
Chapter 2

Sorting Algorithms

SortInG alGorIthMS

Purpose of sorting
Sorting is a technique which reduces problem complexity and
search complexity.
 • Insertion sort takes q (n2) time in the worst case. It is a fast

inplace sorting algorithm for small input sizes.
 • Merge sort has a better asymptotic running time q (n log n), but

it does not operate in inplace.
 • Heap sort, sorts ‘n’ numbers inplace in q (n log n) time, it uses a

data structure called heap, with which we can also implement a
priority queue.

 • Quick sort also sorts ‘n’ numbers in place, but its worst – case
running time is q (n2). Its average case is q (n log n). The con-
stant factor in quick sort’s running time is small, This algorithm
performs better for large input arrays.

 • Insertion sort, merge sort, heap sort, and quick sort are all com-
parison based sorts; they determine the sorted order of an inpu-
tarray by comparing elements.

 • We can beat the lower bound of W (n log n) if we can gather
information about the sorted order of the input by means other
than comparing elements.

 • The counting sort algorithm, assumes that the input numbers are
in the set {1, 2, …. k}. By using array indexing as a tool for
determining relative order, counting sort can sort n numbers in
q (k + n) time. Thus counting sort runs in time that is linear in
size of the input array.

 • Radix sort can be used to extend the range of counting sort. If
there are ‘n’ integers to sort, each integer has ‘d’ digits, and each

digit is in the set {1, 2,… k}, then radix sort can sort the num-
bers in q (d (n + k)) time. Where ‘d’ is constant. Radix sort runs
in linear time.

 • Bucket sort, requires knowledge of the probabilistic distribution
of numbers in the input array.

MerGe Sort
Suppose that our division of the problem yields ‘a’ sub problems,

each of which is
1

b

 th size of the original problem. For merge

sort, both a and b are 2, but sometimes a ≠ b. If we take D(n) time
to divide the problem into sub problems and C(n) time to combine
the solutions of the sub problems into the solution to the original
problem. The recurrence relation for merge sort is

T n
n

aT n b D n C n
()

()

() () ()
=

≤
+ +

θ 1 if c,

/ otherwise

Running time is broken down as follows:

Divide: This step computes the middle of the sub array, which
takes constant time q (1).

Conquer: We solve 2 sub problems of size (n/2) each recursively
which takes 2T(n/2) time.

Combine: Merge sort procedure on an n-element sub array takes
time q (n).

 Sorting algorithms

 Merge sort

 Bubble sort

 Insertion sort

 Selection sort

 Selection sort algorithm

 Binary search trees

 Heap sort

 Sorting–performing delete max operations

 Max-heap property

 Min-heap property

 Priority queues

LEARNING OBJECTIVES

Chapter 2  •  Sorting Algorithms | 3.99

 • Worst case running time T(n) of merge sort

T n
n

aT n n if n
()

()

() ()
=

≤
+ >

0 1

2 1

 if 1

/ θ

log n

cn cn

cn
2
cn

2
cn

4
cn

4
cn

4
cn

4
cn cn

c c c c c c c c cn

Total: cn log n + cn

Figure 1 Recurrence tree

The top level has total cost ‘cn’, the next level has total cost
c(n/2) + c(n/2) = cn and the next level has total cost c(n/4)
+ c(n/4) + c(n/4) + c(n/4) = cn and so on. The ith level has
total cost 2i c (n/2i) = cn. At the bottom level, there are ‘n’
nodes, each contributing a cost of c, for a total cost of ‘cn’.
The total number of levels of the ‘recursion tree’ is log n + 1.

There are log n + 1 levels, each costing cn, for a total cost
of cn (log n + 1) = cn log n + cn ignoring the low–order term
and the constant c, gives the desired result of q (n log n).

BuBBle Sort
Bubble sort is a simple sorting algorithm that works by
repeatedly stepping through the list to be sorted, compar-
ing each pair of adjacent items, and swapping them if they
are in the wrong order. The pass through the list is repeated
until no swaps are needed, which indicates that the list is
sorted. The algorithm gets its name from the way smaller
elements ‘bubble’ to the top of the list.

Example: Take the array of numbers ‘5 1 4 2 8’and sort the
array from lowest number to greatest number using bubble
sort algorithm. In each step, elements underlined are being
compared.

First pass:

(5 1 4 2 8) → (1 5 4 2 8), here algorithm
compares the first 2 elements and swaps them
(1 5 4 2 8) → (1 4 5 2 8), swap (5 > 4)
(1 4 5 2 8) → (1 4 2 5 8), swap (5 > 2)
(1 4 2 5 8) → (1 4 2 5 8), since these ele-
ments are already in order, algorithm does not swap them.

Second pass:

(1 4 2 5 8) → (1 4 2 5 8)
(1 4 2 5 8) → (1 2 4 5 8), swap since (4 > 2)
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)

The array is already sorted, but our algorithm does not
know if it is completed. The algorithm needs one whole
pass without any swap to know it is sorted.
Third pass:

(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
Finally the array is sorted, and the algorithm can terminate.

Algorithm
void bubblesort (int a [], int n)
{
 int i, j, temp;
 for (i=0; i < n-1; i++)
 {
 for (j=0; j < n – 1 – i; j++)
 if (a [j] > a [j + 1])
 {
 temp = a [j + 1];
 a [j + 1] = a [j];
 a [j] = temp;
 }
 }
}

InSertIon Sort
Insertion sort is a comparison sort in which the sorted array is
built one entry at a time. It is much less efficient on large lists
than more advanced algorithms such a quick sort, heap sort,
(or) merge sort. Insertion sort provides several advantages.

 • Efficient for small data sets.
 • Adaptive, i.e., efficient for data set that are already sub-

stantially sorted. The complexity is O(n + d), where d is
the number of inversions.

 • More efficient in practice than most other simple quad-
ratic, i.e., O(n2) algorithms such as selection sort (or)
bubble sort, the best case is O(n).

 • Stable, i.e., does not change the relative order of elements
with equal keys.

 • In-place i.e., only requires a constant amount O(1) of
additional memory space.

 • Online, i.e., can sort a list as it receives it.

Algorithm
Insertion sort (A)
For (j ← 2) to length [A]
Do key ← A [j]
i ←j – 1;
While i > 0 and A [i] > key
{
Do A [i + 1] ← A [i]
i ← i - 1
}
A [i + 1] ← key

3.100 | Unit 3  •  Algorithms

Every repetition of insertion sort removes an element
from the input data, inserting it into the correct position
in the already sorted list, until no input element remains.
Sorting is typically done in–place. The resulting array after
K iterations has the property where the first k + 1 entries are
sorted. In each iteration the first remaining entry of the input
is removed, inserted into the result at the correct position,
with each element greater than X copied to the right as it is
compared against. X.

Performance
 • The best case input is an array that is already sorted. In this

case insertion sort has a linear running time (i.e., q (n)).
 • The worst case input is an array sorted in reverse order.

In this case every iteration of the inner loop will scan
and shift the entire sorted subsection of the array before
inserting the next element. For this case insertion sort has
a quadratic running time (O(n2)).

 • The average case is also quadratic, which makes insertion
sort impractical for sorting large arrays, however, inser-
tion sort is one of the fastest algorithms for sorting very
small arrays even faster than quick sort.

Example: Following figure shows the operation of
insertion sort on the array A = (5, 2, 4, 6, 1, 3). Each part
shows what happens for a particular iteration with the value
of j indicated. j indexes the ‘Current card’ being inserted.

5 2 4 6 1 3 2 5 4 6 1 3

jj

2 4 5 6 1 32 4 5 6 1 3

jj

1 2 3 4 5 61 2 4 5 6 3

j

Read the figure row by row. Elements to the left of A[j] that
are greater than A[j] move one position to the right and A[j]
moves into the evacuated position.

SelectIon Sort
Selection sort is a sorting algorithm, specifically an
in-place comparison sort. It has O(n2) complexity, making it
inefficient on large lists.
The algorithm works as follows:

 1. Find the minimum value in the list.
 2. Swap it with the value in the first position.
 3. Repeat the steps above for the remainder of the list

(starting at the second position and advancing each
time).

Analysis
Selection sort is not difficult to analyze compared to other
sorting algorithms, since none of the loops depend on the
data in the array selecting the lowest element requires scan-
ning all n elements (this takes n – 1 comparisons) and then
swapping it into the first position. Finding the next lowest
element requires scanning the remaining n – 1 elements and
so on, for (n – 1) + (n – 2) + … + 2 + 1 = n(n – 1)/2 ∈ q(n2)
comparisons.

Each of these scans requires one swap for n – 1 elements
(the final element is already in place).

Selection sort Algorithm
First, the minimum value in the list is found. Then, the first
element (with an index of 0) is swapped with this value.
Lastly, the steps mentioned are repeated for rest of the array
(starting at the 2nd position).

Example 1: Here’s a step by step example to illustrate the
selection sort algorithm using numbers.

Original array: 6 3 5 4 9 2 7
1st pass → 2 3 5 4 9 6 7 (2 and 6 were swapped)
2nd pass → 2 3 5 4 9 6 7 (no swap)
3rd pass → 2 3 4 5 9 6 7 (4 and 5 were swapped)
4th pass → 2 3 4 5 6 9 7 (6 and 9 were swapped)
5th pass → 2 3 4 5 6 7 9 (7 and 9 were swapped)
6th pass → 2 3 4 5 6 7 9 (no swap)

Note: There are 7 keys in the list and thus 6 passes were
required. However, only 4 swaps took place.

Example 2: Original array: LU, KU, HU, LO, SU, PU
1st pass → HU, KU, LU, LO, SU, PU
2nd pass → HU, KU, LU, LO, SU, PU
3rd pass → HU, KU, LO, LU, SU, PU
4th pass → HU, KU, LO, LU, SU, PU
5th pass → HU, KU, LO, LU, PU, SU

Note: There were 6 elements in the list and thus 5 passes
were required. However, only 3 swaps took place.

BInary Search treeS
Search trees are data structures that support many
dynamic, set operations, including SEARCH, MINIMUM,
MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT
and DELETE. A search tree can be used as a dictionary and
as a priority Queue. Operations on a binary search tree take
time proportional to the height of the tree. For a complete
binary tree with ‘n’ nodes, basic operations run in q(log n)
worst-case time. If the tree is a linear chain of ‘n’ nodes, the
basic operations take q(n) worst-case time.

A binary search tree is organized, in a binary tree such a
tree can be represented by a linked data structure in which
each node is an object. In addition to key field, each node
contains fields left, right and P that point to the nodes cor-
responding to its left child, its right child, and its parent,

Chapter 2  •  Sorting Algorithms | 3.101

respectively. If the child (or) parent is missing, the appropri-
ate field contains the value NIL. The root node is the only
node in the tree whose parent field is NIL.

Binary search tree property
The keys in a binary search tree are always stored in such a
way as to satisfy the binary search tree property.

Let ‘a’ be a node in a binary search tree. If ‘b’ is a node
in the left sub tree of ‘a’, key [b] ≤ key [a]

If ‘b’ is a node in the right sub tree of ‘a’ then key [a] ≤ key
[b].

8

7

6

10

9 14

Figure 2 Binary search tree.

The binary search tree property allows us to print out all
keys in a binary search tree in sorted order by a simple
recursive algorithm called an inorder tree.

Algorithm
INORDER-TREE-WALK (root [T])

INORDER-TREE-WALK (a)

 1. If a ≠ NIL
 2. Then INORDER-TREE-WALK (left [a])
 3. Print key [a]
 4. INORDER-TREE-WALK (right [a])

It takes q(n) time to walk an n-node binary search tree, since
after the initial call, the procedure is called recursively twice
for each node in the tree.

Let T(n) denote the time taken by IN-ORDER-TREE-
WALK, when it is called on the root of an n-node subtree.

INORDER-TREE-WALK takes a small, constant
amount of time on an empty sub-tree (for the test x ≠ NIL).

So T(1) = C for some positive constant C.
For n > 0, suppose that INORDER-TREE-WALK is

called on a node ‘a’ whose left subtree has k nodes and
whose right subtree has n – k – 1 nodes.

The time to perform in order traversal is
T(n) = T(k) + T(n – k – 1) + d.

For some positive constant ‘d’ that reflects the time to
execute in-order (a), exclusive of the time spent in recursive
calls T(n) = (c + d) n + c.

For n = 0, we have (c + d) 0 + c = T(0),
For n > 0,
 T(n) = T(k) + T(n – k – 1) + d

  = ((c + d)(k + c) + ((c + d) (n – k – 1) + c) + d
  = (c + d) n + c – (c + d) + c + d = (c + d)n + c

heap Sort
Heap sort begins by building a heap out of the data set, and
then removing the largest item and placing it at the end of

the partially sorted array. After removing the largest item, it
reconstructs heap, removes the largest remaining item, and
places, it in the next open position from the end of the par-
tially sorted array. This is repeated until there are no items
left in the heap and the sorted array is full. Elementary
implementations require two arrays one to hold the heap
and the other to hold the sorted elements.

 • Heap sort inserts the input list elements into a binary
heap data structure. The largest value (in a max-heap) or
the smallest value (in a min-heap) is extracted until none
remain, the value having been extracted in sorted order.

Example: Given an array of 6 elements: 15, 19, 10, 7, 17,
16, sort them in ascending order using heap sort.

Steps:

 1. Consider the values of the elements as priorities and
build the heap tree.

 2. Start delete Max operations, storing each deleted
element at the end of the heap array.

If we want the elements to be sorted in ascending order, we
need to build the heap tree in descending order-the greatest
element will have the highest priority.

 1. Note that we use only array, treating its parts
differently,

 2. When building the heap-tree, part of the array will be
considered as the heap, and the rest part-the original
array.

 3. When sorting, part of the array will be the heap and
the rest part-the sorted array.

Here is the array: 15, 19, 10, 7, 17, 6.

Building the Heap Tree
The array represented as a tree, which is complete but not
ordered.

15 19 10 7 17 16

7 17 16

10

15

19

Start with the right most node at height 1 – the node at posi-
tion 3 = size/2. It has one greater child and has to be perco-
lated down.

15 19 10 7 17 16

7 17 16

10

15

19

3.102 | Unit 3  •  Algorithms

After processing array [3] the situation is:

15 19 16 7 17 10

7 17 10

16

15

19

Next comes array [2]. Its children are smaller, so no perco-
lation is needed.

The last node to be processed is array[1]. Its left
child is the greater of the children. The item at array
[1] has to be percolated down to the left, swapped with
array [2].

15 19 16 7 17 10

7 17 10

16

15

19

As a result:

19 15 16 7 17 10

7 17 10

16

19

15

The children of array [2] are greater and item 15 has to be
moved down further, swapped with array [5].

19 17 16 7 15 10

7 15 10

16

19

17

Now the tree is ordered, and the binary heap is built.

Sorting-performing Delete
Max Operations
Delete the top element
Store 19 in a temporary place, a hole is created at the top.

17 16 7 15 10

19

7 15 10

1617

Swap 19 with the last element of the heap. As 10 will be
adjusted in the heap, its cell will no longer be a part of the
heap. Instead it becomes a cell from the sorted array

17 16 7 15 19

10

Percolate down the hole

17 16 7 15 19

10

7 15

10

16

17

Percolate once more (10 is less than 15, so it cannot be
inserted in the previous hole)

17 15 16 7 19

10

7

15 16

17

Now 10 can be inserted in the hole

17 15 16 7 10 19

7

15 16

17

10

Repeat the step B till the array is sorted.

Heap sort analysis
Heap sort uses a data structure called (binary) heap binary,
heap is viewed as a complete binary tree. An Array A that
represents a heap is an object with 2 attributes: length [A],
which is the number of elements in the array and heap size
[A], the number of elements in the heap stored within array A.

No element past A [heap size [A]], where heap size [A] ≤
length [A], is an element of the heap.

There are 2 kinds of binary heaps:

 1. Max-heaps
 2. Min-heaps

In both kinds the values in the nodes satisfy a heap-property.

Max-heap property A[PARENT (i)] ≥A[i]
The value of a node is almost the value of its parent. Thus the
largest element in a max-heap is stored at the root, and the
sub tree rooted at a node contains values no larger than that
contained at the node itself.

Min-heap property For every mode ‘i’ other than the root
[PARENT (i)] ≤ A[i]. The smallest element in a min-heap
is at the root.

Max-heaps are used in heap sort algorithm.
Min-heaps are commonly used in priority queues.

Chapter 2  •  Sorting Algorithms | 3.103

Basic operations on heaps run in time almost propor-
tional to the height of the tree and thus take O(log n)
time

 • MAX-HEAPIFY procedure, runs in O(log n) time.
 • BUILD-MAX-HEAP procedure, runs in linear time.
 • HEAP SORT procedure, runs in O(n log n) time, sorts an

array in place.
 • MAX-HEAP-INSERT

HEAP- EXTRACT-MAX
HEAP-INCREASE-KEY
HEAP-MAXIMUM

All these procedures, run in O(log n) time, allow the heap
data structure to be used as a priority queue.

 • Each call to MAX-HEAPIFY costs O(log n) time, and there
are O(n) such calls. Thus, the running time is O(n log n)

 • The HEAPSORT procedure takes time O(n log n), since
the call to BUILD-MAX-HEAP takes time O(n) and each
of the (n - 1) calls to MAX-HEAPIFY takes time O(log n).

Priority Queues
The most popular application of a heap is its use as an effi-
cient priority queue.

A priority queue is a data structure for maintaining a set
S of elements, each with an associated value called a key. A
max-priority queue supports the following operations:
INSERT: INSERT (s, x) inserts the element x into the set S.
This operation can be written as S ← S U {x}.

MAXIMUM: MAXIMUM (S) returns the element of S
with the largest key

EXTRACT-MAX: EXTRACT-MAX(S) removes and returns
the element of S with the largest key.

INCREASE-KEY: INCREASE-KEY(s, x, k) increases
the value of element x’s key to the new value k, which is
assumed to be atleast as large as x’s current key value.

One application of max–priority queue is to schedule
jobs on a shared computer.

exercISeS

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Solve the recurrence relation T(n) = 2T(n/2) + k.n
where k is constant then T(n) is

 (A) O(log n) (B) O(n log n)
 (C) O(n) (D) O(n2)

 2. What is the time complexity of the given code?
 Void f(int n)
 {
 if (n > 0)
 f (n/2);
 }
 (A) q(log n) (B) q(n log n)
 (C) q(n2) (D) q(n)
 3. The running time of an algorithm is represented by the

following recurrence relation;

 T n

n n

T
n

cn
() =

≤

+

 3

 otherwise
3

 What is the time complexity of the algorithm?
 (A) q(n) (B) q(n log n)
 (C) q(n2) (D) q(n2 log n)

Common data for questions 4 and 5:

 4. The following pseudo code does which sorting?

 xsort [A, n]

 for j ← 2 to n

 do key ← A [i]

 i ← j – 1

 While i > 0 and A [i] > key

 do A [i + i] ← A [i]

 i ← i – 1

 A [i + 1] ← key
 (A) Selection sort (B) Insertion sort
 (C) Quick sort (D) Merge sort

 5. What is the order of elements after 2 iterations of the
above-mentioned sort on given elements?

8 2 4 9 3 6

 (A) 2 4 9 8 3 6

 (B) 2 4 8 9 3 6

 (C) 2 4 6 3 8 9

 (D) 2 4 6 3 8 9

Common data for questions 6 and 7:

 6. The following pseudo code does which sort?

 1. If n = 1 done

 2. Recursively sort

 A [1…[n/2]]and

 A [[n/2] + 1 … n]

 3. Combine 2 ordered lists
 (A) Insertion sort (B) Selection sort
 (C) Merge sort (D) Quick sort

3.104 | Unit 3  •  Algorithms

 7. What is the complexity of the above pseudo code?
 (A) q(log n) (B) q(n2)
 (C) q(n log n) (D) q(2n)

 8. Apply Quick sort on a given sequence 6 10 13 5 8 3 2
11. What is the sequence after first phase, pivot is first
element?

 (A) 5 3 2 6 10 8 13 11
 (B) 5 2 3 6 8 13 10 11
 (C) 6 5 13 10 8 3 2 11
 (D) 6 5 3 2 8 13 10 11

 9. Selection sort is applied on a given sequence:

 89, 45, 68, 90, 29, 34, 17. What is the sequence after 2
iterations?

 (A) 17, 29, 68, 90, 45, 34, 89
 (B) 17, 45, 68, 90, 29, 34, 89
 (C) 17, 68, 45, 90, 34, 29, 89
 (D) 17, 29, 68, 90, 34, 45, 89

 10. Suppose there are log n sorted lists of
n

nlog

 elements

each. The time complexity of producing sorted lists of
all these elements is: (hint: use a heap data structure)

 (A) q(n log log n) (B) q(n log n)
 (C) W(n log n) (D) W(n3/2)

 11. If Divide and conquer methodology is applied on power-
ing a Number Xn. Which one the following is correct?

 (A) Xn = Xn/2 ⋅ Xn/2

 (B) X X Xn
n n

= ⋅
− −1

2

1

2 . X

 (C) X X Xn
n n

= ⋅
+1

2 2

 (D) Both (A) and (B)

 12. The usual q(n2) implementation of insertion sort to
sort an array uses linear search to identify the posi-
tion, where an element is to be inserted into the already

sorted part of the array. If binary search is used instead
of linear search to identify the position, the worst case
running time would be.

 (A) q (n log n)
 (B) q (n2)
 (C) q (n(log n)2)
 (D) q (n)

 13. Consider the process of inserting an element into a
max heap where the max heap is represented by an
array, suppose we perform a binary search on the path
from the new leaf to the root to find the position for
the newly inserted element, the number of comparisons
performed is:

 (A) q (log n) (B) q (log log n)
 (C) q (n) (D) q (n log n)

 14. Consider the following algorithm for searching a given
number ‘X’ in an unsorted array A[1 … n] having ‘n’
distinct values:

 (1) Choose an ‘i’ uniformly at random from 1 … n

 (2) If A [i] = x

 Then stop

 else

 goto(1);

 Assuming that X is present in A, what is the expected
number of comparisons made by the algorithm before
it terminates.

 (A) n (B) n – 1
 (C) 2n (D) n/2

 15. The recurrence equation for the number of additions
A(n) made by the divide and conquer algorithm on
input size n = 2K is

 (A) A(n) = 2A(n/2)+ 1 (B) A(n) = 2A(n/2) + n2

 (C) A(n) = 2A(n/4) + n2 (D) A(n) = 2A(n/8) + n2

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1.

Input Array
Linear Search

W(n)
Binary search

W(n)

128
elements

128 8

1024
elements

1024 x

 Find x value?
 (A) 10 (B) 11
 (C) 12 (D) 13

 2. Choose the correct one
 (i) log n (ii) n
 (iii) n log n (iv) n2

 (a) A result of cutting a problem size by a constant
factor on each iteration of the algorithm.

 (b) Algorithm that scans a list of size ‘n’.
 (c) Many divide and conquer algorithms fall in this

category.
 (d) Typically characterizes efficiency of algorithm

with two embedded loops.

 (A) i – b, ii – c, iii – a, iv – d
 (B) i – a, ii – b, iii – c, iv – d
 (C) i – c, ii – d, iii – a, iv – b
 (D) i – d, ii – a, iii – b, iv – c

 3. Insertion sort analysis in worst case
 (A) q (n)
 (B) q (n2)
 (C) q (n log n)
 (D) q (2n)

Chapter 2  •  Sorting Algorithms | 3.105

 4. From the recurrence relation. Of merge sort
 T(n) = 2T (n/2) + q(n).
 Which option is correct?
 I. n/2 II. 2T III. q (n)
 (a) Extra work (divide and conquer)

 (b) Sub-problem size

 (c) Number of sub-problems
 (A) III – b, II – a, I – c (B) I – b, II – c, III – a
 (C) I – a, II – c, III – b (D) I – c, II – a, III – b

 5. What is the number of swaps required to sort ‘n’ ele-
ments using selection sort, in the worst case?

 (A) q(n) (B) q(n2)
 (C) q(n log n) (D) q(n2 log n)

 6. In a binary max heap containing ‘n’ numbers, the
smallest element can be found in time

 (A) O(n) (B) O(log n)
 (C) O(log log n) (D) O(1)

 7. What is the worst case complexity of sorting ‘n’ num-
bers using quick sort?

 (A) q(n) (B) q(n log n)
 (C) q(n2) (D) q(n !)

 8. The best case analysis of quick sort is, if partition splits
the array of size n into

 (A) n/2 : n/m (B) n/2 : n/2
 (C) n/3 : n/2 (D) n/4 : n/2

 9. What is the time complexity of powering a number, by
using divide and conquer methodology?

 (A) q (n2) (B) q (n)
 (C) q(log n) (D) q(n log n)

 10. Which one of the following in-place sorting algorithm
needs the minimum number of swaps?

 (A) Quick sort (B) Insertion sort
 (C) Selection sort (D) Heap sort

 11. As the size of the array grows what is the time com-
plexity of finding an element using binary search (array
of elements are ordered)?

 (A) q(n log n) (B) q(log n)
 (C) q(n2) (D) q(n)

 12. The time complexity of heap sort algorithm is
 (A) n log n (B) log n
 (C) n2 (D) None of these.

 13. As part of maintenance work, you are entrusted with
the work of rearranging the library books in a shelf in a
proper order, at the end of each day. The ideal choices
will be_____.

 (A) Heap sort (B) Quick sort
 (C) Selection sort (D) Insertion sort

 14. The value for which you are searching is called
 (A) Binary value
 (B) Search argument
 (C) Key
 (D) Serial value

 15. To sort many large objects and structures it would be
most efficient to _____.

 (A) Place them in an array and sort the array
 (B) Place the pointers on them in an array and sort the

array
 (C) Place them in a linked list and sort the linked list
 (D) None of the above

 1. What is the number of swaps required to sort n ele-
ments using selection sort, in the worst case? [2009]

 (A) q(n)

 (B) q(n log n)

 (C) q(n2)

 (D) q(n2 log n)

 2. Which one of the following is the tightest upper
bound that represents the number of swaps required
to sort n numbers using selection sort? [2013]

 (A) O(log n) (B) O(n)
 (C) O(n log n) (D) O(n2)

 3. Let P be a quick sort program to sort numbers in
ascending order using the first element as the pivot.
Let t

1
 and t

2
 be the number of comparisons made by P

for the inputs [1 2 3 4 5] and [4 1 5 3 2] respectively.
Which one of the following holds? [2014]

 (A) t
1
= 5 (B) t

1
 < t

2

 (C) t
1
 > t

2
 (D) t

1
 = t

2

 4. The minimum number of comparisons required to
find the minimum and the maximum of 100 numbers
is ––––––. [2014]

 5. Suppose P, Q, R, S, T are sorted sequences having
lengths 20, 24, 30, 35, 50 respectively. They are to be
merged into a single sequence by merging together
two sequences at a time. The number of comparisons
that will be needed in the worst case by the optimal
algorithm for doing this is –––––. [2014]

 6. You have an array of n elements. Suppose you imple-
ment quick sort by always choosing the central
element of the array as the pivot. Then the tight-
est upper bound for the worst case performance is
 [2014]

 (A) O(n2) (B) O(n log n)
 (C) q(n log n) (D) O(n3)

 7. What are the worst-case complexities of insertion and
deletion of a key in a binary search tree? [2015]

prevIouS yearS’ QueStIonS

3.106 | Unit 3  •  Algorithms

 (A) q(log n) for both insertion and deletion
 (B) q(n) for both insertion and deletion
 (C) q(n) for insertion and q(log n) for deletion
 (D) q(log n) for insertion and q(n) for deletion

 8. The worst case running times of Insertion sort, Merge
sort and Quick sort, respectively, are: [2016]

 (A) Θ(n log n), Θ(n log n),and Θ(n2)
 (B) Θ(n2), Θ(n2),and Θ(n log n)
 (C) Θ(n2), Θ(n log n),and Θ(n log n)
 (D) Θ(n2), Θ(n log n),and Θ(n2)

 9. An operator delete(i) for a binary heap data structure
is to be designed to delete the item in the i-th node.
Assume that the heap is implemented in an array and i
refers to the i-th index of the array. If the heap tree has
depth d (number of edges on the path from the root
to the farthest leaf), then what is the time complexity
to re-fix the heap efficiently after the removal of the
element? [2016]

 (A) O(1) (B) O(d) but not O(1)
 (C) O(2d) but not O(d) (D) O(d2d) but not O(2d)

 10. Assume that the algorithms considered here sort the
input sequences in ascending order. If the input is
already in ascending order, which of the following are
TRUE? [2016]

 I. Quicksort runs in Θ (n2) time
 II. Bubblesort runs in Θ (n2) time
 III. Mergesort runs in Θ (n) time
 IV. Insertion sort runs in Θ (n) time

 (A) I and II only (B) I and III only
 (C) II and IV only (D) I and IV only

 11. A complete binary min - heap is made by including
each integer in [1,1023] exactly once. The depth of
a node in the heap is the length of the path from the
root of the heap to that node. Thus, the root is depth 0.
The maximum depth at which integer 9 can appear is
_____ . [2016]

anSwer KeyS

exercISeS

Practice Problems 1
 1. B 2. A 3. A 4. B 5. B 6. C 7. C 8. B 9. A 10. B
 11. D 12. A 13. A 14. B 15. A

Practice Problems 2
 1. B 2. B 3. B 4. B 5. A 6. A 7. C 8. B 9. C 10. C
 11. B 12. A 13. D 14. C 15. B

Previous Years’ Questions
 1. A 2. B 3. C 4. 148 5. 358 6. A 7. B 8. D 9. B 10. D
 11. 8

	Unit 3: Programming and Data Structures
	PART B: Algorithms
	Chapter 2: Sorting Algorithms
	Sorting Algorithms
	Merge Sort
	Bubble Sort
	Insertion Sort
	Selection Sort
	Binary Search Trees
	Heap Sort
	Exercises
	Previous Years’ Questions
	Answer Keys

