.

During the compression stroke of a certain gasoline en-
gine, the pressure increases from 1.00 atm to 20.0 atm.
Assuming that the process is adiabatic and that the gas is
ideal, with y = 1.40, (a) by what factor does the volume
change and (b) by what factor does the temperature
change? (c) If the compression starts with 0.016 0 mol of
gas at 27.0°C, find the values of Q, W, and AE;,, that
characterize the process.

25.| Two moles of an ideal gas (y = 1.40) expands slowly

26.

and adiabatically from a pressure of 5.00 atm and a vol-
ume of 12.0 L to a final volume of 30.0 L. (a) What is
the final pressure of the gas? (b) What are the initial
and final temperatures? (c) Find Q, W, and AE;,,.

Air (y = 1.40) at 27.0°C and at atmospheric pressure is
drawn into a bicycle pump that has a cylinder with an
inner diameter of 2.50 cm and a length of 50.0 cm. The
down stroke adiabatically compresses the air, which
reaches a gauge pressure of 800 kPa before entering the
tire. Determine (a) the volume of the compressed air
and (b) the temperature of the compressed air.

(c) The pump is made of steel and has an inner wall
that is 2.00 mm thick. Assume that 4.00 cm of the cylin-
der’s length is allowed to come to thermal equilibrium
with the air. What will be the increase in wall tempera-
ture?

Air in a thundercloud expands as it rises. If its initial

28.

temperature was 300 K, and if no energy is lost by ther-
mal conduction on expansion, what is its temperature
when the initial volume has doubled?

How much work is required to compress 5.00 mol of air
at 20.0°C and 1.00 atm to one tenth of the original vol-
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29.

30.

31.

CHAPTER 21

ume by (a) an isothermal process and (b) an adiabatic
process? (c) What is the final pressure in each of these
two cases?

Four liters of a diatomic ideal gas (y = 1.40) confined
to a cylinder is subject to a closed cycle. Initially, the gas
is at 1.00 atm and at 300 K. First, its pressure is tripled
under constant volume. Then, it expands adiabatically
to its original pressure. Finally, the gas is compressed
isobarically to its original volume. (a) Draw a PV dia-
gram of this cycle. (b) Determine the volume of the gas
at the end of the adiabatic expansion. (c) Find the tem-
perature of the gas at the start of the adiabatic expan-
sion. (d) Find the temperature at the end of the cycle.
(e) What was the net work done for this cycle?

A diatomic ideal gas (y = 1.40) confined to a cylinder is
subjected to a closed cycle. Initially, the gas is at P;, V;,
and T;. First, its pressure is tripled under constant vol-
ume. Then, it expands adiabatically to its original pres-
sure. Finally, the gas is compressed isobarically to its
original volume. (a) Draw a PV diagram of this cycle.
(b) Determine the volume of the gas at the end of the
adiabatic expansion. (c) Find the temperature of the
gas at the start of the adiabatic expansion. (d) Find the
temperature at the end of the cycle. (e) What was the
net work done for this cycle?

During the power stroke in a four-stroke automobile en-
gine, the piston is forced down as the mixture of gas
and air undergoes an adiabatic expansion. Assume that
(1) the engine is running at 2 500 rpm, (2) the gauge
pressure right before the expansion is 20.0 atm, (3) the
volumes of the mixture right before and after the ex-
pansion are 50.0 and 400 cm?, respectively (Fig.

" «\N\ o

50.0 cm®

o 400 cm®
S e

o
Before
After
Figure P21.31
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P21.31), (4) the time involved in the expansion is one-
fourth that of the total cycle, and (5) the mixture be-
haves like an ideal gas, with y = 1.40. Find the average
power generated during the expansion.

Section 21.4 The Equipartition of Energy

32.

A certain molecule has fdegrees of freedom. Show that
a gas consisting of such molecules has the following
properties: (1) its total internal energy is fnRT/2; (2) its
molar specific heat at constant volume is fR/2; (3) its
molar specific heat at constant pressure is ( f+ 2) R/2;
(4) theratioy = Cp/Cy = (f+ 2)/f.

WeB Consider 2.00 mol of an ideal diatomic gas. Find the to-

34.

35.

tal heat capacity at constant volume and at constant
pressure (a) if the molecules rotate but do not vibrate
and (b) if the molecules both rotate and vibrate.
Inspecting the magnitudes of Cyand Cpfor the di-
atomic and polyatomic gases in Table 21.2, we find that
the values increase with increasing molecular mass. Give
a qualitative explanation of this observation.

In a crude model (Fig. P21.35) of a rotating diatomic
molecule of chlorine (Cly), the two Cl atoms are

2.00 X 107!% m apart and rotate about their center of
mass with angular speed @ = 2.00 X 102 rad/s. What is
the rotational kinetic energy of one molecule of Cly,
which has a molar mass of 70.0 g/mol?

Figure P21.35

Section 21.5 The Boltzmann Distribution Law
Section 21.6 Distribution of Molecular Speeds

36.

37.

One cubic meter of atomic hydrogen at 0°C contains
approximately 2.70 X 10% atoms at atmospheric pres-
sure. The first excited state of the hydrogen atom has
an energy of 10.2 eV above the lowest energy level,
which is called the ground state. Use the Boltzmann fac-
tor to find the number of atoms in the first excited state
at 0°C and at 10 000°C.

If convection currents (weather) did not keep the
Earth’s lower atmosphere stirred up, its chemical com-
position would change somewhat with altitude because
the various molecules have different masses. Use the law
of atmospheres to determine how the equilibrium ratio
of oxygen to nitrogen molecules changes between sea
level and 10.0 km. Assume a uniform temperature of
300 K and take the masses to be 32.0 u for oxygen (Oq)
and 28.0 u for nitrogen (Ny).



38.

A mixture of two gases diffuses through a filter at rates
proportional to the gases’ rms speeds. (a) Find the ratio
of speeds for the two isotopes of chlorine, 3Cl and 3’Cl,
as they diffuse through the air. (b) Which isotope
moves faster?

39.] Fifteen identical particles have various speeds: one has

40.

a speed of 2.00 m/s; two have a speed of 3.00 m/s;
three have a speed of 5.00 m/s; four have a speed of
7.00 m/s; three have a speed of 9.00 m/s; and two have
aspeed of 12.0 m/s. Find (a) the average speed,

(b) the rms speed, and (c) the most probable speed of
these particles.

Gaseous helium is in thermal equilibrium with liquid
helium at 4.20 K. Even though it is on the point of con-
densation, model the gas as ideal and determine the
most probable speed of a helium atom (mass =

6.64 X 10727 kg) in it.

41.| From the Maxwell-Boltzmann speed distribution, show

42.

43.

44.

that the most probable speed of a gas molecule is given
by Equation 21.29. Note that the most probable speed
corresponds to the point at which the slope of the
speed distribution curve, dN,/ dv, is zero.

Review Problem. At what temperature would the aver-
age speed of helium atoms equal (a) the escape speed
from Earth, 1.12 X 10* m/s, and (b) the escape speed
from the Moon, 2.37 X 10> m/s ? (See Chapter 14 for a
discussion of escape speed, and note that the mass of a
helium atom is 6.64 X 10727 kg.)

A gas is at 0°C. If we wish to double the rms speed of
the gas’s molecules, by how much must we raise its tem-
perature?

The latent heat of vaporization for water at room tem-
perature is 2 430 J/g. (a) How much kinetic energy
does each water molecule that evaporates possess be-
fore it evaporates? (b) Find the pre-evaporation rms
speed of a water molecule that is evaporating. (c) What
is the effective temperature of these molecules (mod-
eled as if they were already in a thin gas)? Why do these
molecules not burn you?

(Optional)
Section 21.7 Mean Free Path

45.| In an ultrahigh vacuum system, the pressure is mea-

46.

sured to be 1.00 X 10710 torr (where 1 torr = 133 Pa).
Assume that the gas molecules have a molecular diame-
ter of 3.00 X 1071 m and that the temperature is

300 K. Find (a) the number of molecules in a volume of
1.00 m?, (b) the mean free path of the molecules, and
(c) the collision frequency, assuming an average speed
of 500 m/s.

In deep space it is reported that there is only one parti-
cle per cubic meter. Using the average temperature of
3.00 K and assuming that the particle is Hy (with a di-
ameter of 0.200 nm), (a) determine the mean free path
of the particle and the average time between collisions.

47.

48.

49.
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(b) Repeat part (a), assuming that there is only one
particle per cubic centimeter.

Show that the mean free path for the molecules of an
ideal gas at temperature 7T and pressure P is

kg T
\N27d2P

where dis the molecular diameter.

In a tank full of oxygen, how many molecular diameters
d (on average) does an oxygen molecule travel (at

1.00 atm and 20.0°C) before colliding with another Oy
molecule? (The diameter of the Oy molecule is approx-
imately 3.60 X 1071 m.)

Argon gas at atmospheric pressure and 20.0°C is con-
fined in a 1.00-m3 vessel. The effective hard-sphere di-
ameter of the argon atom is 3.10 X 1071 m. (a) Deter-
mine the mean free path €. (b) Find the pressure when
the mean free path is € = 1.00 m. (c) Find the pressure
when € = 3.10 X 107" m.

ADDITIONAL PROBLEMS

50.

51.

52.

The dimensions of a room are 4.20 m X 3.00 m X

2.50 m. (a) Find the number of molecules of air in it at
atmospheric pressure and 20.0°C. (b) Find the mass of
this air, assuming that the air consists of diatomic mole-
cules with a molar mass of 28.9 g/mol. (c) Find the av-
erage kinetic energy of a molecule. (d) Find the root-
mean-square molecular speed. (e¢) On the assumption
that the specific heat is a constant independent of tem-
perature, we have E;,,, = 5nR7/2. Find the internal en-
ergy in the air. (f) Find the internal energy of the air in
the room at 25.0°C.

The function E;,; = 3.50nRT describes the internal en-
ergy of a certain ideal gas. A sample comprising

2.00 mol of the gas always starts at pressure 100 kPa and
temperature 300 K. For each one of the following
processes, determine the final pressure, volume, and
temperature; the change in internal energy of the gas;
the energy added to the gas by heat; and the work done
by the gas: (a) The gas is heated at constant pressure to
400 K. (b) The gas is heated at constant volume to

400 K. (c) The gas is compressed at constant tempera-
ture to 120 kPa. (d) The gas is compressed adiabatically
to 120 kPa.

Twenty particles, each of mass m and confined to a vol-
ume V, have various speeds: two have speed v; three
have speed 2v; five have speed 3v; four have speed 4v;
three have speed 5v; two have speed 6v; one has speed
7v. Find (a) the average speed, (b) the rms speed,

(c) the most probable speed, (d) the pressure that the
particles exert on the walls of the vessel, and (e) the av-
erage kinetic energy per particle.

wes A cylinder contains » mol of an ideal gas that undergoes

an adiabatic process. (a) Starting with the expression
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54.

55.

56.
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W= | PdV and using the expression PV = constant,
show that the work done is

1
W= PV, — PV,
(y_:l)(lz jf)

(b) Starting with the first law equation in differential
form, prove that the work done also is equal to

nCy(T; — Ty). Show that this result is consistent with
the equation given in part (a).

A vessel contains 1.00 X 10* oxygen molecules at 500 K.
(a) Make an accurate graph of the Maxwell speed distri-
bution function versus speed with points at speed inter-
vals of 100 m/s. (b) Determine the most probable
speed from this graph. (c) Calculate the average and
rms speeds for the molecules and label these points on
your graph. (d) From the graph, estimate the fraction
of molecules having speeds in the range of 300 m/s to
600 m/s.

Review Problem. Oxygen at pressures much greater
than 1 atm is toxic to lung cells. By weight, what ratio of
helium gas (He) to oxygen gas (Og) must be used by a
scuba diver who is to descend to an ocean depth of
50.0 m?

A cylinder with a piston contains 1.20 kg of air at 25.0°C
and 200 kPa. Energy is transferred into the system by
heat as it is allowed to expand, with the pressure rising
to 400 kPa. Throughout the expansion, the relationship
between pressure and volume is given by

p=cv?

where C is a constant. (a) Find the initial volume.
(b) Find the final volume. (c) Find the final tempera-
ture. (d) Find the work that the air does. (e) Find the
energy transferred by heat. Take M = 28.9 g/mol.

wes The compressibility k of a substance is defined as the

58.

fractional change in volume of that substance for a
given change in pressure:

1 av

TV 4P

(a) Explain why the negative sign in this expression en-
sures that k is always positive. (b) Show that if an ideal
gas is compressed isothermally, its compressibility is
given by k; = 1/P. (c) Show that if an ideal gas is com-
pressed adiabatically, its compressibility is given by

k9 = 1/yP. (d) Determine values for k; and ko for a
monatomic ideal gas at a pressure of 2.00 atm.

Review Problem. (a) Show that the speed of sound in
an ideal gas is

YRT
M

where M is the molar mass. Use the general expression
for the speed of sound in a fluid from Section 17.1; the
definition of the bulk modulus from Section 12.4; and

the result of Problem 57 in this chapter. As a sound

wave passes through a gas, the compressions are either
so rapid or so far apart that energy flow by heat is pre-
vented by lack of time or by effective thickness of insula-
tion. The compressions and rarefactions are adiabatic.
(b) Compute the theoretical speed of sound in air at
20°C and compare it with the value given in Table 17.1.
Take M = 28.9 g/mol. (c) Show that the speed of
sound in an ideal gas is

1"kaT
v = —
m

where m is the mass of one molecule. Compare your re-
sult with the most probable, the average, and the rms
molecular speeds.

] |59.] For a Maxwellian gas, use a computer or programmable

calculator to find the numerical value of the ratio
Ny(v) / Ny(vryp) for the following values of v:

9= (Wp/50), (Up/10), (Vp/2); V> 20> 100,
50v,,;,. Give your results to three significant figures.

60. A pitcher throws a 0.142-kg baseball at 47.2 m/s (Fig.

P21.60). As it travels 19.4 m, the ball slows to 42.5 m/s
because of air resistance. Find the change in tempera-
ture of the air through which it passes. To find the
greatest possible temperature change, you may make
the following assumptions: Air has a molar heat capacity
of Cp = 7R/2 and an equivalent molar mass of

28.9 g/mol. The process is so rapid that the cover of the
baseball acts as thermal insulation, and the temperature
of the ball itself does not change. A change in tempera-
ture happens initially only for the air in a cylinder

19.4 m in length and 3.70 cm in radius. This air is ini-
tially at 20.0°C.

Figure P21.60 Nolan Ryan hurls the baseball
for his 5 000th strikeout. (Joe Patronite/ALLSPORT)



61. Consider the particles in a gas centrifuge, a device that

separates particles of different mass by whirling them

in a circular path of radius rat angular speed w. New-
ton’s second law applied to circular motion states that a
force of magnitude equal to mw?racts on a particle.

(a) Discuss how a gas centrifuge can be used to separate
particles of different mass. (b) Show that the density of

the particles as a function of ris

n(r) — noemrzwz/QkBT

62. Verify Equations 21.27 and 21.28 for the rms and aver-

age speeds of the molecules of a gas at a temperature 7.
Note that the average value of v" is

_ 1 (=
vt = Wf v"N,dv
0

and make use of the definite integrals

* 1 * ; 3 }
f xBe @ gy = 3 f xte @ gy = ey T
0 2a 0 8a a

63. A sample of a monatomic ideal gas occupies 5.00 L at

atmospheric pressure and 300 K (point A in Figure
P21.63). It is heated at constant volume to 3.00 atm
(point B). Then, it is allowed to expand isothermally to
1.00 atm (point C) and at last is compressed isobarically
to its original state. (a) Find the number of moles in the
sample. (b) Find the temperatures at points Band C
and the volume at point C. (c) Assuming that the
specific heat does not depend on temperature, so that
Ei, = 3nRT/2, find the internal energy at points A, B,

P(atm)
3.00 — B
2.00 —
1.00 — A C
| | |
0 5.0 10.0 15.0 V(L)

Figure P21.63

64.

65.

66.

67.
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and C. (d) Tabulate P, V, T, and Ej;,, at the states at
points A, B, and C. (e) Now consider the processes
A— B, B— C, and C— A. Describe just how to carry
out each process experimentally. (f) Find Q, W, and
AE;, for each of the processes. (g) For the whole cycle
A— B— C— A, find Q, W, and AE;,,.

If you can’t walk to outer space, can you walk at least half
way? (a) Show that the fraction of particles below an al-
titude 4 in the atmosphere is

f: 1— e(—mgh/kBT)

(b) Use this result to show that half the particles are be-
low the altitude %' = kgT'In(2)/mg. What is the value of
I’ for the Earth? (Assume a temperature of 270 K, and
note that the average molar mass for air is 28.9 g/mol.)
This problem will help you to think about the size of
molecules. In the city of Beijing, a restaurant keeps a
pot of chicken broth simmering continuously. Every
morning it is topped off to contain 10.0 L of water,
along with a fresh chicken, vegetables, and spices. The
soup is thoroughly stirred. The molar mass of water is
18.0 g/mol. (a) Find the number of molecules of water
in the pot. (b) During a certain month, 90.0% of the
broth was served each day to people who then emi-
grated immediately. Of the water molecules present

in the pot on the first day of the month, when was

the last one likely to have been ladled out of the pot?
(c) The broth has been simmering for centuries,
through wars, earthquakes, and stove repairs. Suppose
that the water that was in the pot long ago has thor-
oughly mixed into the Earth’s hydrosphere, of mass
1.32 X 10%! kg. How many of the water molecules origi-
nally in the pot are likely to be present in it again today?
Review Problem. (a) If it has enough kinetic energy, a
molecule at the surface of the Earth can escape the
Earth’s gravitation. Using the principle of conservation
of energy, show that the minimum kinetic energy
needed for escape is mgR, where m is the mass of the
molecule, gis the free-fall acceleration at the surface of
the Earth, and R is the radius of the Earth. (b) Calcu-
late the temperature for which the minimum escape ki-
netic energy is ten times the average kinetic energy of
an oxygen molecule.

Using multiple laser beams, physicists have been able to
cool and trap sodium atoms in a small region. In one
experiment, the temperature of the atoms was reduced
to 0.240 mK. (a) Determine the rms speed of the
sodium atoms at this temperature. The atoms can be
trapped for about 1.00 s. The trap has a linear dimen-
sion of roughly 1.00 cm. (b) Approximately how long
would it take an atom to wander out of the trap region
if there were no trapping action?
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ANSWERS TO QUICK QUIZZES

21.1 Although a molecule moves very rapidly, it does not is constant by definition. Therefore, the internal energy
travel far before it collides with another molecule. The of the gas does not change.
collision deflects the molecule from its original path. 21.3 The area under each curve represents the number of
Eventually, a perfume molecule will make its way from molecules in that particular velocity range. The T =
one end of the room to the other, but the path it takes is 900 K curve has many more molecules moving between
much longer than the straightline distance from the 800 m/s and 1000 m/s than does the T'= 300 K curve.

perfume bottle to your nose.
21.2 (c) Ej, stays the same. According to Equation 21.10, E;;,
is a function of temperature only. Along an isotherm, T
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