Introduction to Control Systems

Multiple Choice Questions

Q.1 (A) The closed loop gain when a feedback of

 $\frac{9}{100}$ is introduced in the system shown.

- (a) $10 \pm 1\%$
- (b) $10 \pm 10\%$
- (c) $100 \pm 10\%$
- (d) $100 \pm 1\%$
- (B) When there is a 10% change in the feedback, the overall gain of the system would be
- (a) $10 \pm 9\%$
- (b) $10 \pm 1\%$
- (c) $100 \pm 9\%$
- (d) $100 \pm 1\%$
- Q.2 Negative feedback in a closed-loop control system DOES NOT
 - (a) reduce the overall gain
 - (b) reduce bandwidth
 - (c) improve disturbance rejection
 - (d) reduce sensitivity to parameter variation

[GATE-2015]

Q.3 The feedback control system is shown in figure.

The sensitivity of CL system with respect to forward path function (G) will be -

- (a) 0.01
- (b) 0.1
- (c) 1
- (d) 10
- The impulse response of the system is

$$C(t) = -te^{-t} + 2e^{-t} (t > 0)$$

The open loop T.F. will be

- The impulse response of a LTI system under initially relaxed condition is

$$h(t) = e^{-t} + e^{-2t}$$

The response of the system for step input will be

- (a) $[1 + e^{-t} + e^{-2t}] u(t)$
- (b) $[e^{-t} + e^{-2t}] u(t)$
- (c) $[1.5 e^{-t} 0.5 e^{-2t}] u(t)$
- (d) $[e^{-t} + e^{-2t}] u(t)$
- Q.6 Which among the following is a valid step response of a initially relaxed system?
 - (a) $1 2e^{-t} + e^{-2t}$ (b) $1 + 2e^{-t} e^{-2t}$
 - (c) $1 2e^{-t} e^{-2t}$
 - (d) $1 + 2e^{-t} + e^{-t}$
- Q.7 Find the transfer functions of the mechanical system shown?

(a)
$$\frac{K_1 + B_1 s}{s B_1 + K_1 + K_2}$$

(a)
$$\frac{K_1 + B_1 s}{s B_1 + K_1 + K_2}$$
 (b) $\frac{K_1 + B_1 s}{(B_1 + K_1) s + K_2}$

(c)
$$\frac{B_1 s}{s B_1 + K_1 + K_2}$$

(c)
$$\frac{B_1 s}{s B_1 + K_1 + K_2}$$
 (d) $\frac{K_1}{s (B_1 + K_1) + K_2}$

Q.8 For unit impulse force the resulting oscillation would be

- (a) $\sin \sqrt{2t}$
- (b) sint
- (c) $\frac{1}{2}$ sint
- (d) $\sqrt{2} \sin t$

Q.9 The mechanical system is described by

(a)
$$M \frac{d^2 Y_1}{dt^2} + B \frac{dY_1}{dt} = K(Y_2 - Y_1)$$

(b)
$$M \frac{d^2 Y_2}{dt^2} + B \frac{dY_2}{dt} = K(Y_2 - Y_1)$$

(c)
$$M \frac{d^2 Y_1}{dt^2} + B \frac{d Y_1}{dt} = K(Y_1 - Y_2)$$

(d)
$$M \frac{d^2 Y_2}{dt^2} + B \frac{dY_2}{dt} = K(Y_1 - Y_2)$$

Q.10 The equivalent of the block diagram in the figure is given is

[GATE-2001]

Q.11 Consider the following block diagrams:

4.
$$R(s)$$
 $1/G_2$ G_1 G_2 G_2

Which of these block diagrams can be reduced

to transfer
$$\frac{c(s)}{R(s)} = \frac{{}^{2}G_{1}}{1 - G_{1}G_{2}}$$
?

- (a) 1 and 3
- (b) 2 and 4
- (c) 1 and 4
- (d) 2 and 3

[ESE-2001]

Q.12 Match List-I (Block Diagram) with List-II (Transformed Block Diagram) and select the correct answer:

List-I

D.
$$R \rightarrow G$$

List-II

3.
$$R \longrightarrow G \longrightarrow C$$

$$1/G \longrightarrow Y$$

Codes:

[ESE-2003]

Q.13 By performing cascading and/or summing/ differencing operations using transfer function blocks $G_1(s)$ and $G_2(s)$, one CANNOT realize a transfer function of the form

(a)
$$G_1(s) G_2(s)$$

(b)
$$\frac{G_1(s)}{G_2(s)}$$

(c)
$$G_1(s) \left(\frac{1}{G_1(s)} + G_2(s) \right)$$

(d)
$$G_1(s) \left(\frac{1}{G_1(s)} - G_2(s) \right)$$

[GATE-2015]

Q.14 The S.F.G of certain C.S is shown in figure.

1.
$$x_2 = a_1 x_1 + a_9 x_3$$

2.
$$x_3 = a_2 x_2 + a_8 x_4$$

$$3. \quad x_4 = a_3 x_3 + a_5 x_2$$

4.
$$x_5 = a_4 x_4 + a_6 x_2$$

Which of the following equations are correct?

- (a) 1, 2 and 3
- (b) 1, 3 and 4
- (c) 2, 3 and 4
- (d) 1, 2 and 4

Q.15 The signal flow graph of a system is shown in the figure. The transfer function $\frac{C(s)}{R(s)}$ of the system is

$$\frac{6}{s^2 + 29s + 6}$$
 (b) $\frac{}{s^2}$

c)
$$\frac{s(s+2)}{s^2+29s+6}$$

$$\frac{s(s+27)}{s^2+39s+6}$$

[GATE-2003]

Q.16 An electrical system and its signal-flow graph representations are shown in the figure (a) and (b) respectively. The values of G_2 and H, respectively, are

`Figure (b)

(a)
$$\frac{Z_3(s)}{Z_2(s) + Z_3(s) + Z_4(s)}, \frac{-Z_3(s)}{Z_1(s) + Z_3(s)}$$

(b)
$$\frac{-Z_3(s)}{Z_2(s)-Z_3(s)+Z_4(s)}$$
, $\frac{-Z_3(s)}{Z_1(s)+Z_3(s)}$

(c)
$$\frac{Z_3(s)}{Z_2(s) + Z_3(s) + Z_4(s)} \cdot \frac{Z_3(s)}{Z_1(s) + Z_3(s)}$$

(d)
$$\frac{-Z_3(s)}{Z_2(s) - Z_3(s) + Z_4(s)}$$
, $\frac{Z_3(s)}{Z_1(s) + Z_3(s)}$

Q.17

$$G_1$$
 G_2 G_3

For the S.F.G. the defined input is R(s) and defined output is C(s). Find the transfer function.

(a)
$$\frac{G_1}{1-H_1-H_2}$$
 (b) $\frac{G_1}{1+H_1+H_2}$

(b)
$$\frac{G_1}{1+H_1+H_2}$$

(c)
$$\frac{G_1}{1-H_1}$$
 (d) $\frac{G_1}{1-H_2}$

(d)
$$\frac{G_1}{1-H_2}$$

Q.18 The signal flow graph for a system is given below.

The transfer function $\frac{Y(s)}{U(s)}$ for this system is

(a)
$$\frac{s+1}{5s^2+6s+2}$$

(b)
$$\frac{s+1}{s^2+6s+2}$$

(c)
$$\frac{s+1}{s^2+4s+2}$$

(d)
$$\frac{1}{5s^2 + 6s + 2}$$

[GATE-2013]

Q.19 The signal flow graph of a system is shown below. U(s) is the input and C(s) is the output.

Assuming, $h_1 = b_1$ and $h_0 = b_0 - b_1 a_1$, the inputoutput transfer function, $G(s) = \frac{C(s)}{U(s)}$ of the system is given by

(a)
$$G(s) = \frac{b_0 s + b_1}{s^2 + a_0 s + a_1}$$

(b)
$$G(s) = \frac{a_1 s + a_0}{s^2 + b_1 s + b_0}$$

(c)
$$G(s) = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0}$$

(d)
$$G(s) = \frac{a_0 s + a_1}{s^2 + b_0 s + b_1}$$

Q.20 For the signal flow graph shown in the figure, the value of $\frac{C(s)}{R(s)}$ is

(a)
$$\frac{G_1G_2G_3G_4}{1 - G_1G_2H_1 - G_3G_4H_2 - G_2G_3H_3 + G_1G_2G_3G_4H_4H_4}$$

(b)
$$\frac{G_1G_2G_3G_4}{1+G_1G_2H_1+G_3G_4H_2+G_2G_3H_3+G_1G_2G_3G_4H_1H_2}$$

(c)
$$\frac{1}{1+G_1G_2H_1+G_3G_4H_2+G_2G_3H_3+G_1G_2G_3G_4H_1H_2}$$

(d)
$$\frac{1}{1 - G_1G_2H_1 - G_3G_4H_2 - G_2G_3H_3 + G_1G_2G_3G_4H_1H_2}$$
[GATE-2015]

Numerical Data Type Questions

Q.21 The open-loop DC gain of a unity negative feedback system with closed-loop transfer

function
$$\frac{s+4}{s^2+7s+13}$$
 is _____.

[GATE-2001]

The overall gain C/R will be _

Try Yourself

T1. The block diagram of a system is shown in the figure.

If the desired transfer function of the system is

$$\frac{C(s)}{R(s)} = \frac{s}{s^2 + s + 2}$$

then G(s) is

(a) 1

(b) s

(c) $\frac{1}{s}$

(d) $\frac{-s}{s^3 + s^2 - s - 2}$

[Ans: (b)]

T2. The transfer function of the network shown below is

The transfer function of a low-pass RC network

(a)
$$RCs(1 + RCs)$$
 (b) $\frac{1}{(1+RCs)}$

$$\frac{RC}{(1+RCs)} \qquad (d) \quad \frac{s}{(1+RCs)}$$

[Ans: (b)]

