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8.1 Potential Energy 215

n Chapter 7 we introduced the concept of kinetic energy, which is the energy
associated with the motion of an object. In this chapter we introduce another
form of energy—potential energy, which is the energy associated with the arrange-

ment of a system of objects that exert forces on each other. Potential energy can
be thought of as stored energy that can either do work or be converted to kinetic
energy. 

The potential energy concept can be used only when dealing with a special
class of forces called conservative forces. When only conservative forces act within an
isolated system, the kinetic energy gained (or lost) by the system as its members
change their relative positions is balanced by an equal loss (or gain) in potential
energy. This balancing of the two forms of energy is known as the principle of conser-
vation of mechanical energy.

Energy is present in the Universe in various forms, including mechanical, elec-
tromagnetic, chemical, and nuclear. Furthermore, one form of energy can be con-
verted to another. For example, when an electric motor is connected to a battery,
the chemical energy in the battery is converted to electrical energy in the motor,
which in turn is converted to mechanical energy as the motor turns some device.
The transformation of energy from one form to another is an essential part of the
study of physics, engineering, chemistry, biology, geology, and astronomy.

When energy is changed from one form to another, the total amount present
does not change. Conservation of energy means that although the form of energy
may change, if an object (or system) loses energy, that same amount of energy ap-
pears in another object or in the object’s surroundings.

POTENTIAL ENERGY
An object that possesses kinetic energy can do work on another object—for exam-
ple, a moving hammer driving a nail into a wall. Now we shall introduce another
form of energy. This energy, called potential energy U, is the energy associated
with a system of objects.

Before we describe specific forms of potential energy, we must first define a
system, which consists of two or more objects that exert forces on one another. If
the arrangement of the system changes, then the potential energy of the
system changes. If the system consists of only two particle-like objects that exert
forces on each other, then the work done by the force acting on one of the objects
causes a transformation of energy between the object’s kinetic energy and other
forms of the system’s energy.

Gravitational Potential Energy

As an object falls toward the Earth, the Earth exerts a gravitational force mg on the
object, with the direction of the force being the same as the direction of the ob-
ject’s motion. The gravitational force does work on the object and thereby in-
creases the object’s kinetic energy. Imagine that a brick is dropped from rest di-
rectly above a nail in a board lying on the ground. When the brick is released, it
falls toward the ground, gaining speed and therefore gaining kinetic energy. The
brick–Earth system has potential energy when the brick is at any distance above
the ground (that is, it has the potential to do work), and this potential energy is
converted to kinetic energy as the brick falls. The conversion from potential en-
ergy to kinetic energy occurs continuously over the entire fall. When the brick
reaches the nail and the board lying on the ground, it does work on the nail,
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216 C H A P T E R  8 Potential Energy and Conservation of Energy

driving it into the board. What determines how much work the brick is able to do
on the nail? It is easy to see that the heavier the brick, the farther in it drives the
nail; also the higher the brick is before it is released, the more work it does when it
strikes the nail.

The product of the magnitude of the gravitational force mg acting on an ob-
ject and the height y of the object is so important in physics that we give it a name:
the gravitational potential energy. The symbol for gravitational potential energy
is Ug , and so the defining equation for gravitational potential energy is

(8.1)

Gravitational potential energy is the potential energy of the object–Earth system.
This potential energy is transformed into kinetic energy of the system by the gravi-
tational force. In this type of system, in which one of the members (the Earth) is
much more massive than the other (the object), the massive object can be mod-
eled as stationary, and the kinetic energy of the system can be represented entirely
by the kinetic energy of the lighter object. Thus, the kinetic energy of the system is
represented by that of the object falling toward the Earth. Also note that Equation
8.1 is valid only for objects near the surface of the Earth, where g is approximately
constant.1

Let us now directly relate the work done on an object by the gravitational
force to the gravitational potential energy of the object–Earth system. To do this,
let us consider a brick of mass m at an initial height yi above the ground, as shown
in Figure 8.1. If we neglect air resistance, then the only force that does work on
the brick as it falls is the gravitational force exerted on the brick mg. The work Wg
done by the gravitational force as the brick undergoes a downward displacement 
d is

where we have used the fact that (Eq. 7.4). If an object undergoes 
both a horizontal and a vertical displacement, so that 
then the work done by the gravitational force is still because

Thus, the work done by the gravitational force depends only
on the change in y and not on any change in the horizontal position x.

We just learned that the quantity mgy is the gravitational potential energy of
the system Ug , and so we have

(8.2)

From this result, we see that the work done on any object by the gravitational force
is equal to the negative of the change in the system’s gravitational potential energy.
Also, this result demonstrates that it is only the difference in the gravitational poten-
tial energy at the initial and final locations that matters. This means that we are
free to place the origin of coordinates in any convenient location. Finally, the work
done by the gravitational force on an object as the object falls to the Earth is the
same as the work done were the object to start at the same point and slide down an
incline to the Earth. Horizontal motion does not affect the value of Wg .

The unit of gravitational potential energy is the same as that of work—the
joule. Potential energy, like work and kinetic energy, is a scalar quantity.

Wg � Ui � Uf � �(Uf � Ui) � ��Ug

�mg j � (xf � xi)i � 0.
mgyi � mgyf

d � (xf � xi)i � (yf � yi)j,
j � j � 1

Wg � (mg) � d � (�mg j) � (yf � yi) j � mgyi � mgyf

Ug � mgy

1 The assumption that the force of gravity is constant is a good one as long as the vertical displacement
is small compared with the Earth’s radius.

Gravitational potential energy

m g

yi

m g

yf

d

Figure 8.1 The work done on
the brick by the gravitational force
as the brick falls from a height yi to
a height yf is equal to mgy i � mgy f .
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Can the gravitational potential energy of a system ever be negative?

Quick Quiz 8.1

The Bowler and the Sore ToeEXAMPLE 8.1
the ball reaches his toe gives (7 kg)
(9.80 m/s2)(0.03 m) � 2.06 J. So, the work done by the gravi-
tational force is We should probably
keep only one digit because of the roughness of our esti-
mates; thus, we estimate that the gravitational force does 30 J
of work on the bowling ball as it falls. The system had 30 J of
gravitational potential energy relative to the top of the toe be-
fore the ball began its fall.

When we use the bowler’s head (which we estimate to be
1.50 m above the floor) as our origin of coordinates, we find
that (7 kg)(9.80 m/s2)(� 1 m) � � 68.6 J and
that (7 kg)(9.80 m/s2)(� 1.47 m) � � 100.8 J.
The work being done by the gravitational force is still 

30 J.Wg � Ui � Uf � 32.24 J �

Uf � mgyf �
Ui � mgyi �

Wg � Ui � Uf � 32.24 J.

Uf � mgyf �A bowling ball held by a careless bowler slips from the
bowler’s hands and drops on the bowler’s toe. Choosing floor
level as the y � 0 point of your coordinate system, estimate
the total work done on the ball by the force of gravity as the
ball falls. Repeat the calculation, using the top of the bowler’s
head as the origin of coordinates.

Solution First, we need to estimate a few values. A bowling
ball has a mass of approximately 7 kg, and the top of a per-
son’s toe is about 0.03 m above the floor. Also, we shall as-
sume the ball falls from a height of 0.5 m. Holding nonsignif-
icant digits until we finish the problem, we calculate the
gravitational potential energy of the ball–Earth system just
before the ball is released to be (7 kg)
(9.80 m/s2)(0.5 m) � 34.3 J. A similar calculation for when

Ui � mgyi �

Elastic Potential Energy

Now consider a system consisting of a block plus a spring, as shown in Figure 8.2.
The force that the spring exerts on the block is given by In the previous
chapter, we learned that the work done by the spring force on a block connected
to the spring is given by Equation 7.11:

(8.3)

In this situation, the initial and final x coordinates of the block are measured from
its equilibrium position, x � 0. Again we see that Ws depends only on the initial
and final x coordinates of the object and is zero for any closed path. The elastic
potential energy function associated with the system is defined by

(8.4)

The elastic potential energy of the system can be thought of as the energy stored
in the deformed spring (one that is either compressed or stretched from its equi-
librium position). To visualize this, consider Figure 8.2, which shows a spring on a
frictionless, horizontal surface. When a block is pushed against the spring (Fig.
8.2b) and the spring is compressed a distance x, the elastic potential energy stored
in the spring is kx2/2. When the block is released from rest, the spring snaps back
to its original length and the stored elastic potential energy is transformed into ki-
netic energy of the block (Fig. 8.2c). The elastic potential energy stored in the
spring is zero whenever the spring is undeformed (x � 0). Energy is stored in the
spring only when the spring is either stretched or compressed. Furthermore, the
elastic potential energy is a maximum when the spring has reached its maximum
compression or extension (that is, when is a maximum). Finally, because the
elastic potential energy is proportional to x2, we see that Us is always positive in a
deformed spring.

� x �

Us � 1
2kx2

Ws � 1
2kxi 

2 � 1
2kxf 

2

Fs � �kx.

Elastic potential energy stored in a
spring
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CONSERVATIVE AND NONCONSERVATIVE FORCES
The work done by the gravitational force does not depend on whether an object
falls vertically or slides down a sloping incline. All that matters is the change in the
object’s elevation. On the other hand, the energy loss due to friction on that in-
cline depends on the distance the object slides. In other words, the path makes no
difference when we consider the work done by the gravitational force, but it does
make a difference when we consider the energy loss due to frictional forces. We
can use this varying dependence on path to classify forces as either conservative or
nonconservative.

Of the two forces just mentioned, the gravitational force is conservative and
the frictional force is nonconservative.

Conservative Forces

Conservative forces have two important properties:

1. A force is conservative if the work it does on a particle moving between any two
points is independent of the path taken by the particle.

2. The work done by a conservative force on a particle moving through any closed
path is zero. (A closed path is one in which the beginning and end points are
identical.)

The gravitational force is one example of a conservative force, and the force
that a spring exerts on any object attached to the spring is another. As we learned
in the preceding section, the work done by the gravitational force on an object
moving between any two points near the Earth’s surface is 
From this equation we see that Wg depends only on the initial and final y coordi-

Wg � mgyi � mgyf .

8.2

Properties of a conservative force

Figure 8.2 (a) An undeformed
spring on a frictionless horizontal
surface. (b) A block of mass m is
pushed against the spring, compress-
ing it a distance x. (c) When the
block is released from rest, the elastic
potential energy stored in the spring
is transferred to the block in the
form of kinetic energy. 

x = 0

x

m

x = 0

v

(c)

(b)

(a)

Us =    kx21
2

Ki = 0

Kf =    mv21
2

Us = 0

m

m
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nates of the object and hence is independent of the path. Furthermore, Wg is zero
when the object moves over any closed path (where 

For the case of the object–spring system, the work Ws done by the spring force
is given by (Eq. 8.3). Again, we see that the spring force is con-
servative because Ws depends only on the initial and final x coordinates of the ob-
ject and is zero for any closed path. 

We can associate a potential energy with any conservative force and can do this
only for conservative forces. In the previous section, the potential energy associated
with the gravitational force was defined as In general, the work Wc done
on an object by a conservative force is equal to the initial value of the potential en-
ergy associated with the object minus the final value:

(8.5)

This equation should look familiar to you. It is the general form of the equation
for work done by the gravitational force (Eq. 8.2) and that for the work done by
the spring force (Eq. 8.3).

Nonconservative Forces

A force is nonconservative if it causes a change in mechanical energy E,
which we define as the sum of kinetic and potential energies. For example, if a
book is sent sliding on a horizontal surface that is not frictionless, the force of ki-
netic friction reduces the book’s kinetic energy. As the book slows down, its kinetic
energy decreases. As a result of the frictional force, the temperatures of the book
and surface increase. The type of energy associated with temperature is internal en-
ergy, which we will study in detail in Chapter 20. Experience tells us that this inter-
nal energy cannot be transferred back to the kinetic energy of the book. In other
words, the energy transformation is not reversible. Because the force of kinetic
friction changes the mechanical energy of a system, it is a nonconservative force. 

From the work–kinetic energy theorem, we see that the work done by a con-
servative force on an object causes a change in the kinetic energy of the object.
The change in kinetic energy depends only on the initial and final positions of the
object, and not on the path connecting these points. Let us compare this to the
sliding book example, in which the nonconservative force of friction is acting be-
tween the book and the surface. According to Equation 7.17a, the change in ki-
netic energy of the book due to friction is , where d is the length
of the path over which the friction force acts. Imagine that the book slides from A
to B over the straight-line path of length d in Figure 8.3. The change in kinetic en-
ergy is . Now, suppose the book slides over the semicircular path from A to B.
In this case, the path is longer and, as a result, the change in kinetic energy is
greater in magnitude than that in the straight-line case. For this particular path,
the change in kinetic energy is , since d is the diameter of the semicircle.
Thus, we see that for a nonconservative force, the change in kinetic energy de-
pends on the path followed between the initial and final points. If a potential en-
ergy is involved, then the change in the total mechanical energy depends on the
path followed. We shall return to this point in Section 8.5.

CONSERVATIVE FORCES AND POTENTIAL ENERGY
In the preceding section we found that the work done on a particle by a conserva-
tive force does not depend on the path taken by the particle. The work depends
only on the particle’s initial and final coordinates. As a consequence, we can de-

8.3

�fk� d/2

�fkd

�Kfriction � �fkd

Wc � Ui � Uf � ��U

Ug � mgy.

Ws � 1
2kxi 

2 � 1
2kxf 

2

yi � yf).

Work done by a conservative force

Properties of a nonconservative
force5.3

Figure 8.3 The loss in mechani-
cal energy due to the force of ki-
netic friction depends on the path
taken as the book is moved from A
to B. The loss in mechanical energy
is greater along the red path than
along the blue path. 

A

B
d
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fine a potential energy function U such that the work done by a conservative
force equals the decrease in the potential energy of the system. The work done by
a conservative force F as a particle moves along the x axis is2

(8.6)

where Fx is the component of F in the direction of the displacement. That is, the
work done by a conservative force equals the negative of the change in the
potential energy associated with that force, where the change in the potential
energy is defined as 

We can also express Equation 8.6 as

(8.7)

Therefore, �U is negative when Fx and dx are in the same direction, as when an ob-
ject is lowered in a gravitational field or when a spring pushes an object toward
equilibrium.

The term potential energy implies that the object has the potential, or capability,
of either gaining kinetic energy or doing work when it is released from some point
under the influence of a conservative force exerted on the object by some other
member of the system. It is often convenient to establish some particular location
xi as a reference point and measure all potential energy differences with respect to
it. We can then define the potential energy function as

(8.8)

The value of Ui is often taken to be zero at the reference point. It really does
not matter what value we assign to Ui , because any nonzero value merely shifts
Uf(x) by a constant amount, and only the change in potential energy is physically
meaningful.

If the conservative force is known as a function of position, we can use Equa-
tion 8.8 to calculate the change in potential energy of a system as an object within
the system moves from xi to xf . It is interesting to note that in the case of one-
dimensional displacement, a force is always conservative if it is a function of posi-
tion only. This is not necessarily the case for motion involving two- or three-dimen-
sional displacements.

CONSERVATION OF MECHANICAL ENERGY
An object held at some height h above the floor has no kinetic energy. However, as
we learned earlier, the gravitational potential energy of the object–Earth system is
equal to mgh. If the object is dropped, it falls to the floor; as it falls, its speed and
thus its kinetic energy increase, while the potential energy of the system decreases.
If factors such as air resistance are ignored, whatever potential energy the system
loses as the object moves downward appears as kinetic energy of the object. In
other words, the sum of the kinetic and potential energies—the total mechanical
energy E—remains constant. This is an example of the principle of conservation

8.4

Uf(x) � ��xf

xi

Fx dx � Ui

�U � Uf � Ui � ��xf

xi

Fx dx

�U � Uf � Ui .

Wc � �xf

xi

Fx dx � ��U

2 For a general displacement, the work done in two or three dimensions also equals where

We write this formally as W � �f

i
F � ds � Ui � Uf .U � U(x, y, z).

Ui � Uf ,

5.9
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of mechanical energy. For the case of an object in free fall, this principle tells us
that any increase (or decrease) in potential energy is accompanied by an equal de-
crease (or increase) in kinetic energy. Note that the total mechanical energy of
a system remains constant in any isolated system of objects that interact
only through conservative forces.

Because the total mechanical energy E of a system is defined as the sum of the
kinetic and potential energies, we can write

(8.9)

We can state the principle of conservation of energy as and so we have

(8.10)

It is important to note that Equation 8.10 is valid only when no energy is
added to or removed from the system. Furthermore, there must be no nonconser-
vative forces doing work within the system.

Consider the carnival Ring-the-Bell event illustrated at the beginning of the
chapter. The participant is trying to convert the initial kinetic energy of the ham-
mer into gravitational potential energy associated with a weight that slides on a
vertical track. If the hammer has sufficient kinetic energy, the weight is lifted high
enough to reach the bell at the top of the track. To maximize the hammer’s ki-
netic energy, the player must swing the heavy hammer as rapidly as possible. The
fast-moving hammer does work on the pivoted target, which in turn does work on
the weight. Of course, greasing the track (so as to minimize energy loss due to fric-
tion) would also help but is probably not allowed!

If more than one conservative force acts on an object within a system, a poten-
tial energy function is associated with each force. In such a case, we can apply the
principle of conservation of mechanical energy for the system as

(8.11)

where the number of terms in the sums equals the number of conservative forces
present. For example, if an object connected to a spring oscillates vertically, two
conservative forces act on the object: the spring force and the gravitational force.

Ki � �Ui � Kf � �Uf

Ki � Ui � Kf � Uf

Ei � Ef ,

E � K � U Total mechanical energy

The mechanical energy of an
isolated system remains constant

QuickLab
Dangle a shoe from its lace and use it
as a pendulum. Hold it to the side, re-
lease it, and note how high it swings
at the end of its arc. How does this
height compare with its initial height?
You may want to check Question 8.3
as part of your investigation.

Twin Falls on the Island of Kauai, Hawaii. The gravitational po-
tential energy of the water–Earth system when the water is at
the top of the falls is converted to kinetic energy once that wa-
ter begins falling. How did the water get to the top of the cliff?
In other words, what was the original source of the gravita-
tional potential energy when the water was at the top? (Hint:
This same source powers nearly everything on the planet.)
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A ball is connected to a light spring suspended vertically, as shown in Figure 8.4. When dis-
placed downward from its equilibrium position and released, the ball oscillates up and down.
If air resistance is neglected, is the total mechanical energy of the system (ball plus spring
plus Earth) conserved? How many forms of potential energy are there for this situation?

Quick Quiz 8.2

Ball in Free FallEXAMPLE 8.2
A ball of mass m is dropped from a height h above the
ground, as shown in Figure 8.6. (a) Neglecting air resistance,
determine the speed of the ball when it is at a height y above
the ground.

Solution Because the ball is in free fall, the only force act-
ing on it is the gravitational force. Therefore, we apply the
principle of conservation of mechanical energy to the
ball–Earth system. Initially, the system has potential energy
but no kinetic energy. As the ball falls, the total mechanical
energy remains constant and equal to the initial potential en-
ergy of the system.

At the instant the ball is released, its kinetic energy is
and the potential energy of the system is 

When the ball is at a distance y above the ground, its kinetic
energy is and the potential energy relative to the
ground is Applying Equation 8.10, we obtain

 vf 

2 � 2g(h � y) 

 0 � mgh � 1
2mvf 

2 � mgy

 Ki � Ui � Kf � Uf 

Uf � mgy.
Kf � 1

2mvf 

2

Ui � mgh.Ki � 0

1

3

2

Figure 8.5 Three identical balls are thrown
with the same initial speed from the top of a
building. 

m

Figure 8.4 A ball connected to a
massless spring suspended verti-
cally. What forms of potential en-
ergy are associated with the
ball– spring–Earth system when
the ball is displaced downward?

Three identical balls are thrown from the top of a building, all with the same initial speed.
The first is thrown horizontally, the second at some angle above the horizontal, and the
third at some angle below the horizontal, as shown in Figure 8.5. Neglecting air resistance,
rank the speeds of the balls at the instant each hits the ground.

Quick Quiz 8.3

Figure 8.6 A ball is dropped from a height h above the ground.
Initially, the total energy of the ball–Earth system is potential energy,
equal to mgh relative to the ground. At the elevation y, the total en-
ergy is the sum of the kinetic and potential energies.

h

y
vf

yi = h
Ui = mgh
Ki = 0

y = 0
Ug = 0

yf = y
Uf = mgy
Kf =   mvf

21
2
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The PendulumEXAMPLE 8.3
If we measure the y coordinates of the sphere from the

center of rotation, then and There-
fore, and Applying the prin-
ciple of conservation of mechanical energy to the system gives

(1)

(b) What is the tension TB in the cord at �?

Solution Because the force of tension does no work, we
cannot determine the tension using the energy method. To
find TB , we can apply Newton’s second law to the radial direc-
tion. First, recall that the centripetal acceleration of a particle
moving in a circle is equal to v2/r directed toward the center
of rotation. Because r � L in this example, we obtain

(2)

Substituting (1) into (2) gives the tension at point �:

(3)

From (2) we see that the tension at � is greater than the
weight of the sphere. Furthermore, (3) gives the expected re-
sult that when the initial angle 

Exercise A pendulum of length 2.00 m and mass 0.500 kg
is released from rest when the cord makes an angle of 30.0°
with the vertical. Find the speed of the sphere and the ten-
sion in the cord when the sphere is at its lowest point.

Answer 2.29 m/s; 6.21 N.

�A � 0.TB � mg

mg(3 � 2 cos �A)�

TB � mg � 2 mg(1 � cos �A)

�Fr � TB � mg � mar � m 
vB 

2

L

√2 gL(1 � cos �A)vB �

   0 � mgL cos �A � 1
2mvB 

2 � mgL

   KA � UA � KB � UB   

UB � �mgL.UA � �mgL cos �A

yB � �L.yA � �L cos �A

A pendulum consists of a sphere of mass m attached to a light
cord of length L, as shown in Figure 8.7. The sphere is re-
leased from rest when the cord makes an angle �A with the
vertical, and the pivot at P is frictionless. (a) Find the speed
of the sphere when it is at the lowest point �.

Solution The only force that does work on the sphere is
the gravitational force. (The force of tension is always perpen-
dicular to each element of the displacement and hence does
no work.) Because the gravitational force is conservative, the
total mechanical energy of the pendulum–Earth system is
constant. (In other words, we can classify this as an “energy
conservation” problem.) As the pendulum swings, continuous
transformation between potential and kinetic energy occurs.
At the instant the pendulum is released, the energy of the sys-
tem is entirely potential energy. At point � the pendulum has
kinetic energy, but the system has lost some potential energy.
At � the system has regained its initial potential energy, and
the kinetic energy of the pendulum is again zero.

Figure 8.7 If the sphere is released from rest at the angle �A it will
never swing above this position during its motion. At the start of the
motion, position �, the energy is entirely potential. This initial po-
tential energy is all transformed into kinetic energy at the lowest ele-
vation �. As the sphere continues to move along the arc, the energy
again becomes entirely potential energy at �.

The speed is always positive. If we had been asked to find the
ball’s velocity, we would use the negative value of the square
root as the y component to indicate the downward motion.

(b) Determine the speed of the ball at y if at the instant of
release it already has an initial speed vi at the initial altitude h.

Solution In this case, the initial energy includes kinetic
energy equal to and Equation 8.10 gives

1
2mvi 

2 � mgh � 1
2mvf 

2 � mgy

1
2mvi 

2,

√2g(h � y) vf �

This result is consistent with the expression 
from kinematics, where Further-

more, this result is valid even if the initial velocity is at an an-
gle to the horizontal (the projectile situation) for two rea-
sons: (1) energy is a scalar, and the kinetic energy depends
only on the magnitude of the velocity; and (2) the change in
the gravitational potential energy depends only on the
change in position in the vertical direction.

yi � h.vy i 

2 � 2g(yf � yi)
vy f 

2 �

√vi 

2 � 2g(h � y) vf �

 vf 

2 � vi 

2 � 2g(h � y)

�

�

�

θAL cos θA

L

T

P

m g

θ θ
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WORK DONE BY NONCONSERVATIVE FORCES
As we have seen, if the forces acting on objects within a system are conservative,
then the mechanical energy of the system remains constant. However, if some of
the forces acting on objects within the system are not conservative, then the me-
chanical energy of the system does not remain constant. Let us examine two types
of nonconservative forces: an applied force and the force of kinetic friction.

Work Done by an Applied Force

When you lift a book through some distance by applying a force to it, the force
you apply does work Wapp on the book, while the gravitational force does work Wg
on the book. If we treat the book as a particle, then the net work done on the
book is related to the change in its kinetic energy as described by the work–
kinetic energy theorem given by Equation 7.15:

(8.12)

Because the gravitational force is conservative, we can use Equation 8.2 to express
the work done by the gravitational force in terms of the change in potential en-
ergy, or Substituting this into Equation 8.12 gives

(8.13)

Note that the right side of this equation represents the change in the mechanical
energy of the book–Earth system. This result indicates that your applied force
transfers energy to the system in the form of kinetic energy of the book and gravi-
tational potential energy of the book–Earth system. Thus, we conclude that if an
object is part of a system, then an applied force can transfer energy into or out
of the system.

Situations Involving Kinetic Friction

Kinetic friction is an example of a nonconservative force. If a book is given some
initial velocity on a horizontal surface that is not frictionless, then the force of ki-
netic friction acting on the book opposes its motion and the book slows down and
eventually stops. The force of kinetic friction reduces the kinetic energy of the
book by transforming kinetic energy to internal energy of the book and part of the
horizontal surface. Only part of the book’s kinetic energy is transformed to inter-
nal energy in the book. The rest appears as internal energy in the surface. (When
you trip and fall while running across a gymnasium floor, not only does the skin on
your knees warm up but so does the floor!)

As the book moves through a distance d, the only force that does work is the
force of kinetic friction. This force causes a decrease in the kinetic energy of the
book. This decrease was calculated in Chapter 7, leading to Equation 7.17a, which
we repeat here:

(8.14)

If the book moves on an incline that is not frictionless, a change in the gravita-
tional potential energy of the book–Earth system also occurs, and is the
amount by which the mechanical energy of the system changes because of the
force of kinetic friction. In such cases,

(8.15)

where .Ei � �E � Ef

�E � �K � �U � � fkd

� fkd

�Kfriction � � fkd

Wapp � �K � �U

Wg � ��U.

Wapp � Wg � �K

8.5

QuickLab
Find a friend and play a game of 
racquetball. After a long volley, feel
the ball and note that it is warm. Why
is that?
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Problem-Solving Hints
Conservation of Energy
We can solve many problems in physics using the principle of conservation of
energy. You should incorporate the following procedure when you apply this
principle:

• Define your system, which may include two or more interacting particles, as
well as springs or other systems in which elastic potential energy can be
stored. Choose the initial and final points.

• Identify zero points for potential energy (both gravitational and spring). If
there is more than one conservative force, write an expression for the po-
tential energy associated with each force.

• Determine whether any nonconservative forces are present. Remember that
if friction or air resistance is present, mechanical energy is not conserved.

• If mechanical energy is conserved, you can write the total initial energy
at some point. Then, write an expression for the total final en-

ergy at the final point that is of interest. Because mechanical
energy is conserved, you can equate the two total energies and solve for the
quantity that is unknown.

• If frictional forces are present (and thus mechanical energy is not conserved),
first write expressions for the total initial and total final energies. In this
case, the difference between the total final mechanical energy and the total
initial mechanical energy equals the change in mechanical energy in the sys-
tem due to friction.

Ef � K f � Uf

Ei � K i � Ui

Crate Sliding Down a RampEXAMPLE 8.4
A 3.00-kg crate slides down a ramp. The ramp is 1.00 m in
length and inclined at an angle of 30.0°, as shown in Figure
8.8. The crate starts from rest at the top, experiences a con-
stant frictional force of magnitude 5.00 N, and continues to
move a short distance on the flat floor after it leaves the
ramp. Use energy methods to determine the speed of the
crate at the bottom of the ramp.

Solution Because the initial kinetic energy at the
top of the ramp is zero. If the y coordinate is measured from
the bottom of the ramp (the final position where the poten-
tial energy is zero) with the upward direction being positive,
then m. Therefore, the total mechanical energy of
the crate–Earth system at the top is all potential energy:

 � (3.00 kg)(9.80    m/s2)(0.500 m) � 14.7 J

Ei � Ki � Ui � 0 � Ui � mgyi 

yi � 0.500

vi � 0,

Write down the work–kinetic energy theorem for the general case of two objects that are
connected by a spring and acted upon by gravity and some other external applied force. In-
clude the effects of friction as �Efriction .

Quick Quiz 8.4

30.0°

vf

d = 1.00 m

vi = 0

0.500 m

Figure 8.8 A crate slides down a ramp under the influence of grav-
ity. The potential energy decreases while the kinetic energy increases. 
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Motion on a Curved TrackEXAMPLE 8.5

Note that the result is the same as it would be had the child
fallen vertically through a distance h! In this example,

m, giving

(b) If a force of kinetic friction acts on the child, how
much mechanical energy does the system lose? Assume that

m/s and kg.

Solution In this case, mechanical energy is not conserved,
and so we must use Equation 8.15 to find the loss of mechani-
cal energy due to friction:

Again, �E is negative because friction is reducing mechanical
energy of the system (the final mechanical energy is less than
the initial mechanical energy). Because the slide is curved,
the normal force changes in magnitude and direction during
the motion. Therefore, the frictional force, which is propor-
tional to n, also changes during the motion. Given this chang-
ing frictional force, do you think it is possible to determine
�k from these data?

�302 J�

 � 1
2(20.0 kg)(3.00 m/s)2 � (20.0 kg)(9.80 m/s2)(2.00 m)

 � (1
2mvf 

2 � 0) � (0 � mgh) � 1
2mvf 

2 � mgh 

�E � Ef � Ei � (Kf � Uf) � (Ki � Ui) 

m � 20.0vf � 3.00

6.26 m/svf � √2gh � √2(9.80 m/s2)(2.00 m) �

h � 2.00

  vf � √2gh  

0 � mgh � 1
2mvf 

2 � 0

 Ki � Ui � Kf � Uf A child of mass m rides on an irregularly curved slide of
height as shown in Figure 8.9. The child starts
from rest at the top. (a) Determine his speed at the bottom,
assuming no friction is present.

Solution The normal force n does no work on the child
because this force is always perpendicular to each element of
the displacement. Because there is no friction, the mechani-
cal energy of the child–Earth system is conserved. If we mea-
sure the y coordinate in the upward direction from the bot-
tom of the slide, then and we obtainyi � h, yf � 0,

h � 2.00 m,

Figure 8.9 If the slide is frictionless, the speed of the child at the
bottom depends only on the height of the slide. 

When the crate reaches the bottom of the ramp, the po-
tential energy of the system is zero because the elevation of
the crate is Therefore, the total mechanical energy of
the system when the crate reaches the bottom is all kinetic
energy:

We cannot say that because a nonconservative force
reduces the mechanical energy of the system: the force of ki-
netic friction acting on the crate. In this case, Equation 8.15
gives where d is the displacement along the
ramp. (Remember that the forces normal to the ramp do no
work on the crate because they are perpendicular to the dis-
placement.) With N and m, we have

This result indicates that the system loses some mechanical
energy because of the presence of the nonconservative fric-
tional force. Applying Equation 8.15 gives

�E � � fkd � �(5.00 N)(1.00 m) � �5.00 J

d � 1.00fk � 5.00

�E � � fkd,

Ei � Ef

Ef � Kf � Uf � 1
2mvf 

2 � 0

yf � 0.

Exercise Use Newton’s second law to find the acceleration
of the crate along the ramp, and use the equations of kine-
matics to determine the final speed of the crate.

Answer 3.23 m/s2; 2.54 m/s.

Exercise Assuming the ramp to be frictionless, find the fi-
nal speed of the crate and its acceleration along the ramp. 

Answer 3.13 m/s; 4.90 m/s2.

2.54 m/s  vf �

 vf 

2 �
19.4 J

3.00 kg
� 6.47 m2/s2 

 12mvf 

2 � 14.7 J � 5.00 J � 9.70 J

Ef � Ei � 1
2mvf 

2 � mgyi � � fkd

2.00 m

n

Fg = m g



8.5 Work Done by Nonconservative Forces 227

Let’s Go Skiing!EXAMPLE 8.6
To find the distance the skier travels before coming to

rest, we take With m/s and the frictional
force given by we obtain

Exercise Find the horizontal distance the skier travels be-
fore coming to rest if the incline also has a coefficient of ki-
netic friction equal to 0.210.

Answer 40.3 m.

95.2 m�

 d �
vB 

2

2�kg
�

(19.8 m/s)2

2(0.210)(9.80 m/s2)

 � ��kmgd 

(KC � UC) � (KB � UB) � (0 � 0) � (1
2mvB 

2 � 0) 

 �E � EC � EB � ��kmgd 

fk � �kn � �kmg,
vB � 19.8KC � 0.

A skier starts from rest at the top of a frictionless incline of
height 20.0 m, as shown in Figure 8.10. At the bottom of the
incline, she encounters a horizontal surface where the coeffi-
cient of kinetic friction between the skis and the snow is
0.210. How far does she travel on the horizontal surface be-
fore coming to rest?

Solution First, let us calculate her speed at the bottom of
the incline, which we choose as our zero point of potential
energy. Because the incline is frictionless, the mechanical en-
ergy of the skier–Earth system remains constant, and we find,
as we did in the previous example, that

Now we apply Equation 8.15 as the skier moves along the
rough horizontal surface from � to �. The change in me-
chanical energy along the horizontal is where d is
the horizontal displacement.

�E � � fkd,

vB � √2gh � √2(9.80 m/s2)(20.0 m) � 19.8 m/s

The Spring-Loaded PopgunEXAMPLE 8.7
tional potential energy of the projectile–Earth system to be at
the lowest position of the projectile xA , then the initial gravita-
tional potential energy also is zero. The mechanical energy of
this system is constant because no nonconservative forces are
present.

Initially, the only mechanical energy in the system is the
elastic potential energy stored in the spring of the gun,

where the compression of the spring is
m. The projectile rises to a maximum heightx � 0.120

UsA � kx2/2,

The launching mechanism of a toy gun consists of a spring of
unknown spring constant (Fig. 8.11a). When the spring is
compressed 0.120 m, the gun, when fired vertically, is able to
launch a 35.0-g projectile to a maximum height of 20.0 m
above the position of the projectile before firing. (a) Neglect-
ing all resistive forces, determine the spring constant.

Solution Because the projectile starts from rest, the initial
kinetic energy is zero. If we take the zero point for the gravita-

Figure 8.10 The skier slides down the slope and onto a level surface, stopping after a distance d
from the bottom of the hill.

d

20.0°

20.0 m

x

y

�

� �
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Block – Spring CollisionEXAMPLE 8.8
energy and the spring is uncompressed, so that the elastic po-
tential energy stored in the spring is zero. Thus, the total me-
chanical energy of the system before the collision is just

After the collision, at �, the spring is fully com-
pressed; now the block is at rest and so has zero kinetic en-
ergy, while the energy stored in the spring has its maximum
value where the origin of coordinates is
chosen to be the equilibrium position of the spring and xm is

x � 01
2kx2 � 1

2kxm 

2
 ,

1
2mvA 

2
 .

A block having a mass of 0.80 kg is given an initial velocity
m/s to the right and collides with a spring of negli-

gible mass and force constant N/m, as shown in Fig-
ure 8.12. (a) Assuming the surface to be frictionless, calculate
the maximum compression of the spring after the collision.

Solution Our system in this example consists of the block
and spring. Before the collision, at �, the block has kinetic

k � 50
vA � 1.2

Figure 8.11 A spring-loaded popgun.

m, and so the final gravitational potential en-
ergy when the projectile reaches its peak is mgh. The final ki-
netic energy of the projectile is zero, and the final elastic po-
tential energy stored in the spring is zero. Because the
mechanical energy of the system is constant, we find that

xC � h � 20.0

(b) Find the speed of the projectile as it moves through
the equilibrium position of the spring (where m)
as shown in Figure 8.11b.

Solution As already noted, the only mechanical energy in
the system at � is the elastic potential energy kx2/2. The to-
tal energy of the system as the projectile moves through the
equilibrium position of the spring comprises the kinetic en-
ergy of the projectile mvB

2/2, and the gravitational potential
energy mgxB . Hence, the principle of the conservation of me-
chanical energy in this case gives

Solving for vB gives

You should compare the different examples we have pre-
sented so far in this chapter. Note how breaking the problem
into a sequence of labeled events helps in the analysis.

Exercise What is the speed of the projectile when it is at a
height of 10.0 m?

Answer 14.0 m/s.

19.7 m/s�

 � √ (953 N/m)(0.120 m)2

0.0350 kg
� 2(9.80 m/s2)(0.120 m)

vB � √ kx2

m
� 2gxB

 0 � 0 � 1
2kx2 � 1

2mvB 

2 � mgxB � 0 

KA � UgA � UsA � KB � Ug B � UsB

 EA � EB 

xB � 0.120

953 N/m k �

 12k(0.120 m)2 � (0.0350 kg)(9.80 m/s2)(20.0 m)

 0 � 0 � 1
2kx2 � 0 � mgh � 0 

KA � UgA � UsA � KC � Ug C � UsC 

 EA � EC

(a)

v

(b)

x x
xA = 0

�

�

xB = 0.120 m

xC = 20.0 m�



8.5 Work Done by Nonconservative Forces 229

Figure 8.12 A block sliding on a smooth, horizontal surface col-
lides with a light spring. (a) Initially the mechanical energy is all ki-
netic energy. (b) The mechanical energy is the sum of the kinetic 
energy of the block and the elastic potential energy in the spring. 
(c) The energy is entirely potential energy. (d) The energy is trans-
formed back to the kinetic energy of the block. The total energy re-
mains constant throughout the motion.

Multiflash photograph of a pole vault event. How
many forms of energy can you identify in this picture?

the maximum compression of the spring, which in this case
happens to be xC . The total mechanical energy of the system
is conserved because no nonconservative forces act on ob-
jects within the system.

Because mechanical energy is conserved, the kinetic en-
ergy of the block before the collision must equal the maxi-
mum potential energy stored in the fully compressed spring:

Note that we have not included Ug terms because no change
in vertical position occurred.

(b) Suppose a constant force of kinetic friction acts be-
tween the block and the surface, with If the speed�k � 0.50.

0.15 m�

 xm � √ m
k

 vA � √ 0.80 kg
50 N/m

 (1.2 m/s)

1
2mvA 

2 � 0 � 0 � 1
2kxm 

2 

 KA � UsA � KC � UsC 

 EA � EC 

of the block at the moment it collides with the spring is 
1.2 m/s, what is the maximum compression in the spring?

Solution In this case, mechanical energy is not conserved
because a frictional force acts on the block. The magnitude
of the frictional force is

Therefore, the change in the block’s mechanical energy due
to friction as the block is displaced from the equilibrium posi-
tion of the spring (where we have set our origin) to xB is

Substituting this into Equation 8.15 gives

Solving the quadratic equation for xB gives m and
m. The physically meaningful root is 

The negative root does not apply to this situation 

because the block must be to the right of the origin (positive
value of x) when it comes to rest. Note that 0.092 m is less
than the distance obtained in the frictionless case of part (a).
This result is what we expect because friction retards the mo-
tion of the system.

0.092 m.

xB �xB � �0.25
xB � 0.092

25xB 

2 � 3.92xB � 0.576 � 0

1
2(50)xB 

2 � 1
2(0.80)(1.2)2 � �3.92xB

�E � Ef � Ei � (0 � 1
2kxB 

2) � (1
2mvA 

2 � 0) � � fkxB

�E � � fkxB � �3.92xB 

fk � �kn � �kmg � 0.50(0.80 kg)(9.80 m/s2) � 3.92 N

vA �

E = – mvA
21

2

x = 0

(a)

(b)

(c)

vC = 0

(d)

xm

�

�

�

�

E = – mvB
2 + – kxB

21
2

1
2

E = – mvD
2 = – mvA

21
2

1
2

E = – kxm
21

2

vA

vB

xB

vD = –vA
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Connected Blocks in MotionEXAMPLE 8.9
where is the change in the system’s gravita-
tional potential energy and is the change in
the system’s elastic potential energy. As the hanging block
falls a distance h, the horizontally moving block moves the
same distance h to the right. Therefore, using Equation 8.15,
we find that the loss in energy due to friction between the
horizontally sliding block and the surface is

(2)

The change in the gravitational potential energy of the sys-
tem is associated with only the falling block because the verti-
cal coordinate of the horizontally sliding block does not
change. Therefore, we obtain

(3)

where the coordinates have been measured from the lowest
position of the falling block. 

The change in the elastic potential energy stored in the
spring is 

(4)

Substituting Equations (2), (3), and (4) into Equation (1)
gives

This setup represents a way of measuring the coefficient of
kinetic friction between an object and some surface. As you
can see from the problem, sometimes it is easier to work with
the changes in the various types of energy rather than the ac-
tual values. For example, if we wanted to calculate the numer-
ical value of the gravitational potential energy associated with
the horizontally sliding block, we would need to specify the
height of the horizontal surface relative to the lowest position
of the falling block. Fortunately, this is not necessary because
the gravitational potential energy associated with the first
block does not change.

m2g � 1
2kh

m1g
    �k �

��km1gh � �m2gh � 1
2kh2

�Us � Us f � Usi � 1
2kh2 � 0

�Ug � Ug f � Ugi � 0 � m2gh

�E � � fkh � ��km1gh

�Us � Usf � Usi

�Ug � Ug f � Ug iTwo blocks are connected by a light string that passes over a
frictionless pulley, as shown in Figure 8.13. The block of mass
m1 lies on a horizontal surface and is connected to a spring of
force constant k. The system is released from rest when the
spring is unstretched. If the hanging block of mass m2 falls a
distance h before coming to rest, calculate the coefficient of
kinetic friction between the block of mass m1 and the surface.

Solution The key word rest appears twice in the problem
statement, telling us that the initial and final velocities and ki-
netic energies are zero. (Also note that because we are con-
cerned only with the beginning and ending points of the mo-
tion, we do not need to label events with circled letters as we
did in the previous two examples. Simply using i and f is suffi-
cient to keep track of the situation.) In this situation, the sys-
tem consists of the two blocks, the spring, and the Earth. We
need to consider two forms of potential energy: gravitational
and elastic. Because the initial and final kinetic energies of
the system are zero, and we can write

(1) �E � �Ug � �Us

�K � 0,

Figure 8.13 As the hanging block moves from its highest eleva-
tion to its lowest, the system loses gravitational potential energy but
gains elastic potential energy in the spring. Some mechanical energy
is lost because of friction between the sliding block and the surface.

A Grand EntranceEXAMPLE 8.10
stage to the floor. Let us call the angle that the actor’s cable
makes with the vertical �. What is the maximum value � can
have before the sandbag lifts off the floor?

Solution We need to draw on several concepts to solve
this problem. First, we use the principle of the conservation
of mechanical energy to find the actor’s speed as he hits the
floor as a function of � and the radius R of the circular path
through which he swings. Next, we apply Newton’s second

You are designing apparatus to support an actor of mass 
65 kg who is to “fly” down to the stage during the perfor-
mance of a play. You decide to attach the actor’s harness to a
130-kg sandbag by means of a lightweight steel cable running
smoothly over two frictionless pulleys, as shown in Figure
8.14a. You need 3.0 m of cable between the harness and the
nearest pulley so that the pulley can be hidden behind a cur-
tain. For the apparatus to work successfully, the sandbag must
never lift above the floor as the actor swings from above the

k

h

m1

m2
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Figure 8.14 (a) An actor uses some clever staging to make his en-
trance. (b) Free-body diagram for actor at the bottom of the circular
path. (c) Free-body diagram for sandbag.

law to the actor at the bottom of his path to find the cable
tension as a function of the given parameters. Finally, we note
that the sandbag lifts off the floor when the upward force ex-
erted on it by the cable exceeds the gravitational force acting
on it; the normal force is zero when this happens.

Applying conservation of energy to the actor–Earth sys-
tem gives 

(1) 0 � mactor gyi � 1
2mactorvf 

2 � 0

 Ki � Ui � Kf � Uf 

where yi is the initial height of the actor above the floor and vf is
the speed of the actor at the instant before he lands. (Note that

because he starts from rest and that because we
set the level of the actor’s harness when he is standing on the
floor as the zero level of potential energy.) From the geometry
in Figure 8.14a, we see that 
Using this relationship in Equation (1), we obtain

(2)

Now we apply Newton’s second law to the actor when he is at
the bottom of the circular path, using the free-body diagram
in Figure 8.14b as a guide:

(3)

A force of the same magnitude as T is transmitted to the
sandbag. If it is to be just lifted off the floor, the normal force
on it becomes zero, and we require that as shown
in Figure 8.14c. Using this condition together with Equations
(2) and (3), we find that

Solving for � and substituting in the given parameters, we ob-
tain

Notice that we did not need to be concerned with the length
R of the cable from the actor’s harness to the leftmost pulley.
The important point to be made from this problem is that it
is sometimes necessary to combine energy considerations
with Newton’s laws of motion.

Exercise If the initial angle � � 40°, find the speed of the
actor and the tension in the cable just before he reaches the
floor. (Hint: You cannot ignore the length R � 3.0 m in this
calculation.)

Answer 3.7 m/s; 940 N.

60°    � �

cos � �
3mactor � mbag

2mactor
�

3(65 kg) � 130 kg
2(65 kg)

�
1
2

mbagg � mactorg � mactor 
2gR(1 � cos �)

R

T � mbagg,

T � mactorg � mactor 
vf

2

R
  

 �Fy � T � mactorg � mactor 
vf

2

R

vf 

2 � 2gR(1 � cos �)

yi � R � R cos � � R(1 � cos �).

Uf � 0Ki � 0

(a)

θR

Actor Sandbag

(b)

mactor

mactorg

T

m bag

m bagg

(c)

T

RELATIONSHIP BETWEEN CONSERVATIVE FORCES
AND POTENTIAL ENERGY

Once again let us consider a particle that is part of a system. Suppose that the par-
ticle moves along the x axis, and assume that a conservative force with an x compo-

8.6
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Relationship between force 
and potential energy

3 In three dimensions, the expression is where and so forth, are 

partial derivatives. In the language of vector calculus, F equals the negative of the gradient of the scalar 
quantity U(x, y, z).

	U
	x

 ,F � � i 
	U
	x

� j 
	U
	y

� k 
	U
	z

 ,

nent Fx acts on the particle. Earlier in this chapter, we showed how to determine
the change in potential energy of a system when we are given the conservative
force. We now show how to find Fx if the potential energy of the system is known.

In Section 8.2 we learned that the work done by the conservative force as its
point of application undergoes a displacement �x equals the negative of the
change in the potential energy associated with that force; that is,

If the point of application of the force undergoes an infinitesi-
mal displacement dx, we can express the infinitesimal change in the potential en-
ergy of the system dU as

Therefore, the conservative force is related to the potential energy function
through the relationship3

(8.16)

That is, any conservative force acting on an object within a system equals the
negative derivative of the potential energy of the system with respect to x.

We can easily check this relationship for the two examples already discussed.
In the case of the deformed spring, and therefore

which corresponds to the restoring force in the spring. Because the gravitational
potential energy function is it follows from Equation 8.16 that

when we differentiate Ug with respect to y instead of x.
We now see that U is an important function because a conservative force can

be derived from it. Furthermore, Equation 8.16 should clarify the fact that adding
a constant to the potential energy is unimportant because the derivative of a con-
stant is zero.

What does the slope of a graph of U(x) versus x represent?

Optional Section

ENERGY DIAGRAMS AND THE
EQUILIBRIUM OF A SYSTEM

The motion of a system can often be understood qualitatively through a graph of
its potential energy versus the separation distance between the objects in the sys-
tem. Consider the potential energy function for a block–spring system, given by

This function is plotted versus x in Figure 8.15a. (A common mistake is
to think that potential energy on the graph represents height. This is clearly not
Us � 1

2kx2.

8.7

Quick Quiz 8.5

Fg � �mg
Ug � mgy,

Fs � �
dUs

dx
� �

d
dx

(1
2kx2) � �kx

Us � 1
2kx2,

Fx � �
dU
dx

dU � �Fx dx

W � Fx �x � ��U.
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the case here, where the block is only moving horizontally.) The force Fs exerted
by the spring on the block is related to Us through Equation 8.16:

As we saw in Quick Quiz 8.5, the force is equal to the negative of the slope of the
U versus x curve. When the block is placed at rest at the equilibrium position of
the spring where it will remain there unless some external force
Fext acts on it. If this external force stretches the spring from equilibrium, x is posi-
tive and the slope dU/dx is positive; therefore, the force Fs exerted by the spring is
negative, and the block accelerates back toward when released. If the exter-
nal force compresses the spring, then x is negative and the slope is negative; there-
fore, Fs is positive, and again the mass accelerates toward upon release.

From this analysis, we conclude that the position for a block–spring sys-
tem is one of stable equilibrium. That is, any movement away from this position
results in a force directed back toward In general, positions of stable
equilibrium correspond to points for which U(x) is a minimum.

From Figure 8.15 we see that if the block is given an initial displacement xm
and is released from rest, its total energy initially is the potential energy stored in
the spring As the block starts to move, the system acquires kinetic energy
and loses an equal amount of potential energy. Because the total energy must re-
main constant, the block oscillates (moves back and forth) between the two points

and called the turning points. In fact, because no energy is lost
(no friction), the block will oscillate between � xm and � xm forever. (We discuss
these oscillations further in Chapter 13.) From an energy viewpoint, the energy of
the system cannot exceed therefore, the block must stop at these points
and, because of the spring force, must accelerate toward 

Another simple mechanical system that has a position of stable equilibrium is
a ball rolling about in the bottom of a bowl. Anytime the ball is displaced from its
lowest position, it tends to return to that position when released.

x � 0.

1
2kxm 

2;

x � �xm ,x � �xm

1
2kxm 

2.

x � 0.

x � 0
x � 0

x � 0

Fs � 0,(x � 0),

Fs � �
dUs

dx
� �kx

Figure 8.15 (a) Potential energy as a
function of x for the block–spring sys-
tem shown in (b). The block oscillates
between the turning points, which have
the coordinates x � 
 xm . Note that the
restoring force exerted by the spring al-
ways acts toward x � 0, the position of
stable equilibrium.

E

–xm 0

Us

x
xm

(a)

xm

(b)

m

x = 0

= – kx21
2

Us
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Now consider a particle moving along the x axis under the influence of a con-
servative force Fx , where the U versus x curve is as shown in Figure 8.16. Once
again, at and so the particle is in equilibrium at this point. However,
this is a position of unstable equilibrium for the following reason: Suppose that
the particle is displaced to the right (x � 0). Because the slope is negative for 
x � 0, is positive and the particle accelerates away from x � 0. If in-
stead the particle is at x � 0 and is displaced to the left (x � 0), the force is nega-
tive because the slope is positive for x � 0, and the particle again accelerates away
from the equilibrium position. The position x � 0 in this situation is one of unsta-
ble equilibrium because for any displacement from this point, the force pushes the
particle farther away from equilibrium. The force pushes the particle toward a posi-
tion of lower potential energy. A pencil balanced on its point is in a position of un-
stable equilibrium. If the pencil is displaced slightly from its absolutely vertical po-
sition and is then released, it will surely fall over. In general, positions of
unstable equilibrium correspond to points for which U(x) is a maximum.

Finally, a situation may arise where U is constant over some region and hence
This is called a position of neutral equilibrium. Small displacements from

this position produce neither restoring nor disrupting forces. A ball lying on a flat
horizontal surface is an example of an object in neutral equilibrium.

Fx � 0.

Fx � �dU/dx

x � 0,Fx � 0

Force and Energy on an Atomic ScaleEXAMPLE 8.11
are at their critical separation, and then increases again as
the atoms move apart. When U(x) is a minimum, the atoms
are in stable equilbrium; this indicates that this is the most
likely separation between them.

(b) Determine Fx(x)—the force that one atom exerts on
the other in the molecule as a function of separation—and
argue that the way this force behaves is physically plausible
when the atoms are close together and far apart.

Solution Because the atoms combine to form a molecule,
we reason that the force must be attractive when the atoms
are far apart. On the other hand, the force must be repulsive
when the two atoms get very close together. Otherwise, the
molecule would collapse in on itself. Thus, the force must
change sign at the critical separation, similar to the way
spring forces switch sign in the change from extension to
compression. Applying Equation 8.16 to the Lennard–Jones
potential energy function gives

This result is graphed in Figure 8.17b. As expected, the force
is positive (repulsive) at small atomic separations, zero when
the atoms are at the position of stable equilibrium [recall
how we found the minimum of U(x)], and negative (attrac-
tive) at greater separations. Note that the force approaches
zero as the separation between the atoms becomes very great.

4
� 12�12

x13 �
6�6

x7 �  �

Fx � �
dU(x)

dx
� �4
 

d
dx ��

�

x �
12

� � �

x �
6

�

The potential energy associated with the force between two
neutral atoms in a molecule can be modeled by the
Lennard–Jones potential energy function:

where x is the separation of the atoms. The function U(x) con-
tains two parameters � and 
 that are determined from experi-
ments. Sample values for the interaction between two atoms
in a molecule are � � 0.263 nm and 
 � 1.51 � 10�22 J. 
(a) Using a spreadsheet or similar tool, graph this function
and find the most likely distance between the two atoms.

Solution We expect to find stable equilibrium when the
two atoms are separated by some equilibrium distance and
the potential energy of the system of two atoms (the mole-
cule) is a minimum. One can minimize the function U(x) by
taking its derivative and setting it equal to zero:

Solving for x—the equilibrium separation of the two atoms
in the molecule—and inserting the given information yield

We graph the Lennard–Jones function on both sides of
this critical value to create our energy diagram, as shown in
Figure 8.17a. Notice how U(x) is extremely large when the
atoms are very close together, is a minimum when the atoms

2.95 � 10�10 m.x �

 � 4
� �12�12

x13 �
�6�6

x7 � � 0 

dU(x)
dx

� 4
 
d
dx ��

�

x �
12

� � �

x �
6

� � 0

U(x) � 4
�� �

x �
12

� � �

x �
6

�

0
x

U

Negative slope
x > 0

Positive slope
x < 0

Figure 8.16 A plot of U versus x
for a particle that has a position of
unstable equilibrium located at x �
0. For any finite displacement of
the particle, the force on the parti-
cle is directed away from x � 0.
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CONSERVATION OF ENERGY IN GENERAL
We have seen that the total mechanical energy of a system is constant when only
conservative forces act within the system. Furthermore, we can associate a poten-
tial energy function with each conservative force. On the other hand, as we saw in
Section 8.5, mechanical energy is lost when nonconservative forces such as friction
are present.

In our study of thermodynamics later in this course, we shall find that me-
chanical energy can be transformed into energy stored inside the various objects
that make up the system. This form of energy is called internal energy. For example,
when a block slides over a rough surface, the mechanical energy lost because of
friction is transformed into internal energy that is stored temporarily inside the
block and inside the surface, as evidenced by a measurable increase in the temper-
ature of both block and surface. We shall see that on a submicroscopic scale, this
internal energy is associated with the vibration of atoms about their equilibrium
positions. Such internal atomic motion involves both kinetic and potential energy.
Therefore, if we include in our energy expression this increase in the internal en-
ergy of the objects that make up the system, then energy is conserved.

This is just one example of how you can analyze an isolated system and al-
ways find that the total amount of energy it contains does not change, as long as
you account for all forms of energy. That is, energy can never be created or
destroyed. Energy may be transformed from one form to another, but the

8.8
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x(m) × 10–10

U( J ) × 10–23

3.0

0

6.0

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

F(N) × 10–12

x(m) × 10–10
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(a)

(b)

Figure 8.17 (a) Potential energy curve associated with a molecule. The distance x is the separation be-
tween the two atoms making up the molecule. (b) Force exerted on one atom by the other.

Total energy is always conserved
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total energy of an isolated system is always constant. From a universal
point of view, we can say that the total energy of the Universe is constant. If
one part of the Universe gains energy in some form, then another part must
lose an equal amount of energy. No violation of this principle has ever been
found.

Optional Section

MASS – ENERGY EQUIVALENCE
This chapter has been concerned with the important principle of energy conserva-
tion and its application to various physical phenomena. Another important princi-
ple, conservation of mass, states that in any physical or chemical process,
mass is neither created nor destroyed. That is, the mass before the process
equals the mass after the process.

For centuries, scientists believed that energy and mass were two quantities that
were separately conserved. However, in 1905 Einstein made the brilliant discovery
that the mass of any system is a measure of the energy of that system. Hence, en-
ergy and mass are related concepts. The relationship between the two is given by
Einstein’s most famous formula:

(8.17)

where c is the speed of light and ER is the energy equivalent of a mass m. The sub-
script R on the energy refers to the rest energy of an object of mass m—that is,
the energy of the object when its speed is .

The rest energy associated with even a small amount of matter is enormous.
For example, the rest energy of 1 kg of any substance is

This is equivalent to the energy content of about 15 million barrels of crude oil—
about one day’s consumption in the United States! If this energy could easily be re-
leased as useful work, our energy resources would be unlimited.

In reality, only a small fraction of the energy contained in a material sample
can be released through chemical or nuclear processes. The effects are greatest in
nuclear reactions, in which fractional changes in energy, and hence mass, of ap-
proximately 10�3 are routinely observed. A good example is the enormous
amount of energy released when the uranium-235 nucleus splits into two smaller
nuclei. This happens because the sum of the masses of the product nuclei is
slightly less than the mass of the original 235U nucleus. The awesome nature of the
energy released in such reactions is vividly demonstrated in the explosion of a nu-
clear weapon.

Equation 8.17 indicates that energy has mass. Whenever the energy of an object
changes in any way, its mass changes as well. If �E is the change in energy of an ob-
ject, then its change in mass is

(8.18)

Anytime energy �E in any form is supplied to an object, the change in the mass of
the object is However, because c 2 is so large, the changes in mass in
any ordinary mechanical experiment or chemical reaction are too small to be
detected.

�m � �E/c 2.

�m �
�E
c 2

ER � mc 2 � (1 kg)(3 � 108 m/s)2 � 9 � 1016 J

v � 0

ER � mc 2

8.9
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Optional Section

QUANTIZATION OF ENERGY
Certain physical quantities such as electric charge are quantized; that is, the quanti-
ties have discrete values rather than continuous values. The quantized nature of
energy is especially important in the atomic and subatomic world. As an example,
let us consider the energy levels of the hydrogen atom (which consists of an elec-
tron orbiting around a proton). The atom can occupy only certain energy levels,
called quantum states, as shown in Figure 8.18a. The atom cannot have any energy
values lying between these quantum states. The lowest energy level E1 is called the

8.10

Here Comes the SunEXAMPLE 8.12
The Sun radiates uniformly in all directions, and so only a
very tiny fraction of its total output is collected by the Earth.
Nonetheless this amount is sufficient to supply energy to
nearly everything on the Earth. (Nuclear and geothermal en-
ergy are the only alternatives.) Plants absorb solar energy and
convert it to chemical potential energy (energy stored in the
plant’s molecules). When an animal eats the plant, this chem-
ical potential energy can be turned into kinetic and other
forms of energy. You are reading this book with solar-
powered eyes!

The Sun converts an enormous amount of matter to energy.
Each second, 4.19 � 109 kg—approximately the capacity of
400 average-sized cargo ships—is changed to energy. What is
the power output of the Sun?

Solution We find the energy liberated per second by
means of a straightforward conversion:

We then apply the definition of power:

3.77 � 1026 W� �
3.77 � 1026 J

1.00 s
�

ER � (4.19 � 109 kg)(3.00 � 108 m/s)2 � 3.77 � 1026 J

Figure 8.18 Energy-level diagrams: (a) Quantum states of the hydrogen atom. The lowest state
E1 is the ground state. (b) The energy levels of an Earth satellite are also quantized but are so
close together that they cannot be distinguished from one another.
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ground state of the atom. The ground state corresponds to the state that an isolated
atom usually occupies. The atom can move to higher energy states by absorbing
energy from some external source or by colliding with other atoms. The highest
energy on the scale shown in Figure 8.18a, E� , corresponds to the energy of the
atom when the electron is completely removed from the proton. The energy dif-
ference is called the ionization energy. Note that the energy levels get
closer together at the high end of the scale.

Next, consider a satellite in orbit about the Earth. If you were asked to de-
scribe the possible energies that the satellite could have, it would be reasonable
(but incorrect) to say that it could have any arbitrary energy value. Just like that of
the hydrogen atom, however, the energy of the satellite is quantized. If you
were to construct an energy level diagram for the satellite showing its allowed en-
ergies, the levels would be so close to one another, as shown in Figure 8.18b, that it
would be difficult to discern that they were not continuous. In other words, we
have no way of experiencing quantization of energy in the macroscopic world;
hence, we can ignore it in describing everyday experiences.

SUMMARY

If a particle of mass m is at a distance y above the Earth’s surface, the gravita-
tional potential energy of the particle–Earth system is

(8.1)

The elastic potential energy stored in a spring of force constant k is

(8.4)

You should be able to apply these two equations in a variety of situations to deter-
mine the potential an object has to perform work.

A force is conservative if the work it does on a particle moving between two
points is independent of the path the particle takes between the two points. Fur-
thermore, a force is conservative if the work it does on a particle is zero when the
particle moves through an arbitrary closed path and returns to its initial position.
A force that does not meet these criteria is said to be  nonconservative.

A potential energy function U can be associated only with a conservative
force. If a conservative force F acts on a particle that moves along the x axis from
xi to xf , then the change in the potential energy of the system equals the negative
of the work done by that force:

(8.7)

You should be able to use calculus to find the potential energy associated with a
conservative force and vice versa.

The total mechanical energy of a system is defined as the sum of the ki-
netic energy and the potential energy:

(8.9)

If no external forces do work on a system and if no nonconservative forces are
acting on objects inside the system, then the total mechanical energy of the system
is constant:

(8.10)Ki � Ui � Kf � Uf

E � K � U

Uf � Ui � ��xf

x i

Fx dx

Us � 1
2kx2

Ug � mgy

E� � E1
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QUESTIONS

of the student’s nose as in Figure Q8.3. If the student re-
mains stationary, explain why she will not be struck by the
ball on its return swing. Would the student be safe if she
pushed the ball as she released it?

4. One person drops a ball from the top of a building, while
another person at the bottom observes its motion. Will
these two people agree on the value of the potential en-
ergy of the ball–Earth system? on its change in potential
energy? on the kinetic energy of the ball?

5. When a person runs in a track event at constant velocity,
is any work done? (Note: Although the runner moves with
constant velocity, the legs and arms accelerate.) How does
air resistance enter into the picture? Does the center of
mass of the runner move horizontally?

6. Our body muscles exert forces when we lift, push, run,
jump, and so forth. Are these forces conservative?

7. If three conservative forces and one nonconservative
force act on a system, how many potential energy terms
appear in the equation that describes this system?

8. Consider a ball fixed to one end of a rigid rod whose
other end pivots on a horizontal axis so that the rod can
rotate in a vertical plane. What are the positions of stable
and unstable equilibrium?

9. Is it physically possible to have a situation where

10. What would the curve of U versus x look like if a particle
were in a region of neutral equilibrium?

11. Explain the energy transformations that occur during 
(a) the pole vault, (b) the shot put, (c) the high jump.
What is the source of energy in each case?

12. Discuss some of the energy transformations that occur
during the operation of an automobile.

13. If only one external force acts on a particle, does it 
necessarily change the particle’s (a) kinetic energy? 
(b) velocity?

E � U � 0?

1. Many mountain roads are constructed so that they spiral
around a mountain rather than go straight up the slope.
Discuss this design from the viewpoint of energy and
power.

2. A ball is thrown straight up into the air. At what position
is its kinetic energy a maximum? At what position is the
gravitational potential energy a maximum? 

3. A bowling ball is suspended from the ceiling of a lecture
hall by a strong cord. The bowling ball is drawn away from
its equilibrium position and released from rest at the tip

If nonconservative forces (such as friction) act on objects inside a system, then
mechanical energy is not conserved. In these situations, the difference between the
total final mechanical energy and the total initial mechanical energy of the system
equals the energy transferred to or from the system by the nonconservative forces.

Figure Q8.3

PROBLEMS

be the zero level for gravitational potential energy. Find
the potential energy of the roller coaster–Earth system
at points A and B and the change in its potential energy
as the coaster moves. (b) Repeat part (a), setting the
zero reference level at point A.

Section 8.1 Potential Energy
Section 8.2 Conservative and Nonconservative Forces

1. A 1 000-kg roller coaster is initially at the top of a rise, at
point A. It then moves 135 ft, at an angle of 40.0° below
the horizontal, to a lower point B. (a) Choose point B to

1, 2, 3 = straightforward, intermediate, challenging = full solution available in the Student Solutions Manual and Study Guide
WEB = solution posted at http://www.saunderscollege.com/physics/ = Computer useful in solving problem = Interactive Physics

= paired numerical/symbolic problems
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Figure P8.10

Figure P8.3 Problems 3, 4, and 5.

2. A 40.0-N child is in a swing that is attached to ropes 
2.00 m long. Find the gravitational potential energy of
the child–Earth system relative to the child’s lowest po-
sition when (a) the ropes are horizontal, (b) the ropes
make a 30.0° angle with the vertical, and (c) the child is
at the bottom of the circular arc.

3. A 4.00-kg particle moves from the origin to position C,
which has coordinates x � 5.00 m and y � 5.00 m 
(Fig. P8.3). One force on it is the force of gravity acting
in the negative y direction. Using Equation 7.2, calcu-
late the work done by gravity as the particle moves from
O to C along (a) OAC, (b) OBC, and (c) OC. Your re-
sults should all be identical. Why?

time tf ? (b) If the potential energy of the system at time
tf is 5.00 J, are any nonconservative forces acting on the
particle? Explain.

7. A single conservative force acts on a 5.00-kg particle.
The equation N, where x is in meters, de-
scribes this force. As the particle moves along the x axis
from m to m, calculate (a) the work
done by this force, (b) the change in the potential en-
ergy of the system, and (c) the kinetic energy of the par-
ticle at m if its speed at m is 3.00 m/s.

8. A single constant force N acts on a 
4.00-kg particle. (a) Calculate the work done by this
force if the particle moves from the origin to the point
having the vector position m. Does this
result depend on the path? Explain. (b) What is the
speed of the particle at r if its speed at the origin is 
4.00 m/s? (c) What is the change in the potential
energy of the system?

9. A single conservative force acting on a particle varies as
N, where A and B are constants and

x is in meters. (a) Calculate the potential energy func-
tion U(x) associated with this force, taking at

(b) Find the change in potential energy and
change in kinetic energy as the particle moves from

m to m.
10. A particle of mass 0.500 kg is shot from P as shown in

Figure P8.10. The particle has an initial velocity vi with a
horizontal component of 30.0 m/s. The particle rises to
a maximum height of 20.0 m above P. Using the law of
conservation of energy, determine (a) the vertical com-
ponent of vi , (b) the work done by the gravitational
force on the particle during its motion from P to B, and
(c) the horizontal and the vertical components of the
velocity vector when the particle reaches B.

x � 3.00x � 2.00

x � 0.
U � 0

F � (�Ax � Bx2)i

r � (2i � 3j)

F � (3i � 5j)
x � 1.00x � 5.00

x � 5.00x � 1.00

Fx � (2x � 4)

11. A 3.00-kg mass starts from rest and slides a distance d
down a frictionless 30.0° incline. While sliding, it comes
into contact with an unstressed spring of negligible
mass, as shown in Figure P8.11. The mass slides an addi-
tional 0.200 m as it is brought momentarily to rest by
compression of the spring (k � 400 N/m). Find the ini-
tial separation d between the mass and the spring.

4. (a) Suppose that a constant force acts on an object. The
force does not vary with time, nor with the position or
velocity of the object. Start with the general definition
for work done by a force

and show that the force is conservative. (b) As a special
case, suppose that the force N acts on a
particle that moves from O to C in Figure P8.3. Calcu-
late the work done by F if the particle moves along each
one of the three paths OAC, OBC, and OC. (Your three
answers should be identical.)

5. A force acting on a particle moving in the xy plane is
given by N, where x and y are in me-
ters. The particle moves from the origin to a final posi-
tion having coordinates x � 5.00 m and y � 5.00 m, as
in Figure P8.3. Calculate the work done by F along 
(a) OAC, (b) OBC, (c) OC. (d) Is F conservative or non-
conservative? Explain.

Section 8.3 Conservative Forces and Potential Energy
Section 8.4 Conservation of Mechanical Energy

6. At time ti , the kinetic energy of a particle in a system is
30.0 J and the potential energy of the system is 10.0 J. At
some later time tf , the kinetic energy of the particle is
18.0 J. (a) If only conservative forces act on the particle,
what are the potential energy and the total energy at

F � (2 y i � x2 j)

F � (3i � 4j)

W � �f

i
F � d s

(5.00, 5.00) m
C

B

y

x
AO

20.0 m
θ

60.0 m
g

P

vi

A B

WEB



Problems 241

Figure P8.15

Figure P8.13

Figure P8.11 Problems 11 and 12.

12. A mass m starts from rest and slides a distance d down a
frictionless incline of angle �. While sliding,  it contacts
an unstressed spring of negligible mass, as shown in Fig-
ure P8.11. The mass slides an additional distance x as it
is brought momentarily to rest by compression of the
spring (of force constant k). Find the initial separation
d between the mass and the spring.

cal spring of constant k � 5 000 N/m and is pushed
downward so that the spring is compressed 0.100 m. Af-
ter the block is released, it travels upward and then
leaves the spring. To what maximum height above the
point of release does it rise?

18. Dave Johnson, the bronze medalist at the 1992 Olympic
decathlon in Barcelona, leaves the ground for his high
jump with a vertical velocity component of 6.00 m/s.
How far up does his center of gravity move as he makes
the jump?

19. A 0.400-kg ball is thrown straight up into the air and
reaches a maximum altitude of 20.0 m. Taking its initial
position as the point of zero potential energy and using
energy methods, find (a) its initial speed, (b) its total
mechanical energy, and (c) the ratio of its kinetic en-
ergy to the potential energy of the ball–Earth system
when the ball is at an altitude of 10.0 m.

20. In the dangerous “sport” of bungee-jumping, a daring
student jumps from a balloon with a specially designed

14. A simple, 2.00-m-long pendulum is released from rest
when the support string is at an angle of 25.0° from the
vertical. What is the speed of the suspended mass at the
bottom of the swing?

15. A bead slides without friction around a loop-the-loop
(Fig. P8.15). If the bead is released from a height h �
3.50R, what is its speed at point A? How great is the nor-
mal force on it if its mass is 5.00 g?

16. A 120-g mass is attached to the bottom end of an un-
stressed spring. The spring is hanging vertically and has
a spring constant of 40.0 N/m. The mass is dropped.
(a) What is its maximum speed? (b) How far does it
drop before coming to rest momentarily?

17. A block of mass 0.250 kg is placed on top of a light verti-

13. A particle of mass m � 5.00 kg is released from point �
and slides on the frictionless track shown in Figure
P8.13. Determine (a) the particle’s speed at points �
and � and (b) the net work done by the force of gravity
in moving the particle from � to �.

m = 3.00 kg

d

k = 400 N/m

θ = 30.0°θ

3.20 m

�

�

�

m

2.00 m

5.00 m

A

R

h

Figure P8.20 Bungee-jumping. (Gamma)
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elastic cord attached to his ankles, as shown in Figure
P8.20. The unstretched length of the cord is 25.0 m, the
student weighs 700 N, and the balloon is 36.0 m above
the surface of a river below. Assuming that Hooke’s law
describes the cord, calculate the required force constant
if the student is to stop safely 4.00 m above the river.

21. Two masses are connected by a light string passing over a
light frictionless pulley, as shown in Figure P8.21. The
5.00-kg mass is released from rest. Using the law of con-
servation of energy, (a) determine the speed of the 3.00-
kg mass just as the 5.00-kg mass hits the ground and (b)
find the maximum height to which the 3.00-kg mass rises.

22. Two masses are connected by a light string passing over
a light frictionless pulley, as shown in Figure P8.21. The
mass m1 (which is greater than m2) is released from rest.
Using the law of conservation of energy, (a) determine
the speed of m2 just as m1 hits the ground in terms of
m1, m2, and h, and (b) find the maximum height to
which m2 rises.

cal circular arc (Fig. P8.25). Suppose a performer with
mass m and holding the bar steps off an elevated plat-
form, starting from rest with the ropes at an angle of �i
with respect to the vertical. Suppose the size of the per-
former’s body is small compared with the length �, that
she does not pump the trapeze to swing higher, and that
air resistance is negligible. (a) Show that when the ropes
make an angle of � with respect to the vertical, the per-
former must exert a force

in order to hang on. (b) Determine the angle �i at which
the force required to hang on at the bottom of the swing
is twice the performer’s weight.

F � mg (3 cos � � 2 cos �i)

Figure P8.25

Figure P8.21 Problems 21 and 22.

23. A 20.0-kg cannon ball is fired from a cannon with a
muzzle speed of 1 000 m/s at an angle of 37.0° with the
horizontal. A second ball is fired at an angle of 90.0°.
Use the law of conservation of mechanical energy to
find (a) the maximum height reached by each ball and
(b) the total mechanical energy at the maximum height
for each ball. Let y � 0 at the cannon.

24. A 2.00-kg ball is attached to the bottom end of a length
of 10-lb (44.5-N) fishing line. The top end of the fishing
line is held stationary. The ball is released from rest
while the line is taut and horizontal (� � 90.0°). At
what angle � (measured from the vertical) will the fish-
ing line break?

25. The circus apparatus known as the trapeze consists of a
bar suspended by two parallel ropes, each of length �.
The trapeze allows circus performers to swing in a verti-

26. After its release at the top of the first rise, a roller-
coaster car moves freely with negligible friction. The
roller coaster shown in Figure P8.26 has a circular loop
of radius 20.0 m. The car barely makes it around the
loop: At the top of the loop, the riders are upside down
and feel weightless. (a) Find the speed of the roller
coaster car at the top of the loop (position 3). Find the
speed of the roller coaster car (b) at position 1 and 
(c) at position 2. (d) Find the difference in height be-
tween positions 1 and 4 if the speed at position 4 is 
10.0 m/s.

27. A light rigid rod is 77.0 cm long. Its top end is pivoted
on a low-friction horizontal axle. The rod hangs straight
down at rest, with a small massive ball attached to its
bottom end. You strike the ball, suddenly giving it a hor-
izontal velocity so that it swings around in a full circle.
What minimum speed at the bottom is required to
make the ball go over the top of the circle?

h � 4.00 mm2 � 3.00 kg

m1 � 5.00 kg

�

θ
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Section 8.5 Work Done by Nonconservative Forces
28. A 70.0-kg diver steps off a 10.0-m tower and drops

straight down into the water. If he comes to rest 5.00 m
beneath the surface of the water, determine the average
resistance force that the water exerts on the diver.

29. A force Fx , shown as a function of distance in Figure
P8.29, acts on a 5.00-kg mass. If the particle starts from
rest at x � 0 m, determine the speed of the particle at 
x � 2.00, 4.00, and 6.00 m.

32. A 2 000-kg car starts from rest and coasts down from the
top of a 5.00-m-long driveway that is sloped at an angle
of 20.0° with the horizontal. If an average friction force
of 4 000 N impedes the motion of the car, find the
speed of the car at the bottom of the driveway.

33. A 5.00-kg block is set into motion up an inclined plane
with an initial speed of 8.00 m/s (Fig. P8.33). The block
comes to rest after traveling 3.00 m along the plane,
which is inclined at an angle of 30.0° to the horizontal.
For this motion determine (a) the change in the block’s
kinetic energy, (b) the change in the potential energy,
and (c) the frictional force exerted on it (assumed to be
constant). (d) What is the coefficient of kinetic friction?

Figure P8.33

Figure P8.31

Figure P8.29

Figure P8.26

34. A boy in a wheelchair (total mass, 47.0 kg) wins a race
with a skateboarder. He has a speed of 1.40 m/s at the
crest of a slope 2.60 m high and 12.4 m long. At the bot-
tom of the slope, his speed is 6.20 m/s. If air resistance
and rolling resistance can be modeled as a constant fric-
tional force of 41.0 N, find the work he did in pushing
forward on his wheels during the downhill ride.

35. A parachutist of mass 50.0 kg jumps out of a balloon at
a height of 1 000 m and lands on the ground with a
speed of 5.00 m/s. How much energy was lost to air fric-
tion during this jump?

36. An 80.0-kg sky diver jumps out of a balloon at an alti-
tude of 1 000 m and opens the parachute at an altitude
of 200.0 m. (a) Assuming that the total retarding force

30. A softball pitcher swings a ball of mass 0.250 kg around
a vertical circular path of radius 60.0 cm before releas-
ing it from her hand. The pitcher maintains a compo-
nent of force on the ball of constant magnitude 30.0 N
in the direction of motion around the complete path.
The speed of the ball at the top of the circle is 15.0 m/s.
If the ball is released at the bottom of the circle, what is
its speed upon release?

31. The coefficient of friction between the 3.00-kg block
and the surface in Figure P8.31 is 0.400. The system
starts from rest. What is the speed of the 5.00-kg ball
when it has fallen 1.50 m?

1

2

3
4

87654321
0 x(m)
1
2
3
4
5

Fx(N)

3.00 kg

5.00 kg

3.00 m
vi = 8.00 m/s

30.0°

WEB
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on the diver is constant at 50.0 N with the parachute
closed and constant at 3 600 N with the parachute open,
what is the speed of the diver when he lands on the
ground? (b) Do you think the sky diver will get hurt? Ex-
plain. (c) At what height should the parachute be opened
so that the final speed of the sky diver when he hits the
ground is 5.00 m/s? (d) How realistic is the assumption
that the total retarding force is constant? Explain.

37. A toy cannon uses a spring to project a 5.30-g soft rub-
ber ball. The spring is originally compressed by 5.00 cm
and has a stiffness constant of 8.00 N/m. When it is
fired, the ball moves 15.0 cm through the barrel of the
cannon, and there is a constant frictional force of 
0.032 0 N between the barrel and the ball. (a) With
what speed does the projectile leave the barrel of the
cannon? (b) At what point does the ball have maximum
speed? (c) What is this maximum speed?

38. A 1.50-kg mass is held 1.20 m above a relaxed, massless
vertical spring with a spring constant of 320 N/m. The
mass is dropped onto the spring. (a) How far does it
compress the spring? (b) How far would it compress the
spring if the same experiment were performed on the
Moon, where g � 1.63 m/s2? (c) Repeat part (a), but
this time assume that a constant air-resistance force of
0.700 N acts on the mass during its motion.

39. A 3.00-kg block starts at a height h � 60.0 cm on a
plane that has an inclination angle of 30.0°, as shown in
Figure P8.39. Upon reaching the bottom, the block
slides along a horizontal surface. If the coefficient of
friction on both surfaces is �k � 0.200, how far does the
block slide on the horizontal surface before coming to
rest? (Hint: Divide the path into two straight-line parts.)

42. A potential energy function for a two-dimensional force
is of the form Find the force that acts at
the point (x, y).

(Optional)
Section 8.7 Energy Diagrams and the Equilibrium of a
System

43. A particle moves along a line where the potential en-
ergy depends on its position r, as graphed in Figure
P8.43. In the limit as r increases without bound, U(r)
approaches � 1 J. (a) Identify each equilibrium position
for this particle. Indicate whether each is a point of sta-
ble, unstable, or neutral equilibrium. (b) The particle
will be bound if its total energy is in what range? Now
suppose the particle has energy � 3 J. Determine 
(c) the range of positions where it can be found, 
(d) its maximum kinetic energy, (e) the location at
which it has maximum kinetic energy, and (f) its bind-
ing energy—that is, the additional energy that it would
have to be given in order for it to move out to r : �.

U � 3x3y � 7x.

Figure P8.43

Figure P8.39

44. A right circular cone can be balanced on a horizontal
surface in three different ways. Sketch these three equi-
librium configurations and identify them as positions of
stable, unstable, or neutral equilibrium.

45. For the potential energy curve shown in Figure P8.45,
(a) determine whether the force Fx is positive, negative,
or zero at the five points indicated. (b) Indicate points
of stable, unstable, and neutral equilibrium. (c) Sketch
the curve for Fx versus x from x � 0 to x � 9.5 m.

46. A hollow pipe has one or two weights attached to its in-
ner surface, as shown in Figure P8.46. Characterize
each configuration as being stable, unstable, or neutral
equilibrium and explain each of your choices (“CM” in-
dicates center of mass).

47. A particle of mass m is attached between two identical
springs on a horizontal frictionless tabletop. The

40. A 75.0-kg sky diver is falling with a terminal speed of
60.0 m/s. Determine the rate at which he is losing me-
chanical energy.

Section 8.6 Relationship Between Conservative 
Forces and Potential Energy

41. The potential energy of a two-particle system separated
by a distance r is given by where A is a con-
stant. Find the radial force Fr that each particle exerts
on the other.

U(r) � A/r,

θ = 30.0°

m = 3.00 kg

h = 60.0 cm

θ

0
r(mm)

+2

U( J)

+4

+6

+2

–2

–4

–6

2 4 6

WEB
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springs have spring constant k, and each is initially un-
stressed. (a) If the mass is pulled a distance x along a di-
rection perpendicular to the initial configuration of the
springs, as in Figure P8.47, show that the potential en-
ergy of the system is

(Hint: See Problem 66 in Chapter 7.) (b) Make a plot of
U(x) versus x and identify all equilibrium points. As-
sume that L � 1.20 m and k � 40.0 N/m. (c) If the
mass is pulled 0.500 m to the right and then released,
what is its speed when it reaches the equilibrium point
x � 0?

U(x) � kx2 � 2kL(L � √x2 � L2)

51. Close to the center of a campus is a tall silo topped with
a hemispherical cap. The cap is frictionless when wet.
Someone has somehow balanced a pumpkin at the
highest point. The line from the center of curvature of
the cap to the pumpkin makes an angle �i � 0° with the
vertical. On a rainy night, a breath of wind makes the
pumpkin start sliding downward from rest. It loses con-
tact with the cap when the line from the center of the
hemisphere to the pumpkin makes a certain angle with
the vertical; what is this angle?

52. A 200-g particle is released from rest at point � along
the horizontal diameter on the inside of a frictionless,
hemispherical bowl of radius cm (Fig. P8.52).
Calculate (a) the gravitational potential energy when
the particle is at point � relative to point �, (b) the ki-
netic energy of the particle at point �, (c) its speed at
point �, and (d) its kinetic energy and the potential
energy at point �.

R � 30.0

Figure P8.50

Figure P8.47

Figure P8.46

Figure P8.45

(Optional)
Section 8.9 Mass – Energy Equivalence

48. Find the energy equivalents of (a) an electron of mass
9.11 � 10�31 kg, (b) a uranium atom with a mass of
4.00 � 10�25 kg, (c) a paper clip of mass 2.00 g, and
(d) the Earth (of mass 5.99 � 1024 kg). 

49. The expression for the kinetic energy of a particle moving
with speed v is given by Equation 7.19, which can be writ-
ten as where 
The term �mc 2 is the total energy of the particle, and the
term mc2 is its rest energy. A proton moves with a speed of
0.990c, where c is the speed of light. Find (a) its rest en-
ergy, (b) its total energy, and (c) its kinetic energy.

ADDITIONAL PROBLEMS

50. A block slides down a curved frictionless track and then
up an inclined plane as in Figure P8.50. The coefficient
of kinetic friction between the block and the incline is
�k . Use energy methods to show that the maximum
height reached by the block is

ymax �
h

1 � �k cot �

� � [1 � (v/c)2]�1/2.K � �mc 2 � mc 2,
8

x(m)
642

0

–2

–4

2

4

6

U (J)

�

�

�

�

�

(b) (c)(a)

CMO ×
CM×

O
CM×

O

Top View

L

L

x m

k

k

x

ymax
θ

h
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53. The particle described in Problem 52 (Fig. P8.52) is re-
leased from rest at �, and the surface of the bowl is
rough. The speed of the particle at � is 1.50 m/s. 
(a) What is its kinetic energy at �? (b) How much en-
ergy is lost owing to friction as the particle moves from
� to �? (c) Is it possible to determine � from these re-
sults in any simple manner? Explain.

54. Review Problem. The mass of a car is 1 500 kg. The
shape of the body is such that its aerodynamic drag co-
efficient is D � 0.330 and the frontal area is 2.50 m2. As-
suming that the drag force is proportional to v2 and ne-
glecting other sources of friction, calculate the power
the car requires to maintain a speed of 100 km/h as it
climbs a long hill sloping at 3.20°.

55. Make an order-of-magnitude estimate of your power
output as you climb stairs. In your solution, state the
physical quantities you take as data and the values you
measure or estimate for them. Do you consider your
peak power or your sustainable power?

56. A child’s pogo stick (Fig. P8.56) stores energy in a
spring (k � 2.50 � 104 N/m). At position � (xA �
� 0.100 m), the spring compression is a maximum and
the child is momentarily at rest. At position � (xB � 0),
the spring is relaxed and the child is moving upward. At
position �, the child is again momentarily at rest at the
top of the jump. Assuming that the combined mass of
the child and the pogo stick is 25.0 kg, (a) calculate the
total energy of the system if both potential energies are
zero at x � 0, (b) determine xC , (c) calculate the speed
of the child at x � 0, (d) determine the value of x for

which the kinetic energy of the system is a maximum,
and (e) calculate the child’s maximum upward speed.

57. A 10.0-kg block is released from point � in Figure
P8.57. The track is frictionless except for the portion
between � and �, which has a length of 6.00 m. The
block travels down the track, hits a spring of force con-
stant k � 2 250 N/m, and compresses the spring 
0.300 m from its equilibrium position before coming to
rest momentarily. Determine the coefficient of kinetic
friction between the block and the rough surface be-
tween � and �.

58. A 2.00-kg block situated on a rough incline is connected
to a spring of negligible mass having a spring constant
of 100 N/m (Fig. P8.58). The pulley is frictionless. The
block is released from rest when the spring is un-
stretched. The block moves 20.0 cm down the incline
before coming to rest. Find the coefficient of kinetic
friction between block and incline.

Figure P8.57

Figure P8.56

Figure P8.52 Problems 52 and 53.

3.00 m

6.00 m

�

� �

xA

xC

�

�

�

2R/3

R

�

�

�
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63. A block of mass 0.500 kg is pushed against a horizontal
spring of negligible mass until the spring is compressed
a distance �x (Fig. P8.63). The spring constant is 
450 N/m. When it is released, the block travels along a
frictionless, horizontal surface to point B, at the bottom
of a vertical circular track of radius m, and
continues to move up the track. The speed of the block
at the bottom of the track is vB � 12.0 m/s, and the
block experiences an average frictional force of 7.00 N
while sliding up the track. (a) What is �x? (b) What
speed do you predict for the block at the top of the
track? (c) Does the block actually reach the top of the
track, or does it fall off before reaching the top?

64. A uniform chain of length 8.00 m initially lies stretched
out on a horizontal table. (a) If the coefficient of static
friction between the chain and the table is 0.600, show
that the chain will begin to slide off the table if at least
3.00 m of it hangs over the edge of the table. (b) Deter-
mine the speed of the chain as all of it leaves the table,
given that the coefficient of kinetic friction between the
chain and the table is 0.400.

R � 1.00

62. A 1.00-kg mass slides to the right on a surface having a
coefficient of friction � � 0.250 (Fig. P8.62). The mass
has a speed of vi � 3.00 m/s when it makes contact with
a light spring that has a spring constant k � 50.0 N/m.
The mass comes to rest after the spring has been com-
pressed a distance d. The mass is then forced toward the

59. Review Problem. Suppose the incline is frictionless for
the system described in Problem 58 (see Fig. P8.58).
The block is released from rest with the spring initially
unstretched. (a) How far does it move down the incline
before coming to rest? (b) What is its acceleration at its
lowest point? Is the acceleration constant? (c) Describe
the energy transformations that occur during the de-
scent.

60. The potential energy function for a system is given by
U(x) � � x3 � 2x2 � 3x. (a) Determine the force Fx as
a function of x. (b) For what values of x is the force
equal to zero? (c) Plot U(x) versus x and Fx versus x, and
indicate points of stable and unstable equilibrium.

61. A 20.0-kg block is connected to a 30.0-kg block by a
string that passes over a frictionless pulley. The 30.0-kg
block is connected to a spring that has negligible mass
and a force constant of 250 N/m, as shown in Figure
P8.61. The spring is unstretched when the system is as
shown in the figure, and the incline is frictionless. The
20.0-kg block is pulled 20.0 cm down the incline (so
that the 30.0-kg block is 40.0 cm above the floor) and is
released from rest. Find the speed of each block when
the 30.0-kg block is 20.0 cm above the floor (that is,
when the spring is unstretched).

left by the spring and continues to move in that direc-
tion beyond the spring’s unstretched position. Finally,
the mass comes to rest at a distance D to the left of the
unstretched spring. Find (a) the distance of compres-
sion d, (b) the speed v of the mass at the unstretched
position when the mass is moving to the left, and 
(c) the distance D between the unstretched spring and
the point at which the mass comes to rest.

Figure P8.62

Figure P8.61

Figure P8.58 Problems 58 and 59.

v

k

vi

d
vf = 0

v = 0

D

m

20.0 kg

40.0°

30.0 kg

20.0 cm

37.0°

2.00 kg

k = 100 N/m
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65. An object of mass m is suspended from a post on top of
a cart by a string of length L as in Figure P8.65a. The
cart and object are initially moving to the right at con-
stant speed vi . The cart comes to rest after colliding and
sticking to a bumper as in Figure P8.65b, and the sus-
pended object swings through an angle �. (a) Show that 
the speed is (b) If L � 1.20 m
and � � 35.0°, find the initial speed of the cart. (Hint:
The force exerted by the string on the object does no
work on the object.)

vi � √2gL(1 � cos �).

Figure P8.68

Figure P8.67

Figure P8.66

Figure P8.65

Figure P8.63

T

vT

vB

B

R

m
k∆x

69. A ball at the end of a string whirls around in a vertical
circle. If the ball’s total energy remains constant, show
that the tension in the string at the bottom is greater

68. A ball is tied to one end of a string. The other end of
the string is fixed. The ball is set in motion around a
vertical circle without friction. At the top of the circle,
the ball has a speed of as shown in Figure
P8.68. At what angle � should the string be cut so that
the ball will travel through the center of the circle?

vi � √Rg,

67. A ball having mass m is connected by a strong string of
length L to a pivot point and held in place in a vertical
position. A wind exerting constant force of magnitude F
is blowing from left to right as in Figure P8.67a. (a) If
the ball is released from rest, show that the maximum
height H it reaches, as measured from its initial height,
is

Check that the above formula is valid both when 
0 � H � L and when L � H � 2L. (Hint: First deter-
mine the potential energy associated with the constant
wind force.) (b) Compute the value of H using the val-
ues m � 2.00 kg, L � 2.00 m, and F � 14.7 N. (c) Using
these same values, determine the equilibrium height of
the ball. (d) Could the equilibrium height ever be
greater than L? Explain.

H �
2L

1 � (mg/F )2

66. A child slides without friction from a height h along a
curved water slide (Fig. P8.66). She is launched from a
height h/5 into the pool. Determine her maximum air-
borne height y in terms of h and �.

(a)

vi

L

m

(b)

θ

h

θ

h/5
y

L

(a)

F

m

L

Pivot

(b)

F

Pivot

H
m

The path
after string
is cut

R

θ
C

m

vi =     Rg
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Figure P8.74

Figure P8.72

Figure P8.71

Figure P8.70

73. A 5.00-kg block free to move on a horizontal, friction-
less surface is attached to one end of a light horizontal
spring. The other end of the spring is fixed. The spring
is compressed 0.100 m from equilibrium and is then re-
leased. The speed of the block is 1.20 m/s when it
passes the equilibrium position of the spring. The same
experiment is now repeated with the frictionless surface
replaced by a surface for which �k � 0.300. Determine
the speed of the block at the equilibrium position of the
spring.

74. A 50.0-kg block and a 100-kg block are connected by a
string as in Figure P8.74. The pulley is frictionless and
of negligible mass. The coefficient of kinetic friction be-
tween the 50.0-kg block and the incline is �k � 0.250.
Determine the change in the kinetic energy of the 
50.0-kg block as it moves from � to �, a distance of
20.0 m.

the other side? (Hint: First determine the potential en-
ergy associated with the wind force.) (b) Once the res-
cue is complete, Tarzan and Jane must swing back
across the river. With what minimum speed must they
begin their swing? Assume that Tarzan has a mass of
80.0 kg.

72. A child starts from rest and slides down the frictionless
slide shown in Figure P8.72. In terms of R and H, at what
height h will he lose contact with the section of radius R?

71. Jane, whose mass is 50.0 kg, needs to swing across a
river (having width D) filled with man-eating crocodiles
to save Tarzan from danger. However, she must swing
into a wind exerting constant horizontal force F on a
vine having length L and initially making an angle �
with the vertical (Fig. P8.71). Taking D � 50.0 m, F �
110 N, L � 40.0 m, and � � 50.0°, (a) with what mini-
mum speed must Jane begin her swing to just make it to

than the tension at the top by a value six times the
weight of the ball.

70. A pendulum comprising a string of length L and a
sphere swings in the vertical plane. The string hits a peg
located a distance d below the point of suspension (Fig.
P8.70). (a) Show that if the sphere is released from a
height below that of the peg, it will return to this height
after striking the peg. (b) Show that if the pendulum is
released from the horizontal position (� � 90°) and is
to swing in a complete circle centered on the peg, then
the minimum value of d must be 3L/5.

dL

Peg

θ

Wind

 θ

L

F

D

φ

Tarzan

Jane

H

R

50.0 kg

100 kg

37.0°
v

�

�
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ANSWERS TO QUICK QUIZZES

Wapp � 0, then the system energy increases. If Wapp � 0,
then the system energy decreases. The effect of friction
is to decrease the total system energy. Equation 8.15
then becomes

You may find it easier to think of this equation with its
terms in a different order, saying

total initial energy � net change � total final energy

8.5 The slope of a U(x)-versus-x graph is by definition
dU(x)/dx. From Equation 8.16, we see that this expres-
sion is equal to the negative of the x component of the
conservative force acting on an object that is part of the
system.

K 1f � K 2f � Ug1f � Ug 2f � Usf

K 1i � K 2i � Ug1i � Ug2i � Usi � Wapp � fkd �

   � [(Ug1f � Ug 2f � Usf) � (Ug1i � Ug 2i � Usi)]

  � [K 1f � K 2f) � (K 1i � K 2i)] 

 � �K � �U 

�E � Wapp � �Efriction 

8.1 Yes, because we are free to choose any point whatsoever
as our origin of coordinates, which is the Ug � 0 point.
If the object is below the origin of coordinates that we
choose, then Ug � 0 for the object–Earth system.

8.2 Yes, the total mechanical energy of the system is con-
served because the only forces acting are conservative:
the force of gravity and the spring force. There are two
forms of potential energy: (1) gravitational potential en-
ergy and (2) elastic potential energy stored in the spring. 

8.3 The first and third balls speed up after they are thrown,
while the second ball initially slows down but then
speeds up after reaching its peak. The paths of all three
balls are parabolas, and the balls take different times to
reach the ground because they have different initial ve-
locities. However, all three balls have the same speed at
the moment they hit the ground because all start with
the same kinetic energy and undergo the same change
in gravitational potential energy. In other words,

is the same for all three balls at the
start of the motion.

8.4 Designate one object as No. 1 and the other as No. 2.
The external force does work Wapp on the system. If 

Etotal � 1
2mv2 � mgh


