Type 10: Gain Margin and Phase Margin

For Concept, refer to Control System K-Notes, Frequency Response Analysis

Sample Problem 10:

The frequency response of a linear system $G(j\omega)$ is provided in the tubular form below

G(jω)	1.3	1.2	1.0	.8	.5	.3
∠G(jω)	-130 ⁰	-140 ⁰	-150 ⁰	-160 ⁰	-180 ⁰	-200 ⁰

Gain Margin and phase margin are

(A) 6 dB and 30^{0} (B) 6 dB and -30^{0} (C) -6 dB and 30^{0} (D) -6 dB and -30^{0}

Solution: (A) is correct option

Gain margin is simply equal to the gain at phase cross over frequency (ω_p). Phase cross over frequency is the frequency at which phase angle is equal to -180° . From the table we can see that +G ($j\omega_p$) =- 180°, at which gain is 0.5.

$$GM = 20\log_{10}(\frac{1}{|G(j\omega_p)|})$$
$$= 20\log_{10}(\frac{1}{.5}) = 6dB$$

Phase Margin is equal to 180° plus the phase angle ϕ_g at the gain cross over frequency (ω_g). Gain cross over frequency is the frequency at which gain is unity. From the table it is clear that G(j ω_g) = 1, at which phase angle is -150°

$$\phi_{\rm PM} = 180^{\circ} + \angle G(j\omega_{\rm g})$$

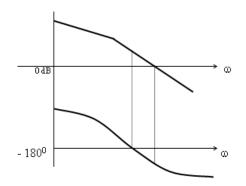
$$= 180^{\circ} - 150^{\circ} = 30^{\circ}$$

Unsolved Problems:

Q.1 The open loop tra	ansfer function	of a system is $\frac{K}{s(1+0.2s)(1+0.05s)}$. Determine the value					
of 'k' such that the phase margin is 60°?								
(A) 2.3	(B) 3 . 3	(C) 3.2	(D) 5 . 2					

Q.2 The Bode plot of a unity feedback system is shown. The system has

- (A) +ve P.M. and -ve G.M
- (B) +ve P.M. and +ve G.M
- (C) -ve P.M. and -ve G.M
- (D) +ve P.M. and +ve G.M



Q.3 A unity feedback system has OLTF G(s). Polar plot is shown in the figure. The gain margin and phase margin are

Q.4 The open loop transfer function of a unity feedback control system is given as $G(s) = \frac{1}{s(1+sT_1)(1+sT_2)}$ The phase crossover frequency and the gain margin are, respectively.

(A)
$$\frac{1}{\sqrt{T_1 T_2}}$$
 and $\frac{T_1 + T_2}{T_1 T_2}$
(B) $\frac{1}{T_1 + T_2}$ and $\frac{T_1 + T_2}{T_1 T_2}$
(C) $\frac{1}{\sqrt{T_1 T_2}}$ and $\frac{T_1 T_2}{T_1 + T_2}$
(D) $\frac{1}{T_1 + T_2}$ and $\frac{T_1 T_2}{T_1 + T_2}$

Q.5 In the G(s)H(s)-plane, the Nyquist plot of the loop transfer function G(s)H(s) = $\frac{\pi e^{-0.25s}}{s}$ passes through the negative real axis at the point (A) (- 0.25, j0) (B) (- 0.5, j0) (C) 0 (D) 0.5