Que 1. In Fig. 9.29, ABCD and AEFD are two parallelograms. Prove that ar (\triangle PEA) = ar (\triangle QFD).

Sol. In triangles PEA and QFD, we have

	∠APE = ∠DQF	(Corresponding angles)
	AE = DF	(Opposite sides of ^{gm} AEFD)
	∠AEP = ∠DFQ	(Corresponding angles)
	ΔPEA ≅ ΔQFD	(AAS congruence criterion)

As congruent triangles have equal area.

 \therefore ar (Δ PEA) = ar (Δ QFD)

Que 2. In Fig. 9.30, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar(ABCDE) = ar(APQ).

Sol. Since, $\triangle ABC$ and $\triangle APC$ are on the same base AC and between the same parallels BP and AC

 $\therefore \qquad \text{ar } (\Delta ABC) = \text{ar } (\Delta APC) \qquad \dots (i)$

(Triangles on the same base and between the same parallels are equal in area) Similarly, EQ || AD

$$\therefore \qquad \text{ar } (\Delta AED) = \text{ar } (AQD) \qquad \dots (ii)$$

Adding (i) and (ii), and then adding ar (Δ ACD) to both the sides, we get

Ar ($\triangle ABC$) + ar ($\triangle AED$) + ar ($\triangle ACD$) = ar ($\triangle APC$) + ar ($\triangle AQD$) + ar ($\triangle ACD$)

 \Rightarrow ar (ABCDE) = ar (APQ).

Que 3. In Fig. 9.31, X and Y are the mid-point of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. Prove that ar (\triangle ABP) = ar (\triangle ACQ).

Sol. As X and Y are the mid-point of AC and AB respectively.

∴ XY || BC

Since Δ BYC and Δ BXY are on the same base BC and between the same parallels XY and BC.

 \therefore ar (\triangle BYC) = ar (\triangle BXC)

 \Rightarrow ar (\triangle BYC) – ar (\triangle BOC) = ar (\triangle BXC) – ar (\triangle BOC)

 \Rightarrow ar (\triangle BOY) = ar (\triangle COX)

 $\Rightarrow \qquad \text{ar} (\Delta \text{ BOY}) + \text{ar} (\Delta \text{ XOY}) = \text{ar} (\Delta \text{ COX}) + \text{ar} (\Delta \text{ XOY})$

 $\Rightarrow \qquad \text{ar } (\Delta \text{ BXY}) = \text{ar } (\Delta \text{ CXY}) \qquad \dots (i)$

Since quadrilaterals XYAP and XYQA are on the same base XY and between the same parallels XY and PQ.

$$\therefore$$
 ar (XYAP) = ar (XYQA) ...(ii)

Adding (i) and (ii), we get

Ar (Δ BXY) + ar (XYAP) = ar (Δ CXY) + ar (XYQA)

$$\Rightarrow$$
 ar (Δ ABP) = ar (Δ ACQ)

Que 4. If the medians of a \triangle ABC intersect at G. Show that Ar (\triangle AGC) = ar (\triangle AGB) = ar (\triangle BGC) = $\frac{1}{3}$ ar (\triangle ABC)

To prove:

Ar ($\triangle AGB$) = ar ($\triangle BGC$) = ar ($\triangle CGA$) = $\frac{1}{3}$ ar ($\triangle ABC$)

Proof: In \triangle ABC, AD is the median. As a median of a triangle divides it into two triangles of equal area.

ar (\triangle ABD) = ar (\triangle ACD) :. ...(i) In \triangle GBC, GD is the median Ar (Δ GBD) = ar (Δ GCD) ...(ii) :. Subtracting (ii) from (i), we get Ar (ΔABD) – ar (ΔGBD) = ar (ΔACD) – ar (ΔGCD) ar (AGB) = ar (\triangle AGC) ...(iii) Similarly, ar (ΔAGB) = ar (ΔBGC) ...(iv) From (iii) and (iv), we get ar ($\triangle AGB$) = ar ($\triangle BGC$) = ar ($\triangle AGC$) ...(v) ar ($\triangle AGB$) + ar ($\triangle BGC$) + ar ($\triangle AGC$) = ar ($\triangle ABC$) But, ...(vi) From (v) and (vi), we get $3ar (\Delta AGB) = ar (\Delta ABC)$

⇒ ar (\triangle AGB) = $\frac{1}{3}$ ar (\triangle ABC) Hence, ar (\triangle AGB) = ar (\triangle AGC) = ar (\triangle BGC) = $\frac{1}{3}$ ar (\triangle ABC)