# NCERT TEXTBOOK QUESTIONS SOLVED

# **EXERCISE 11.1**

In each of the following, give the justification of the construction also:

Q. 1. Draw a line segment of length 7.6 cm and divide it in the ratio 5 : 8. Measure the two parts.

## Sol. Steps of construction:

- I. Draw a line segment AB = 7.6 cm.
- II. Draw a ray AX making an acute angle with AB.
- III. Mark 13 (8 + 5) equal points on AX, and mark them as  $X_{11}$ ,  $X_{22}$ ,  $X_{32}$ , ...,  $X_{13}$ .
- IV. Join 'point  $X_{13}$ ' and B.
- V. From 'point  $X_5'$ , draw  $X_5C \parallel X_{13}B$ , which meets *AB* at *C*.

Thus, C divides AB in the ratio 5:8

On measuring the two parts, we get:



## Justification:

In  $\triangle ABX_{13}$  and  $\triangle ACX_{5'}$  we have  $CX_5 \parallel BX_{13}$   $\therefore \qquad \frac{AC}{CB} = \frac{AX_5}{X_5X_{13}} = \frac{5}{8}$  $\Rightarrow \qquad AC : CB = 5 : 8.$ 

**Q. 2.** Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are  $\frac{2}{3}$  of the corresponding sides of the first triangle. [CBSE 2012]

#### Sol. Steps of construction:

- I. Draw a  $\triangle$  *ABC* such that *BC* = 6 cm, *AC* = 5 cm and *AB* = 4 cm.
- II. Draw a ray *BX* making an acute angle  $\angle CBX$ .
- III. Mark three points  $X_{1'}$   $X_{2'}$   $X_3$  on BX such that  $BX_1 = X_1X_2 = X_2X_3$ .
- IV. Join  $X_3$  C.
- V. Draw a line through  $X_2$  such that it is parallel to  $X_3$  *C* and meets *BC* at *C*'.
- VI. Draw a line through *C*' parallel to *CA* to intersect *BA* at *A*'.

```
Thus, A'BC' is the required triangle. Justification:
```

By construction, we have:

$$X_{3}C \parallel X_{2}C'$$

$$\Rightarrow \qquad \frac{BX_{2}}{X_{2}X_{3}} = \frac{BC'}{C'C}$$
But
$$\frac{BX_{2}}{X_{2}X_{3}} = \frac{2}{1}$$

$$\Rightarrow \qquad \frac{BC'}{C'C} = \frac{2}{1}$$

$$\Rightarrow \qquad \frac{C'C}{BC'} = \frac{1}{2}$$

Adding, 1 to both sides, we get

$$\frac{C'C}{BC'} + 1 = \frac{1}{2} + 1$$

$$\Rightarrow \qquad \frac{C'C + BC'}{BC'} = \frac{1+2}{2}$$



[Using BPT]

 $\Rightarrow \qquad \frac{BC}{BC'} = \frac{3}{2}$ Now, in  $\Delta BCA'$  and  $\Delta BCA$ we have  $CA \parallel C'A'$   $\therefore$  Using AA similarity, we have:  $\Delta BC'A' \sim \Delta BCA$  $\Rightarrow \qquad \frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC}.$   $\left[ each \ equal \ to \frac{2}{3} \right]$ 

**Q. 3.** Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are  $\frac{7}{5}$  of the corresponding sides of the first triangle.

#### Sol. Steps of construction:

- I. Construct a  $\triangle ABC$  such that AB = 5 cm, BC = 7 cm and AC = 6 cm.
- II. Draw a ray *BX* such that  $\angle CBX$  is an acute angle.
- III. Mark 7 points of  $X_1, X_2, X_3, X_4, X_5, X_6$  and  $X_7$  on *BX* such that  $BX_1 = X_1X_2 = X_2X_3 = X_3X_4 = X_4X_5$  $= X_5X_6 = X_6X_7$
- IV. Join  $X_5$  to C.
- V. Draw a line through  $X_7$  intersecting *BC* (produced) at *C*' such that  $X_5 C \parallel X_7 C'$
- VI. Draw a line through *C'* parallel to *CA* to intersect *BA* (produced) at *A'*. Thus,  $\Delta A'BC'$  is the required triangle.

## Justification:

By construction, we have

$$\therefore$$
 Using AA similarity,  $\triangle ABC \sim \triangle A' BC$ 

$$\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC}$$
$$X_7C' \parallel X_5C$$

Also



[By construction]

 $\therefore \qquad \Delta BX_7C' \sim \Delta BX_5C \implies \frac{BC}{BC'} = \frac{BX_5}{BX_7}$  $\therefore \qquad \frac{BX_5}{BX_7} = \frac{5}{7} \implies \frac{BC}{BC'} = \frac{5}{7} \text{ or } \frac{BC'}{BC} = \frac{7}{5}$ 

$$\therefore \qquad \frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{7}{5}.$$

Q. 4. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle

whose sides are  $1\frac{1}{2}$  times the corresponding sides of the isosceles triangle.

## Sol. Steps of construction:

- I. Draw BC = 8 cm
- II. Draw the perpendicular bisector of *BC* which intersects *BC* at *D*.
- III. Mark a point *A* on the above perpendicular such that DA = 4 cm.
- IV. Join *AB* and *AC*. Thus,  $\Delta ABC$  is the required isosceles triangle.
- V. Now, draw a ray *BX* such that  $\angle CBX$  is an acute angle.
- VI. On *BX*, mark three points  $X_1$ ,  $X_2$  and  $X_3$  such that:

$$BX_1 = X_1 X_2 = X_2 X_3$$

VII. Join  $X_2$  to C.



IX. Draw a line through C' parallel to CA intersecting BA (extended) at A', thus,  $\Delta A'BC'$  is the required triangle.

#### Justification:

| We have $CA' \parallel CA$                                                   | [By construction]                        |
|------------------------------------------------------------------------------|------------------------------------------|
| $\therefore$ Using AA similarity, $\triangle ABC \sim \triangle A' BC'$      |                                          |
| $\Rightarrow \qquad \frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC'}$      |                                          |
| Since, $X_3C' \parallel X_2C$                                                | [By construction]                        |
| $\Rightarrow \qquad \Delta BX_3 C' \sim \Delta BX_2 C$                       |                                          |
| $\Rightarrow \qquad \frac{BC'}{BC} = \frac{BX_3}{BX_2}$                      | [By BPT]                                 |
| But $\frac{BX_3}{BX_2} = \frac{3}{2}$                                        |                                          |
| $\Rightarrow \qquad \frac{BC'}{BC} = \frac{3}{2}$                            |                                          |
| Thus, $\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{3}{2}$ .    |                                          |
| Draw a triangle ABC with side $BC = 6 \text{ cm}$ AB = 5 cm and $\angle ABC$ | $= 60^{\circ}$ Then construct a triangle |

**Q. 5.** Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and  $\angle ABC = 60^{\circ}$ . Then construct a triangle whose sides are  $\frac{3}{4}$  of the corresponding sides of the triangle ABC. [CBSE 2011, 2012]



#### Sol. Steps of construction:

- I. Construct a  $\triangle ABC$  such that BC = 6 cm, AB = 5 cm and  $\angle ABC = 60^{\circ}$ .
- II. Draw a ray  $\overrightarrow{BX}$  such that  $\angle CBX$  is an acute angle.
- III. Mark four points  $X_{1'}$ ,  $X_{2'}$ ,  $X_{3}$ and  $X_{4}$  on *BX* such that

$$BX_1 = X_1 X_2 = X_2 X_3 = X_3 X_3$$

- IV. Join  $X_4C$  and draw  $X_3C' \parallel X_4C$ such that C' is on BC.
- V. Also draw another line through *C*' and parallel to *CA* to intersect *BA* at *A*'.
  - Thus,  $\Delta A'BC'$  is the required triangle.

# Justification:

By construction, we have:



 $X_{4}C \parallel X_{3}C'$   $\therefore \qquad \frac{BX_{3}}{BX_{4}} = \frac{BC'}{BC} \qquad [By BPT]$ But  $\frac{BX_{3}}{BX_{4}} = \frac{3}{4} \qquad [By construction]$   $\Rightarrow \qquad \frac{BC'}{BC} = \frac{3}{4} \qquad ...(1)$ Now, we also have  $CA \parallel C'A' \qquad [By construction]$ 

$$\therefore \qquad \Delta BC' A' \sim \Delta BCA \qquad [using AA similarity]$$
  
$$\Rightarrow \qquad \frac{A'B}{AB} = \frac{A'C}{AC} = \frac{BC'}{BC} = \frac{3}{4}. \qquad [From (1)]$$

**Q. 6.** Draw a triangle ABC with side BC = 7 cm,  $\angle B = 45^\circ$ ,  $\angle A = 105^\circ$ . Then, construct a triangle whose sides are  $\frac{4}{3}$  times the corresponding sides of  $\triangle$  ABC.

#### Sol. Steps of construction:

- I. Construct a  $\triangle$  ABC such that BC = 7 cm,  $\angle B$  = 45° and  $\angle A$  = 105°.
- II. Draw a ray *BX* making an acute angle  $\angle CBX$  with *BC*.
- III. On *BX*, mark four points  $X_{1'}$ ,  $X_{2'}$ ,  $X_3$  and  $X_4$  such that  $BX_1 = X_1X_2 = X_2X_3 = X_3X_4$ .
- IV. Join  $X_3$  to C.
- V. Draw  $X_4C' \parallel X_3C$  such that C' lies on BC (extended).
- VI. Draw a line through *C*' parallel to *CA* intersecting the extended line segment *BA* at *A*'.



Thus,  $\Delta A' BC'$  is the required triangle.

# Justification:

By construction, we have:

$$C'A' \parallel CA$$

$$\therefore \quad \Delta ABC \sim \Delta A'BC' \qquad [AA similarity]$$

$$\Rightarrow \qquad \frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} \qquad ...(1)$$
Also, by construction,
$$X_4 C' \parallel X_3 C$$

$$\therefore \quad \Delta BX_4C' \sim \Delta BX_3C$$

$$\Rightarrow \qquad \frac{BC'}{BC} = \frac{BX_4}{BX_3}$$
But
$$\frac{BX_4}{BX_3} = \frac{4}{3}$$

$$\Rightarrow \qquad \frac{BC'}{BC} = \frac{4}{3} \qquad ...(2)$$
From (1) and (2), we have:
$$\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{4}{3}.$$

- **Q. 7.** Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct another triangle whose sides are  $\frac{5}{3}$  times the corresponding sides of the given triangle.
- Sol. Steps of construction:
  - I. Construct the right triangle ABC such that  $\angle B = 90^\circ$ , BC = 4 cm and BA = 3 cm.

- II. Draw a ray *BX* such that an acute angle  $\angle CBX$  is formed.
- III. Mark 5 points  $X_{1'}$ ,  $X_{2'}$ ,  $X_{3'}$ ,  $X_4$  and  $X_5$  on *BX* such that

 $BX_1 = X_1 X_2 = X_2 X_3 = X_3 X_4 = X_4 X_5.$ 

- IV. Join  $X_3$  to C.
- V. Draw a line through  $X_5$  parallel to  $X_3$  *C*, intersecting the extended line segment BC at *C*'.
- VI. Draw another line through C' parallel to CA intersecting the extended line segment BA at A'. Thus,  $\Delta A' BC'$  is the required

triangle.

### Justification:

By construction, we have:



C'A' ∥ CA  $\Delta ABC \sim \Delta A' BC'$ *:*.. [By AA similartiy]  $\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC}$ ...(1)  $\Rightarrow$ Also,  $X_5C' \parallel X_3C$ [By construction]  $\Delta BX_5 C' \sim \Delta BX_3 C$ *.*..  $\frac{BC'}{BC} = \frac{BX_5}{BX_3}$  $\Rightarrow$  $\frac{BX_5}{BX_3} = \frac{5}{3}$ But ...(2) From (1) and (2) we get  $\frac{A'B}{AB} = \frac{A'C'}{AC} = \frac{BC'}{BC} = \frac{5}{3}.$ 

# TANGENTS TO A CIRCLE

## Remember:

- **I.** If a point lies inside a circle, then there cannot be a tangent to the circle through this point.
- **II.** If a point lies on the circle, then there is only one tangent to the circle at this point and it is perpendicular to the radius through that point.
- **III.** If the point lies outside the circle, there will be two tangents to the circle from this point.

# NOTE:

- (*i*) For drawing a tangent at a point of a circle, simply draw the radius through this point and draw a line perpendicular to this radius through this point.
- (ii) The two tangents to a circle from an external point are equal.

Construction of tangents to a circle from a point outside it.

# Steps of construction:

- I. Let the centre of the circle be *O* and *P* be a point outside the circle.
- II. Join *O* and *P*.
- III. Bisect *OP* and let *M* be the mid point of *OP*.
- IV. Taking *M* as centre and *MP* or *MO* as radius, draw a circle intersecting the given circle at the points *A* and *B*.
- V. Join PA and PB.

Thus, *PA* and *PB* are the required two tangents.

### NOTE:



In case, the centre of the circle is not known, then to locate its centre, we take any two non-parallel chords and then find the point of intersection of their perpendicular bisectors.

# NCERT TEXTBOOK QUESTIONS SOLVED

# EXERCISE 11.2

**Q. 1.** In each of the following, give also the justification of the construction:

Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

# Sol. Steps of construction:

- I. With O as centre and radius 6 cm, draw a circle.
- II. Take a point P at 10 cm away from the centre.
- III. Join O and P.
- IV. Bisect OP at M.
- V. Taking *M* as centre and *MP* or *MO* as radius, draw a circle.
- VI. Let the new circle intersects the given circle at *A* and *B*.
- VII. Join PA and PB.

Thus, *PA* and *PB* are the required two tangents.

By measurement, we have:

PA = PB = 9.6 cm.



# Justification:

*.*..

Join OA and OB

Since PO is a diameter.

 $\angle OAP = 90^\circ = \angle OBP$ 

Also, OA and OB are radii of the same circle.

 $\Rightarrow$  *PA* and *PB* are tangents to the circle.

- **Q. 2.** Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.
- Sol. Steps of construction:
  - I. Join *PO* and bisect it such that the mid point of *PO* is represented by *M*.
  - II. Taking *M* as centre and *OM* or *MP* as radius, draw a circle such that this circle intersects the circle (of radius 4 cm) at *A* and *B*.
  - III. Join A and P.

Thus, *PA* is the required tangent. By measurement, we have:

PA = 4.5 cm

# Justification:

 $\Rightarrow$ 

Join OA such that

 $\angle PAO = 90^{\circ}$  [Angle in a semi-circle]

 $PA \perp OA$ 

- $\therefore$  OA is a radius of the inner circle.
- $\therefore$  *PA* has to be a tangent to the inner circle.
- **Q. 3.** Draw a circle of radius 3 cm. Take two points P and Q on one of its extended diameters each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q.

# Sol. Steps of construction:

- I. Join *P* and *O*.
- II. Bisect *PO* such that *M* be its mid-point.





[Angles in a semicircle]

- III. Taking *M* as centre and *MO* as radius, draw a circle. Let it intersect the given circle at *A* and *B*.
- IV. Join PA and PB.

Thus, *PA* and *PB* are the two required tangents from *P*.

- V. Now, join *O* and *Q*.
- VI. Bisect OQ such that N is its mid point.
- VII. Taking *N* as centre and *NO* as radius, draw a circle. Let it intersect the given circle at *C* and *D*.
- VIII. Join QC and QD.

Thus, QC and QD are the required tangents to the given circle.

# Justification:

| $OAP = 90^{\circ}$ |                                                                                                                                                   | [Angle in a semi-circle]                                                                                                                                                                                       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $L OA \Rightarrow$ | PA is a tangent.                                                                                                                                  |                                                                                                                                                                                                                |
| $L OA \Rightarrow$ | <i>PB</i> is a tangent                                                                                                                            |                                                                                                                                                                                                                |
| hat ∠QCO           | = 90°                                                                                                                                             | [Angle in a semi-circle]                                                                                                                                                                                       |
| $L OC \Rightarrow$ | QC is a tangent.                                                                                                                                  |                                                                                                                                                                                                                |
| $L OC \Rightarrow$ | QD is a tangent.                                                                                                                                  |                                                                                                                                                                                                                |
|                    | $\begin{array}{l} OAP = 90^{\circ} \\ L OA \Rightarrow \\ L OA \Rightarrow \\ hat \angle QCO \\ L OC \Rightarrow \\ L OC \Rightarrow \end{array}$ | $OAP = 90^{\circ}$<br>$L OA \Rightarrow PA$ is a tangent.<br>$L OA \Rightarrow PB$ is a tangent<br>hat $\angle QCO = 90^{\circ}$<br>$L OC \Rightarrow QC$ is a tangent.<br>$L OC \Rightarrow QD$ is a tangent. |

**Q. 4.** Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°.

## Sol. Steps of construction:

- I. With centre *O* and radius = 5 cm, draw a circle.
- II. Draw an angle  $\angle AOB = 120^{\circ}$ .
- III. Draw a perpendicular on *OA* at *A*.
- IV. Draw another perpendicular on *OB* at *B*.
- V. Let the two perpendiculars meet at *C*.

*CA* and *CB* are the two required tangents to the given circle which are inclined to each other at  $60^{\circ}$ .

#### **Justification:**

In a quadrilateral OACB, using angle sum property, we have:

$$120^{\circ} + 90^{\circ} + 90^{\circ} + \angle ACB = 360^{\circ}$$
  

$$\Rightarrow \quad 300 + \angle ACB = 360^{\circ}$$
  

$$\Rightarrow \quad \angle ACB = 360^{\circ} - 300^{\circ} = 60^{\circ}.$$

**Q. 5.** Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle. [CBSE 2012]



#### Sol. Steps of construction:

- I. Bisect the line segment *AB*. Let its mid point be *M*.
- II. With centre as *M* and *MA* (or *MB*) as radius, draw a circle such that it intersects the circle with centre *A* at the points *P* and *Q*.
- III. Join *BP* and *BQ*.Thus, *BP* and *BQ* are the required two tangents from *B* to the circle with centre *A*.
- IV. Let the circle with centre M, intersects the circle with centre B at R and S.
- V. Join RA and SA.

Thus, RA and SA are the required two tangents from A to the circle with centre B.



# Justification:

Let us join A and P.  $\therefore$   $\angle APB = 90^{\circ}$ 

| • |    | 20         |
|---|----|------------|
| ÷ | BP | $\perp AP$ |

[Angle in a semi circle]

But *AP* is radius of the circle with centre *A*.

 $\Rightarrow$  *BP* has to be a tangent to the circle with centre *A*.

Similarly, BQ has to be tangent to the circle with centre A.

Also, *AR* and *AS* have to be tangent to the circle with centre *B*.

- **Q. 6.** Let ABC be a right triangle in which AB = 6 cm, BC = 8 cm and  $\angle B = 90^\circ$ . BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from A to this circle. [CBSE 2012]
- Sol. Steps of construction:
  - I. Join *AO* (*O* is the centre of the circle passing through *B*, *C* and *D*.)
  - II. Bisect *AO*. Let *M* be the mid point of *AO*.
  - III. Taking *M* as centre and *MA* as radius, draw a circle intersecting the given circle at *B* and *E*.
  - IV. Join *AB* and *AE*. Thus, *AB* and *AE* are the required two tangents to the given circle from *A*.

# Justification

Join *OE*, then  $\angle AEO = 90^{\circ}$ 

*.*..

But *OE* is a radius of the given circle.

 $\Rightarrow$  *AE* has to be a tangent to the circle.

Similarly, AB is also a tangent to the given circle.

 $AE \perp OE.$ 



- **Q. 7.** Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle. [CBSE 2012]
- Sol. Steps of construction:
  - I. Draw the given circle using a bangle.
  - II. Take two non parallel chords *PQ* and *RS* of this circle.
  - III. Draw the perpendicular bisectors of *PQ* and *RS* such that they intersect at *O*. Therefore, *O* is the centre of the given circle.
  - IV. Take a point *P*′ outside this circle.
  - V. Join *OP*' and bisect it. Let *M* be the mid point of *OP*'.
  - VI. Taking *M* as centre and *OM* as radius, draw a circle. Let it intersect the given circle at *A* and *B*.



VII. Join P'A and P'B. Thus, P'A and P'B are the required two tangents.

[Angle being in a semi circle]

# Justification:

Join *OA* and *OB*. Since  $\angle OAP = 90^{\circ}$   $\therefore PA \perp OA$ Also *OA* is a radius

[Angle in a semi-circle]

Also *OA* is a radius.

 $\therefore$  *PA* has to be a tangent to the given circle.

Similarly, PB is also a tangent to the given circle.

# MORE QUESTIONS SOLVED

# I. SHORT ANSWER TYPE QUESTIONS

**Q. 1.** Draw a circle of diameter 6.4 cm. Then draw two tangents to the circle from a point P at a distance 6.4 cm from the centre of the circle.

#### Sol. Steps of construction:

I. Draw a circle with centre O and radius

$$=\frac{6.4}{2}$$
 cm or 3.2 cm

II. Mark a point *P* outside the circle such that *OP* = 6.4 cm.



IV. Bisect *OP* such that its mid point is at *M*.



- VI. Join *PA* and *PB*. Thus, *PA* and *PB* are the two tangents to the given circle.
- **Q. 2.** Draw a circle of radius 3.4 cm. Draw two tangents to it inclined at an angle of 60° to each other: [NCERT Exemplar]

# Sol. Steps of construction:

- I. Draw a circle with centre *O* and radius as 3.4 cm.
- II. Draw two radii *OA* and *OB* such that  $\angle AOB = 120^{\circ}$ .
- III. Draw perpendiculars at *A* and *B* such that these perpendiculars meet at *P*.

Obviously,  $\angle APB = 60^{\circ}$ . [Using Angle sum property of a quadrilateral]

IV. Thus, *PA* and *PB* are the required tangents to the given circle.



-3.2 cm

M ◀ 6.4.cm **Q. 3.** Draw  $\triangle ABC$  in which AB = 3.8 cm,  $\angle B = 60^{\circ}$  and median AD = 3.6 cm. Draw another triangle

AB'C' similar to the first such that  $AB' = \left(\frac{4}{3}\right)AB$ .

### Sol. Steps of construction:

- I. Draw AB = 3.8 cm.
- II. Construct  $\angle ABY = 60^{\circ}$ .
- III. With centre *A* and radius as 3.6 cm mark a ray to intersect *BY* at *D*.
- IV. With centre *D* and radius *BD*, mark an arc to intersect *BY* at *C*.
- V. Join CA. Thus, ABC is a triangle.
- VI. Draw a ray *AX*, such that  $\angle BAX$  is an acute angle.
- VII. Mark 4 points  $X_1$ ,  $X_2$ ,  $X_3$  and  $X_4$  such that  $AX_1 = X_1X_2 = X_2 X_3 = X_3 X_4$ .
- VIII. Join  $X_3B$ .
- IX. Through  $X_4$  draw  $X_4B' \parallel X_3B$
- X. Through B' draw B'  $C' \parallel BC$  where C' lies on AC (produced).

Thus,  $\Delta C'AB$  is the required triangle.



**Q. 4.** Draw an equiliateral triangle of height 3.6 cm. Draw another triangle similar to it such that its side is  $\frac{2}{3}$  of the side of the first.

#### Sol. Steps at construction:

- I. Draw a line segment RS.
- II. Mark a point Y on it.
- III. Through Y, draw  $YZ \perp RS$
- IV. Mark a point A on YZ such that YA = 3.6 cm
- V. At *A* draw  $\angle YAB = 30^{\circ}$  such that the point *B* is on *RS*.
- VI. With centre *A* and radius = *AB*, mark a point *C* on *RS*.
- VII. Join AC.
- VIII. Draw a ray BX such that  $\angle CBX$  is an acute angle.
- IX. Mark three points  $X_1$ ,  $X_2$ ,  $X_3$  such that  $AX_1 = X_1X_2 = X_2X_3$ .
- X. Join  $X_3$  and C.
- XI. Through  $X_2$  draw  $X_2C' \parallel X_3C$ .
- XII. Through C' draw C'A'  $\parallel$  CA.

Thus,  $\Delta A'BC'$  is the required triangle.



**Q. 5.** Draw an isosceles  $\triangle ABC$ , in which AB = AC = 5.6 cm and  $\angle ABC = 60^{\circ}$ . Draw another  $\triangle AB'C'$  similar to  $\triangle ABC$  such that  $AB' = \left(\frac{2}{3}\right) AB$ .

#### Sol. Steps of Construction:

- I. Draw a ray BD.
- II. Through *B*, draw another ray *BE* such that  $\angle DBE = 60^\circ$ .
- III. Cut off BA = 5.6 cm.
- IV. With *A* as centre and radius 6 cm, mark an arc intersecting *BD* at *C*.
- V. Join A and C to get  $\triangle ABC$ .
- VI. Draw a ray *BX* such that  $\angle CBX$  is an acute angle.
- VII. Mark three point  $X_1$ ,  $X_2$ and  $X_3$  such that  $BX_1 = X_1X_2 = X_2X_3$ .
- VIII. Join  $X_3$  and C.
- IX. Through  $X_2$  draw  $X_2C' \parallel X_3C$
- X. Through C', draw C'A'  $\parallel$  CA Thus,  $\Delta A' BC'$  is the required triangle.



**Q. 6.** Construct an isosceles triangle whose base is 9 cm and altitude is 5 cm. Then construct another triangle whose sides are  $\frac{3}{4}$  of the corresponding sides of the first isosceles triangle.

#### Sol. Steps of construction:

- I. Construct a  $\triangle ABC$  such that AB = AC, BC = 9 cm and altitude AD = 5 cm.
- II. Through *B*, draw a ray *BX* such that  $\angle CBX$  is an acute angle.
- III. Mark 4 equal points  $X_1$ ,  $X_2$ ,  $X_3$  and  $X_4$  on BX. such that  $BX_1 = X_1 X_2 = X_2 X_3 = X_3 X_4$
- IV. Join  $X_4$  and C.
- V. Through  $X_{3'}$  draw  $X_3C' \parallel X_4C$ , intersecting *BC* in *C'*.
- VI. Through C', draw  $C'A' \parallel CA$ , intersecting AB in A'.

Thus,  $\Delta A'BC'$  is the required triangle.



**Q. 7.** Draw a line segment AB of length 7 cm. Taking A as centre draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2.5 cm. Construct tangents to each circle from the centre of the other circle. [CBSE 2009 C.]

# Sol. Steps of construction:

- I. Draw a line segment AB = 7 cm
- II. With centre A and radius 3 cm, draw a circle.



- III. With centre *B* and radius 2.5 cm, draw another circle.
- IV. Bisect *AB* and let *M* be the mid point of *AB*.
- V. With centre M and radius AM, draw a circle intersecting the two circles in P,Q and R,S.
- VI. Join AP, AQ, BR and BS.

Thus, AP, AQ, BR and BS are required tangents.



of the corresponding sides of the  $\Delta ABC$ .

(CBSE 2009)

# Sol. Steps of construction:

- I. Construct the  $\triangle ABC$  such that AB = 4.5 cm,  $\angle B = 60^{\circ}$  and BC = 6.5 cm.
- II. Construct an acute angle  $\angle BAX$ .
- III. Mark 4 points  $X_1$ ,  $X_2$ ,  $X_3$  and  $X_4$  on AX such that  $AX_1 = X_1X_2 = X_2X_3$  $=X_{3}X_{4}$ .
- IV. Join  $X_4$  and B.
- V. Draw  $X_3 B' \parallel BC$ , meeting AC at C'. Thus,  $\Delta C'AB'$  is the required  $\Delta$ .



**Q. 9.** Draw a right triangle in which sides (other than hypotenuse) are of lenghts 8 cm and 6 cm. Then construct another triangle whose sides are  $\frac{3}{4}$  times the corresponding sides of the first triangle. (AI CBSE 2009)

#### Sol. Steps of construction:

- I. Draw a  $\triangle ABC$  such that AB = 8 cm,  $\angle B = 90^{\circ}$  and BC = 6 cm.
- II. Construct an acute angle  $\angle BAX$ .
- III. Mark 4 points  $X_{1'}$ ,  $X_{2'}$ ,  $X_3$  and  $X_4$  on AX such that  $AX_1 = X_1X_{2'} = X_2X_3 = X_3X_4$ .



IV. Join  $X_4$  and B.

- V. Draw  $X_3B' \parallel X_4B$ .
- VI. Draw  $B'C' \parallel BC$ .

Thus,  $\Delta AB'C'$  is the required rt  $\Delta$ .

**Q. 10.** Construct a  $\triangle ABC$  in which BC = 5 cm, CA = 6 cm and AB = 7 cm. Construct a  $\triangle A'BC'$  similar to  $\triangle ABC$ , each of whose sides are  $\frac{7}{5}$  times the corresponding sides of  $\triangle ABC$ .

#### Sol. Steps of construction:

- I. Construct  $\triangle ABC$  such that:
  - BC = 5 cm, CA = 6 cm and AB = 7 cm.
- II. Draw a ray *BX* such that  $\angle CBX$  is an acute angle.
- III. Mark 7 points  $X_1$ ,  $X_2$ , .....  $X_7$  such that:

$$BX_1 = X_1 X_{2'} = X_2 X_3 = X_3 X_4 = X_4 X_5 = X_5 X_6 = X_6 X_7$$

- IV. Join  $X_7$  and C.
- V. Draw a line through  $X_5$  parallel to  $X_7$  C to meet BC extended at C'.
- VI. Through C', draw a line parallel to CA to meet BA extended at A'.



Thus,  $\Delta A'BC'$  is the required triangle.

Q. 11. Construct a triangle with sides 4 cm, 5 cm and 7 cm. Then construct a triangle similar to it whose sides are  $\frac{2}{3}$  of the corresponding sides of the given triangle. (AI CBSE 2008 C)

#### Sol. Steps of construction:

- I. Construct the  $\triangle ABC$  such that BC = 7 cm, CA = 5 cm and BA= 4 cm.
- II. Draw a ray *BX* such that  $\angle CBX$ is an acute angle.
- III. Mark three points  $X_1$ ,  $X_2$  and  $X_3$ on BX such that:

$$BX_1 = X_1 X_2 = X_2 X_3$$

- IV. Join  $X_3$  and C.
- V. Draw  $X_2C' \parallel X_3C$ .
- VI. Draw C'A' || CA

Thus,  $\Delta A' BC'$  is the required triangle.



#### Sol. Steps of construction:

I. Construct a  $\triangle ABC$  such that AB = 6.5 cm,  $\angle B = 60^{\circ}$  and BC = 5.5 cm.

- II. Draw a ray AX making an acute angle  $\angle BAX$ .
- III. Mark three points  $X_{1\prime}$   $X_{2\prime}$   $X_{3}$  on the ray AX such that  $AX_{1}$  =  $X_{1}$   $X_{2}$  =  $X_{2}$   $X_{3}$
- IV. Join  $X_2$  and B.
- V. Draw  $X_3B' \parallel X_2B$  such that B' is a point on extended AB.



VI. Join  $B'C' \parallel BC$  such that C' is a point on AC (extended). Thus,  $\Delta C'AB'$  is the required triangle.



**Q. 13.** Draw a  $\triangle ABC$  with side BC = 6 cm, AB = 5 cm and  $\angle ABC = 60^{\circ}$ . Construct  $\triangle AB'C'$  similar to  $\triangle ABC$  such that sides of  $\triangle AB'C'$  are  $\frac{3}{4}$  of the corresponding sides of  $\triangle ABC$ .

С

5 cm

B'

## (AI CBSE 2008)

X

## Sol. Steps of construction:

- I. Construct the given  $\triangle ABC$ .
- II. Draw a ray AX such that  $\angle BAC$  is an acute angle.
- III. Mark 4 points  $X_1$ ,  $X_2$ ,  $X_3$  and  $X_4$  on  $\overrightarrow{AX}$  such that
- $AX_1=X_1\ X_2=X_2\ X_3=X_3\ X_4.$  IV. Join  $X_4$  B.
- V. Draw  $X_3B' \parallel X_4B$
- VI. Through B' draw  $B'C' \parallel BC$ .

Thus,  $\Delta B' AC'$  is the required triangle.

**Q. 14.** Draw a circle of radius 3 cm. From a point P, 6 cm away from its centre, construct a pair of tangents to the circle. Measure the lengths of the tangents. (AI CBSE F 2009)

## Sol. Steps of construction:

- I. Draw the given circle such that its centre is at *O* and radius = 3 cm.
- II. Mark a point P such that OP = 6 cm.
- III. Bisect *OP*. Let *M* be the mid point of *OP*.
- IV. Taking *M* as centre and *OM* as radius draw a circle intersecting the given circle at *A* and *B*.



V. Join PA and PB.

Thus, *PA* and *PB* are the required tangents to the given circle.

**Q. 15.** Construct a triangle whose perimeter is 13.5 cm and the ratio of the three sides is 2 : 3 : 4.

(CBSE 2012)

#### Sol. Steps of construction:

- I. Draw a line PQ = 13.5 cm
- II. At P, draw a ray PR making a convenient acute angle  $\angle$ QPR with PQ.
- III. On PR mark (2 + 3 + 4), 9 points at equal distances.
- IV. Join Q and the mark 9.
- V. Through the points 2 and 5 draw lines 2-A and 5-B parallel to 9-Q. Let these lines meet PQ at A and B respectively.
- VI. With A as centre and radius = AP, draw an arc.
- VII. With B as centre and radius = BQ, draw another arc which intersects the arc of step VI at C.
- VIII. Join CA and CB. ABC is the required triangle.

# TEST YOUR SKILLS

**1.** Draw a line AB = 12 cm and divide it in the ratio 3:5. Measure the two parts.

(CBSE 2007) **2.** Draw a rt.  $\triangle ABC$ , in which  $\angle B = 90^{\circ}$ , BC = 5 cm, AB = 4 cm. Then construct another  $\triangle A'BC'$  whose sides are  $\frac{5}{3}$  times the corresponding sides of  $\triangle ABC$ . (AI CBSE 2008)

**3.** Construct a triangle similar to a given  $\triangle ABC$  such that each of its sides is  $\frac{2}{3}$  rd of the corresponding side of the  $\triangle ABC$ . It is given that AB = 4 cm, BC = 5 cm and AC = 6 cm. Also write the steps of construction. (CBSE 2012)

- **4.** Construct a triangle similar to a given triangle *ABC* with its sides  $\frac{4}{5}$  th of the corresponding sides of  $\triangle ABC$ . Also, write the steps of construction. (AI CBSE 2006)
- 5. Draw a circle of radius 3 cm. Take a point at a distance of 5 cm from the centre of the circle. Measure the length of each tangent. (CBSE 2006 C)
- 6. Divide a line segment of 7 cm internally in the ratio 2 : 3. (AI CBSE 2006 C)
- 7. Draw any triangle *ABC*. Construct another triangle *AB'C'* similar to the triangle *ABC* with each side equal to  $\frac{4}{5}$  th of the corresponding side of triangle *ABC*. (CBSE 2004)
- 8. Divide a line segment of length 6 cm internally in the ratio 3 : 2. (AI CBSE 2004)



- 9. Divide a line segment of length AB = 6 cm into 2 : 3 internally. (AI CBSE 2004)
- **10.** Draw a circle of radius 3.5 cm, from a point P outside the circle at a distance of 6 cm from the centre of circle, draw two tangents to the circle. (AI CBSE 2005)
- **11.** Construct a triangle similar to a given  $\triangle ABC$  with sides equal to  $\frac{5}{3}$  of the corresponding sides of  $\triangle ABC$ . (AI CBSE 2005)
- **12.** Construct a  $\triangle PQS$  such that PQ = 4.5 cm, PS = 4 cm and SQ = 5.4 cm. Construct another triangle P'QS' similar to  $\triangle PQS$  with side S'Q = 7.2 cm. (CBSE 2005)
- **13.** Construct a  $\triangle ABC$  in which AB = 6 cm,  $\angle B = 60^{\circ}$  and AC = 7 cm. Construct a  $\triangle$  similar to the  $\triangle ABC$  whose sides are  $\frac{4}{7}$  of the corresponding sides. (AI CBSE 2005, CBSE 2012)
- 14. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct another triangle whose sides are  $\frac{3}{5}$  times the corresponding sides of the given triangle. [CBSE 2012]
- **15.** Draw a right triangle ABC in which BC = 12 cm, AB = 5 cm and  $\angle B = 90^{\circ}$ . Construct a right  $\Delta$  similar to it and of scale factor  $\frac{2}{3}$ . (NCERT Exemplar)
- 16. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. Then construct a triangle similar to it and of scale factor  $\frac{5}{3}$ .
- **17.** Draw a triangle ABC with side BC = 7 cm,  $\angle B = 45^\circ$ ,  $\angle A = 105^\circ$ . Then, construct a  $\Delta$  whose sides are  $\frac{4}{3}$  times the corresponding sides of  $\Delta$ ABC. (CBSE 2011)
- **18.** Construct a rhombus *ABCD* in which *AB* = 4 cm and ∠*ABC* = 60°. Divide it into two triangles *ABC* and *ADC*. Construct the triangle *AB'C'* similar to Δ*ABC* with the scale factor  $\frac{2}{3}$ . Draw a line segment *C'D'* parallel to *CD*, where *D'* lies on *AD*. Is *AB' C' D'* a rhombus?

**19.** Draw a circle of radius 1.5 cm. Take a point P outside it. Without using the centre, draw two tangents to the circle from the point P. (CBSE 2011, 2012)

Give reasons.

- **20.** Draw a right triangle ABC in which AB = 6 cm, BC = 8 cm and  $\angle B = 90^\circ$ . Draw BD perpendicular from B on AC and draw a circle passing through the points B, C and D. Construct tangents from A to this circle. [CBSE (Delhi) 2014]
- **21.** Construct a triangle with sides are 5 cm, 5.5 cm and 6.5 cm. Now construct another triangle,  $\frac{3}{3}$  times the second s

whose sides are  $\frac{3}{5}$  times the corresponding sides of the given triangle. (AI CBSE 2014)

**22.** Construct a triangle ABC, in which AB = 5 cm, BC = 6cm and AC = 7cm. Then construct another triangle whose sides are  $\frac{3}{5}$  times the corresponding sides of  $\triangle$ ABC.

[AI CBSE (Foreign) 2014)

<sup>(</sup>CBSE 2011, 2012)