INTERMEDIATE – SECOND YEAR

MAY-2017 I.P.E.PAPER (T.S)

MATHEMATICS - II (A) (E.M.)

Time: 3 Hours]

[Max. Marks: 75

Note: This question paper consists of three sections A, B and C.

SECTION - A

I. Very Short Answer Type Questions:

 $10 \times 2 = 20$

- i) Attempt all questions.
- ii) Each question carries two marks.
- Find the complex conjugate of (3 + 4i) (2 3i).
- 2. If the Arg \overline{Z}_1 and Arg z_2 are $\frac{\pi}{5}$ and $\frac{\pi}{3}$ respectively, then find Arg Z_1 + Arg Z_2 .
- 3. If 1, w, w² are the cube roots of unity, then prove that $\frac{1}{2+w} + \frac{1}{1+2w} = \frac{1}{1+w}$.
- 4. Find the value of m for the equation having equal roots $x^2 15 m(2x 8) = 0$.
- 5. If α , β , 1 are the roots of $x^3 2x^2 5x + 6 = 0$, then find α , β .
- 6. Find the number of terms in the expansion of $(2x + 3y + z)^7$.
- 7. Find the mean deviation about the mean for data 3, 6, 10, 4, 9, 10.
- 8. Find the number of injection of set A with 5 elements to a set B with 7 elements.
- 9. If ${}^{9}C_{3} + {}^{9}C_{5} = {}^{10}C_{r}$ then find r.
- 10. If the mean and variance of a binomial variable x are 2.4 and 1.44 respectively, then find n.

SECTION - B

II. Short Answer Type Questions:

 $5 \times 4 = 20$

- i) Attempt any five questions.
- ii) Each question carries four marks.
- Show that the four points in the Argand plane represented by the complex numbers
 i, 4 + 3i, 2 + 5i, 3i are the vertices of a square.
- 12. Determine the range of the expression $\frac{x^2 + x + 1}{x^2 x + 1}$.
- 13. Resolve $\frac{3x^3 2x^2 1}{x^4 + x^2 + 1}$ into partial fractions.

- 14. A, B, C are 3 newspapers from a city. 20% of the population read A, 16% read B, 14% read C, 8% both A and B, 5% both A and C, 4% both B and C and 2% all the three. Find the percentage of the population who read atleast one newspaper.
- 15. Define conditional probability. State and prove multiplication theorem of probability.
- If the letters of the word PRISON are permuted in all possible ways and the words thus formed are arranged in dictionary order, find the rank of the word PRISON.
- 17. Simplify ${}^{34}C_5 + \sum_{r=0}^4 {}^{(38-r)}C_4$.

SECTION - C

III. Long Answer Type Questions:

 $5 \times 7 = 35$

- i) Attempt any five questions.
- ii) Each question carries seven marks.
- 18. If n is a positive integer show that $(1+i)^n + (1-i)^n = 2^{\frac{n+2}{2}} \cos\left(\frac{n\pi}{4}\right)$.
- 19. Solve the equation $2x^5 + x^4 12x^3 12x^2 + x + 2 = 0$.
- 20. If the coefficients of 4 consecutive terms in the expansion of $(1 + x)^n$ are a_1 , a_2 , a_3 , a_4 respectively then show that $\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_3 + a_4} = \frac{2a_2}{a_2 + a_3}$.
- 21. Find the sum of the infinite series $1 \frac{4}{5} + \frac{4 \cdot 7}{5 \cdot 10} \frac{4 \cdot 7 \cdot 10}{5 \cdot 10 \cdot 15} + \dots$
- 22. Find the mean deviation from the mean of the following data, using the step deviation method :

Marks	0 – 10	10 – 20	20 - 30	30 – 40	40 - 50	50 - 60	60 – 70
No. of Students	6	5	8	15	7	6	3

23. Three boxes B1, B2 and B3 contain balls with different colours as shown below:

	White	Black	Red 2 4	
B ₁	2	1		
B ₂	3	2		
B ₃	4	3	2	

A die is thrown. B_1 is chosen if either 1 or 2 turns up. B_2 is chosen if 3 or 4 turns up and B_3 is chosen if 5 or 6 turns up. Having chosen a box in this way, a ball is chosen at random from this box, if the ball drawn is found to be red, find the probability that it is drawn from box B_2 .

24. The range of a random variable X is {0, 1, 2}. Given that

$$P(X = 0) = 3C^3$$
, $P(X = 1) = 4C - 10C^2$, $P(X = 2) = 5C - 1$.

- i) Find the value of C.
- ii) P(X < 1), $P(1 < X \le 2)$ and $P(0 < X \le 3)$