Chapter 5. Arithmetic Progression

Question-1

Find the sum of the following A.P. 1, 3, 5, 7,,199.

Solution:

Given,
$$a = 1$$
, $d = 2$, $a_n = l = 199$,
 $a + (n - 1) d = 199$
 $1 + (n - 1) 2 = 199$
 $\Rightarrow 1 + 2n - 2 = 199$
 $\Rightarrow 2n = 200$
 $\therefore n = \frac{200}{2}$
 $n = 100$.
 $S_n = n/2 (a + l)$
 $= 50(1 + 199)$
 $= 50(200)$
 $= 10000$

Question-2

Find the A.P. whose 10th term is 5 and 18th term is 77.

Solution:

Question-3

In a certain A.P the 24^{th} term is twice the 10^{th} term. Prove that the 72^{nd} term is twice the 34^{th} term.

Solution:

```
Given, a_{24} = 2a_{10}
a_{24} = a + 23d and a_{10} = a + 9d
To prove: a_{72} = 2 a_{34}
a_{72} = a + 71d
a_{34} = a + 33d
a_{24} = 2a_{10} (Given)
a + 23d = 2(a + 9d)
a + 23d = 2a + 18d
a - 5d = 0
a = 5d.....(i)
a_{72} = 2 a_{34}
a + 71d = 2(a + 33d)
a + 71d = 2a + 66d
a - 5d = 0
a = 5d....(ii)
from, (1) and (2) a_{72} = 2 a_{34}
Hence proved.
```

Question-4

a, b and c are in A.P. Prove that b + c, c + a and a + b are in A.P.

Solution:

Given, a, b and c are in A.P.

$$b - a = c - b$$

To prove: b+c,c+a and a+b are in A.P.

$$c + a - (b + c) = a + b - (c + a)$$

$$\Rightarrow$$
 c + a - b - c = a + b - c - a

$$a - b = b - c$$

$$\Rightarrow$$
 b - a = c - b

∴ a, b, c are in A.P.

$$\therefore$$
 b + c, c + a and a + b are in A.P.

Question-5

If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.

Solution:

```
9^{th} term = 0

a_1 + 8d = 0

a_{29} = a_1 + 28d = a_1 + 8d + 20d = 0 + 20d = 20d

a_{19} = a_1 + 18d = a_1 + 8d + 10d = 0 + 10d = 10d

a_{29} = 2a_{19}.
```

Question-6

Determine the A.P whose third term is 16 and the difference of 5th from 7th term is 12.

Solution:

- \cdot The first term of the A.P. is 4 and the common difference is 6.
- ∴ The A.P. is 4, 10, 16, 22, 28, 34, ...
- \therefore The fifth term = a_5 = a + 4d.

Question-7

The sum of the first six terms of an A.P is zero and the fourth term is 2. Find the sum of its first 30 terms.

Solution:

Let the sum of first 30 terms be S_{30} , first term be a, fourth term be a_4 and the sum of first six terms be S_6 .

Given that
$$S_6 = 0$$
 and fourth term $a_4 = 2$
 $\Rightarrow a + 3d = 2$ (i)
 $S_6 = 0$
 $\frac{n}{2}(2a + 5d) = 0$
 $\Rightarrow 2a + 5d = 0$ (ii)
(i) $\times 2$,
 $2a + 6d = 4$ (iii)
(iii) - (ii),
 $\therefore d = 4$

Substituting the value of d = 4 in (i),

$$a + 3 \times (4) = 2$$

 $\Rightarrow a = 2 - 12 = -10$
 $\therefore a_{30} = a + 29d$
 $= -10 + 29 \times (4)$
 $= -10 + 116$
 $= 106$

∴ Sum to first 30 terms =
$$S_{30} = \frac{n}{2}(a + l)$$

= $\frac{30}{2}(-10 + 106)$
= 15×96
= 1140 .

Question-8

An A.P consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32^{nd} term.

Solution:

Given, n = 60,
$$a_1 = 7$$
,
and $a_{60} = 125$
 $\Rightarrow a_1 + 59d = 125$
 $7 + 59d = 125$
 $59d = 118$
 $d = 118/59 = 2$
 $a_{32} = a_1 + 31d = 7 + 31(2) = 7 + 62$
 $\therefore a_{32} = 69$.

Question-9

Find the sum of the series 51 + 50 + 49 + + 21.

Solution:

$$51 + 50 + 49 + + 21$$

 $a = 51$, $d = -1$, $a_n = 21$
∴ $a + (n - 1) d = a_n$
 $51 + (n - 1) (-1) = 21$
 $(n - 1) (-1) = 21 - 51$
 $n - 1 = 30$
∴ $n = 31$
∴ Sum of the series = $\frac{31}{2}(51 + 21)$
 $= \frac{31}{2} \times 72$
 $= 1116$

 \therefore The sum of the series 51 + 50 + 49 + + 21 = 1116.

Question-10

Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.

Solution:

Let the three numbers be a - d, a, a + d.

$$a - d + a + a + d = 27$$

 $3a = 27$
 $a = 9$
 $(a - d)(a)(a + d) = 648$
 $a(a^2 - d^2) = 648$
 $9(9^2 - d^2) = 648$
 $9^2 - d^2 = 72$
 $d^2 = 81 - 72$

 $d^2 = 9$

d = 3

The numbers are 6, 9, 12.

Question-11

How many terms of A.P -10, -7, -4, -1, must be added to get the sum -104?

Solution:

$$\begin{array}{l} -10, -7, -4, -1, \dots \\ a = -10, d = 3 \\ S_n = \frac{1}{2}n\{2a + (n-1) d\} \\ -104 = \frac{1}{2}n\{2(-10) + (n-1) 3\} \\ = \frac{1}{2}n(-20 + 3n - 3) \\ -208 = n(3n - 23) \\ 3n^2 - 23n + 208 = 0 \\ 3n^2 - 39n + 16n + 208 = 0 \\ 3n(n-13) + 16(n-13) = 0 \\ (n-13)(3n+16) = 0 \\ \therefore n = 13 \end{array}$$

 \therefore 13 terms must be added to get the sum of the A.P - 104.

Question-12

If the sum of p terms of an A.P is $3p^2 + 4p$, find its n^{th} term.

Solution:

$$S_p = 3p^2 + 4p$$

 $t_n = S_n - S_{n-1}$
 $= (3n^2 + 4n) - [3(n-1)^2 + 4(n-1)]$

$$= (3n^{2} + 4n) - [3(n^{2} - 2n + 1) + 4(n - 1)]$$

$$= (3n^{2} + 4n) - [3n^{2} - 6n + 3 + 4n - 4]$$

$$= (3n^{2} + 4n) - [3n^{2} - 2n - 1]$$

$$= 3n^{2} + 4n - 3n^{2} + 2n + 1$$

$$= 6n + 1$$

Therefore the n^{th} term is 6n + 1.