CBSE Test Paper 03 Chapter 1 Relations and Functions

- 1. The range of the function $f(x) = [\sin x]$ is
 - a. [1, 1]
 - b. {-1, 1}
 - c. $\{-1, 0, 1\}$
 - d. (-1, 1)
- 2. Let A = {a, b, c}, then the range of the relation R= {(a, b), (a, c), (b, c)} defined on A isa. {b, c}
 - b. {c}
 - c. {a, b}
 - d. {a, b, c}

3. R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x - 3. The relation $R^{-1} = .$

- a. {(8, 11), (9, 12), (10, 13)}
- b. {(11, 8), (13, 10)}
- c. {(8,11),(10,13),(12,15)}
- d. {(8, 11), (10, 13)}
- 4. A function $f \ : \ X \ o \ Y$ is said to be one one and onto if
 - a. f is one one
 - b. f is onto
 - c. f is both one one and onto
 - d. f is either one one or onto

5. Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is

- a. {1, 3}
- b. {1, 2}
- c. None of these.
- d. {1, 2, 3}
- 6. A relation R defined on a set A is said to be _____, if (x, y) R (y, x) R, where x, y A.
- 7. If n(A) = p and n(B) = q, then $n(A \times B) =$ _____.
- 8. A relation R defined on a set A is said to be _____, if $(x, x) \in R$, where $x \in A$.

9. If A = { 1, 2, 3}, B = { 4, 5, 6, 7} and f = {(1, 4), (2, 5), (3, 6)} is a function from A to B. State

whether f is one-one or not.

- 10. Let * : $R \times R \rightarrow R$ is defined as a * b = 2a + b. Find (2 * 3) * 4
- 11. A Relation R:A \rightarrow A is said to be Transitive if \forall a, b, c \in A.
- 12. Find gof and fog, if:
 - i. f(x) = |x| and g(x) = |5x 2|
 - ii. $f(x) = 8x^3$ and $g(x) = x^{\frac{1}{3}}$
- 13. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
 - i. $\{(x, y) : x \text{ is a person, } y \text{ is the mother of } x\}$.
 - ii. {(a, b) : a is a person, b is an ancestor of a}.
- 14. Show that the relation in the set A = {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.
- 15. Show that the relation R defined by (a, b) R (c, d) \Rightarrow a + d = b + c on the set N×N is an equivalence relation.
- 16. If f: R \rightarrow R is defined as f(x) = 10x + 7. Find the function g : R \rightarrow R, such that gof = fog = l_R .
- 17. Consider the binary operation ^ on the set {1, 2, 3, 4, 5} defined by a ^ b = min {a, b}.Write the operation table of the operation ^.
- 18. Given a non-empty set X, consider the binary operation $* : P(X) \ge P(X) \longrightarrow P(X)$ given by A $* B = A \cap B \forall A, B$ in P(X), where P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *.

CBSE Test Paper 03 Chapter 1 Relations and Functions

Solution

1. c. { -1, 0, 1}

Explanation: The only possible integral values of sin x are { -1 ,0, 1 }. As

- a. {b, c}
 Explanation: Since the range is represented by the y- coordinate of the ordered pair (x, y). Therefore, range of the given relation is { b, c }.
- 3. d. {(8, 11), (10, 13)} **Explanation:** R is a relation from {11, 12, 13} to {8, 10, 12} defined by y = x - 3. The relation R^{-1} is given by x = y + 3, from {8, 10, 12} to { 11, 12, 13} \Rightarrow relation $= \{(8,11),(10,13)\}.$
- 4. c. f is both one one and onto **Explanation:** A function $f: X \to Y$ is defined to be one – one (or injective), if $fx_1 \neq x_2$ in X $\Rightarrow f(x_1) \neq f(x_2)$ in Y. and $R_f = Y$.
- 5. b. {1, 2}

Explanation: Since the domain is represented by the x- coordinate of the ordered pair (x, y). Therefore, domain of the given relation is {1, 2}.

- 6. symmetric
- 7. pq
- 8. reflexive
- 9. Given, A = $\{1, 2, 3\}$, B = $\{4, 5, 6, 7\}$ and

 $f: A \rightarrow B$ is defined as $f = \{(1, 4), (2, 5), (3, 6)\}$ i.e. f(1) = 4, f(2) = 5 and f(3) = 6. It can be seen that the images of distinct elements of A under f are distinct. So, f is one-one.In other words, no two elements of set A are associated with set B which implies that there is one to one correspondence between X and Y.

10. We are given that $*: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ such that a * b = 2a+ b. Now, on putting a = 2 and b = 3, we get (2 * 3) = 2(2) + 3 = 4 + 3 = 7

- ∴ (2 * 3) * 4 = 7 * 4 = 2 (7) + 4 {now considering a= 7 and b =4} = 14 + 4 = 18.
- 11. (a, b) \in R, and (b, c) \in R \Rightarrow (a, c) \in R.
- 12. To find: gof and fog
 - i. f(x) = |x| and g(x) = |5x 2| gof = g[f(x)] = g[|x|] = |5|x|-2| and fog=f(g(x))=f(|5x-2|) = ||5x-2|| = |5x-2|
 ii. f(x) = 8x³ and g(x) = x^{1/3}
 - gof = g[f(x)] = g[8x³] $(8x^3)^{\frac{1}{3}}$ = 2x and fog = f[g(x)] = $f\left[\left(x^{\frac{1}{3}}\right)\right] = 8\left(x^{\frac{1}{3}}\right)^3$ = 8x
- 13. i. Given set of ordered pair is {(x, y) : x is a person, y is the mother of x}.
 It represents a function. Here, the image of distinct elements of x under f are not distinct, so it is not injective but it is surjective.
 - ii. Set of ordered pairs = {(a, b) : a is a person, b is an ancestor of a}.Here, each element of domain does not have a unique image. So, it does not represent function.
- 14. R = {(1, 2), (2, 1)}, so for (a, a), (1, 1) ∉ R. ∴ R is not reflexive.
 Also if (a, b) ∈ R then (b, a) ∈ R ∴ R is symmetric.
 Now (a, b) ∈ R and (b, c) ∈ R ,then does not imply (a, c) ∉ R as (1,2) ∈ R and (2,1) ∈ R but (1,1) ∉ R ∴ R is not transitive.
 Therefore, R is symmetric but neither reflexive nor transitive.
- 15. (a, b) R (c, d) \Rightarrow a + d = b + c where a, b, c, d \in N (a, b) R (a, b) \Rightarrow a + b = a + b for all (a, b) \in N \times N R is reflexive Now (a, b) R (c, d) \Rightarrow a + d = b + c for (a, b) (c, d) \in N \times N \Rightarrow d + a = c + b \Rightarrow c + b = d + a

 $\Rightarrow (c, d) R (a, b) \text{ for } (a, b), (c, d) \in N \times N$ Hence R is symmetric. (a, b) R (c, d) \Rightarrow a + d = b + c(1) for (a, b), (c, d) \in N × N And (c, d) R (e, f) \Rightarrow c + f = d + e(2) for(c, d), (e, f) \in N × N Adding (1) and (2) (a + d) + (c+f) = (b + c) + (d + e) a + f = b + e (a, b) R (e, f) Hence, R is transitive So, R is equivalence.

16. f: R \rightarrow R is defined as f(x) = 10x + 7.We have to find the function g : R \rightarrow R, such that gof = fog = l_R. Given, f(x) = 10x + 7 Also, gof = fog = I_R Now, gof = I_R \Rightarrow gof(x) = I_R(x) \Rightarrow g[f(x)]= x, $\forall x \in \mathbb{R} [\because I_R(x) = x, \forall x \in \mathbb{R}]$ \Rightarrow g(10x + 7) = x, $\forall x \in \mathbb{R}$ Let 10x + 7 = y \Rightarrow 10x = y-7 $\Rightarrow x = \frac{y-7}{10} \Rightarrow g(y) = \frac{y-7}{10} \cdot \forall y \in \mathbb{R}$ or, g(x) = $\frac{x-7}{10}, \forall x \in \mathbb{R}$

17. Let A = {1, 2, 3, 4, 5} defined by a ^ b = min{a, b} i.e., minimum of a and b.

\land	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

- 18. i. Let $E \in P(X)$ be the identity element .Then,
 - $A^*E = E^*A = A \forall A \in P(X)$ $\Rightarrow A \cap E = E \cap A = A \forall A \in P(X)$ $\Rightarrow X \cap E = X[\because X \in P(X)] \Rightarrow X \subset E$ Also, $E \subset X [\because E \in P(X)]$ Thus, E = X. Hence,X is the identity element.
 - ii. Let $A \in P(X)$ be invertible. Then,there exists $B \in P(X)$ such that $A^*B = B^*A = X$, where X is the identity element. $A \cap B = B \cap A = X \Rightarrow X \subset A, X \subset B$ Also, $A, B \subset X$ [$\because A, B \in P(X)$] $\therefore A = B = X$

Hence, X is the only invertible element and $X^{-1} = B = X$.