CHAPTER 9

GRAVITATIONAL FIELD

§9.01 Nature of gravitational field

The formulae of chapter 1 are easily extended so as to take account of the
presence of a gravitational field. Such a field is characterized by a gravita-
tional potential & with a definite value at each place. The modification of
the gravitational field by the presence of matter in amounts dealt with in
ordinary chemical and physical processes is completely negligible compared
with the earth’s field or any other field of comparable importance. We may
therefore regard the gravitational field as completely independent of the
state of the thermodynamic system considered. In this sense, we call the
gravitational field an external field, and regard the gravitational potential
at each point as independent of the presence or state of any matter there.
It is owing to this fact that, although the abstract theories of gravitational
potential and electrostatic potential are in some ways parallel, yet their
significance for thermodynamic systems is different.

§9.02 Phases in gravitational field

Since a phase was defined as completely homogeneous in its properties and
state, two portions of matter of identical temperature and composition will
be considered as different phases if they are differently situated with respect
to a gravitational field. It follows that the mere presence of a gravitational
field excludes the possibility of a phase of finite depth in the direction of
the field. In the presence of a gravitational field even the simplest possible
kind of system must be considered as composed of a continuous sequence of
phases each differing infinitesimally from its neighbours.

§9.03 Thermodynamic functions in gravitational field

The characteristic property of the gravitational potential is that the work w
required to bring a quantity of matter of mass m from a place where the
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potential is ®® to a place where it is ®P is given by
w=m(P"— %) 9.03.1

thus depending on the mass but not on the chemical nature of the matter,
In transferring an amount dn; of the species i from the phase o to the phase
B, the gravitational work is

(P — &*)M,dn; 9.03.2

where M; is the proper mass of the species i. Thus formula (1.27.2) for
dU® must for each phase o contain the extra terms X,®"M,dn?. That is
to say

dU*=T*dS"—P*dV*+ ) (uf + M;0%)dn} 9.03.3

whence follows directly

dG*=—S*dT*+ V*dP*+ Y (4 + M, &%)dn;. 9.03.4

It follows that to take account of the effect of a gravitational field one has
merely to replace p; throughout by uf+ M;®°

Although in all thermodynamic formulae the quantity @ occurs only in
combinations of the form uf + M; ®%, yet the gravitational potential difference
&P — ¢* between two phases o and B, in contrast to the electric potential
difference " —y°, is thermodynamically determinate owing to the fact that
its value is independent of the presence and nature of the phase there. The
phase may therefore be removed without altering & and then &f — &* can
be determined in empty space by direct mechanical measurements.

§9.04 Equilibrium in gravitational field

For the equilibrium as regards the species i between two phases o and B
defined not merely by their temperature, pressure, and composition, but also
by their gravitational potentials, we have in analogy with (1.39.5) the
general condition

HHM 0= P+ M;®*  (equilibrium). 9.04.1

§9.05 Dependence of u, on T and P

Observing that M; and " are independent of 7 and P*, we obtain, dropping
the superscript * throughout,
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a#i/aT=azG/aniaT= _aS/ant= —Si 9.05.1
O/0P =02G[0n,0P =3V [on,=V, 9.05.2

precisely the same as in the absence of a gravitational field.

§9.06 Single component in gravitational field

For the equilibrium of a single component i in a gravitational field we have
according to (9.04.1)

dpy+M;dd=0 9.06.1
or at constant temperature using (9.05.2)
V;dP+M;d®=0 (T const.). 9.06.2
If ¢ denotes the density, then
o, =MJV,. 9.06.3
Substituting (3) into (2) we obtain
dP=—odo 9.06.4

in agreement with the general condition of hydrostatic equilibrium.
In the case of a single perfect gas we have

V,=RT|P. 9.06.5
Substituting (5) into (2) we obtain
RTdIn P+M;d®=0 9.06.6
and by integration
RT In(P%/P*)= M(&*— &F) 9.06.7
or
P?/P*=exp{— M (" — &")/RT}. 9.06.8

For a liquid, on the other hand, neglecting compressibility and so treating
V; as independent of P, we can integrate (2) immediately obtaining

V{(P® — P*)= M(®"— ¢°). 9.06.9
Alternatively integrating (4) we obtain

PP—P*=g(P*— @P). 9.06.10
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§9.07 Mixture in gravitational field

For the equilibrium of each species i of a mixture in a gravitational field we
have according to (9.04.1)

dy,+M;dP=0. 9.07.1
Using (9.05.2) we obtain at constant temperature

Dy;+V,dP+M;dd=0 (T const.) 9.07.2

where D denotes Z,dx,(0/0x,)rp. But according to the Gibbs-Duhem
relation we have

z X; Dﬂi=0. 9.07.3

Multiplying (2) by x;, summing over all species i, and using (3) we obtain

Zx‘KdP+Z X;M(d¢=0. 9.07;4

Introducing the proper volume V,, and the proper mass M, given respec-
tively by

Va=2 xVi 9.07.5
M,=Y x;M, 9.07.6

we can write (4) as
VdP+ M, d®=0. 9.07.7

But the density g is related to V,, M,,, by
o=M_jV,. 9.07.8

Substituting (8) into (7), we recover the usual condition of hydrostatic
equilibrium

dP= —pd®. 9.07.9
If we substitute for dP from (7) into (2), we obtain
Du;+(M;— VM|V, )dP 9.07.10
or, according to (8),
Dy;+(M;—oV;)d®=0. 9.07.11

The differential equations of this section can be integrated only in certain
exceptionally simple cases which we shall consider in turn.
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§9.08 Mixture of gases

For a mixture of perfect gases it is possible to integrate (9.07.2), but the
same result can be obtained as follows. For any component i in two
gaseous mixtures a, B at the same temperature T, we have

# —pi=RT In(pf/p}) 9.08.1

where p? and p? are the fugacities in the two phases.
Substituting (1) into (9.04.1) we obtain as the equilibrium condition for
the species i in a gravitational field

RT In(p?/pf)=M,(®"— &°) 9.08.2
or
P pf=exp{— M,(d"— &*)/RT}. 9.08.3
If we differentiate (2) we obtain
dp;/p;= —(M,/RT)d®. 9.08.4
If the gas mixture is perfect then using
Pi=Y:RT|Vy, 9.08.5
we can rewrite (4) as
dp;=—(y;M,/V,)dd. 9.08.6

Summing (6) over all species /, we obtain
dP=—(M/V,)d®=—odd 9.08.7

thus verifying that (2) and (3) are consistent with hydrostatic equilibrium.

§9.09 [Ideal dilute solutions

In the case of an ideal dilute solution we may replace (9.07.10) for each solute
species s by

RTdIn mg+(M,— V.M, [V, )d®=0. 9.09.1

In the limit of extreme dilution we may replace M, [V, by M, |V, where
the superscript © relates to the pure solvent, and obtain

RTd In m+(M,—V,M,[V)dd =0. 9.09.2
Neglecting compressibility, this can be integrated directly, giving

mbim? =exp{—(M,— V,M,|V)(#* — &*)/RT}. 9.09.3
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§9.10 Chemical reaction in gravitational field
For the chemical reaction

0=Y vsB 9.10.1
B

the most general form for the condition of equilibrium in the absence of a
gravitational field is

§v3u3=0. 9.10.2

In the presence of a gravitational field the corresponding equilibrium condi-
tion is evidently

; VB(IJB+M3¢)=O. 9-10.3

But owing to the conservation of mass we have

ZVBMB=0' 9.10.4
B

Multiplying (4) by @ and subtracting from (3) we recover (2). It follows that
any chemical equilibrium constant is independent of the gravitational
potential or in other words is unaffected by the presence of a gravitational
field.



