Physics (Chapter - 3) (Current Electricity) (Class - XII) EXERCISES

Question 3.1:

The storage battery of a car has an emf of 12 V. If the internal resistance of the battery is 0.4 Ω , what is the maximum current that can be drawn from the battery?

Answer 3.1:

Emf of the battery, E = 12 V

Internal resistance of the battery, r = 0.4 Ω

Maximum current drawn from the battery = I

According to Ohm's law, $E = lr \Rightarrow I = \frac{E}{r} = \frac{12}{0.4} = 30A$

The maximum current drawn from the given battery is 30 A.

Question 3.2:

A battery of emf 10 V and internal resistance 3 Ω is connected to a resistor. If the current in the circuit is 0.5 A, what is the resistance of the resistor? What is the terminal voltage of the battery when the circuit is closed?

Answer 3.2:

Emf of the battery, E = 10 V and Internal resistance of the battery, r = 3 Ω

```
Current in the circuit, I = 0.5 A
```

```
Resistance of the resistor = R
```

The relation for current using Ohm's law is,

$$I = \frac{E}{R+r} \Rightarrow R+r = \frac{E}{I} = \frac{10}{0.5} = 20 \ \Omega$$

 \therefore R = 20 - 3 = 17 Ω

Terminal voltage of the resistor = V

According to Ohm's law, $V = IR = 0.5 \times 17 = 8.5 V$

Therefore, the resistance of the resistor is 17 Ω and the terminal voltage is 8.5 V.

Question 3.3:

At room temperature (27.0 °C) the resistance of a heating element is 100 Ω . What is the temperature of the element if the resistance is found to be 117 Ω , given that the temperature coefficient of the material of the resistor is 1.70×10^{-4} °C⁻¹.

Answer 3.3:

Room temperature, T = 27°C

Resistance of the heating element at T, R = 100 Ω

Let T₁ is the increased temperature of the filament. Resistance of the heating element at T₁, R₁ = 117 Ω Temperature co-efficient of the material of the filament, $\alpha = 1.70 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$ α is given by relation, $\alpha = \frac{R_1 - R}{R(T_1 - T)} \Rightarrow T_1 - T = \frac{R_1 - R}{R\alpha} \Rightarrow T_1 - 27 = \frac{117 - 100}{100(1.7 \times 10^{-4})} \Rightarrow T_1 - 27 = 1000$ $\Rightarrow T_1 = 1027 \, {}^{\circ}\text{C}$ Therefore, at 1027°C, the resistance of the element is 117 Ω .

Question 3.4:

A negligibly small current is passed through a wire of length 15 m and uniform cross section 6.0 × 10^{-7} m², and its resistance is measured to be 5.0 Ω . What is the resistivity of the material at the temperature of the experiment?

Answer 3.4:

Length of the wire, l =15 m

Area of cross-section of the wire, $a = 6.0 \times 10^{-7} \text{ m}^2$, Resistance of the material of the wire, $R = 5.0 \Omega$ Resistivity of the material of the wire = ρ , Resistance is related with the resistivity as

$$R = \rho \frac{1}{A} \Rightarrow \rho = \frac{RA}{l} = \frac{5 \times 6 \times 10^{-7}}{15}$$
$$= 2 \times 10^{-7} \Omega m$$
Therefore, the resistivity of the material is 2 × 10⁻⁷ Ω m.

Question 3.5:

A silver wire has a resistance of 2.1 Ω at 27.5 °C, and a resistance of 2.7 Ω at 100 °C. Determine the temperature coefficient of resistivity of silver.

Answer 3.5:

```
Temperature, T_1 = 27.5^{\circ}C
Resistance of the silver wire at T_1, R_1 = 2.1 \Omega
Temperature, T_2 = 100^{\circ}C
Resistance of the silver wire at T_2, R_2 = 2.7 \Omega
Temperature coefficient of silver = \alpha
It is related with temperature and resistance as
\alpha = \frac{R_2 - R_1}{R(T_2 - T_1)} = \frac{2.7 - 2.1}{2.1(100 - 27.5)} = 0.0039^{\circ}C<sup>-1</sup>
```

Therefore, the temperature coefficient of silver is 0.0039°C⁻¹.

Question 3.6:

A heating element using nichrome connected to a 230 V supply draws an initial current of 3.2 A which settles after a few seconds to a steady value of 2.8 A. What is the steady temperature of the heating element if the room temperature is 27.0 °C? Temperature coefficient of resistance of nichrome averaged over the temperature range involved is 1.70×10^{-4} °C⁻¹.

Answer 3.6:

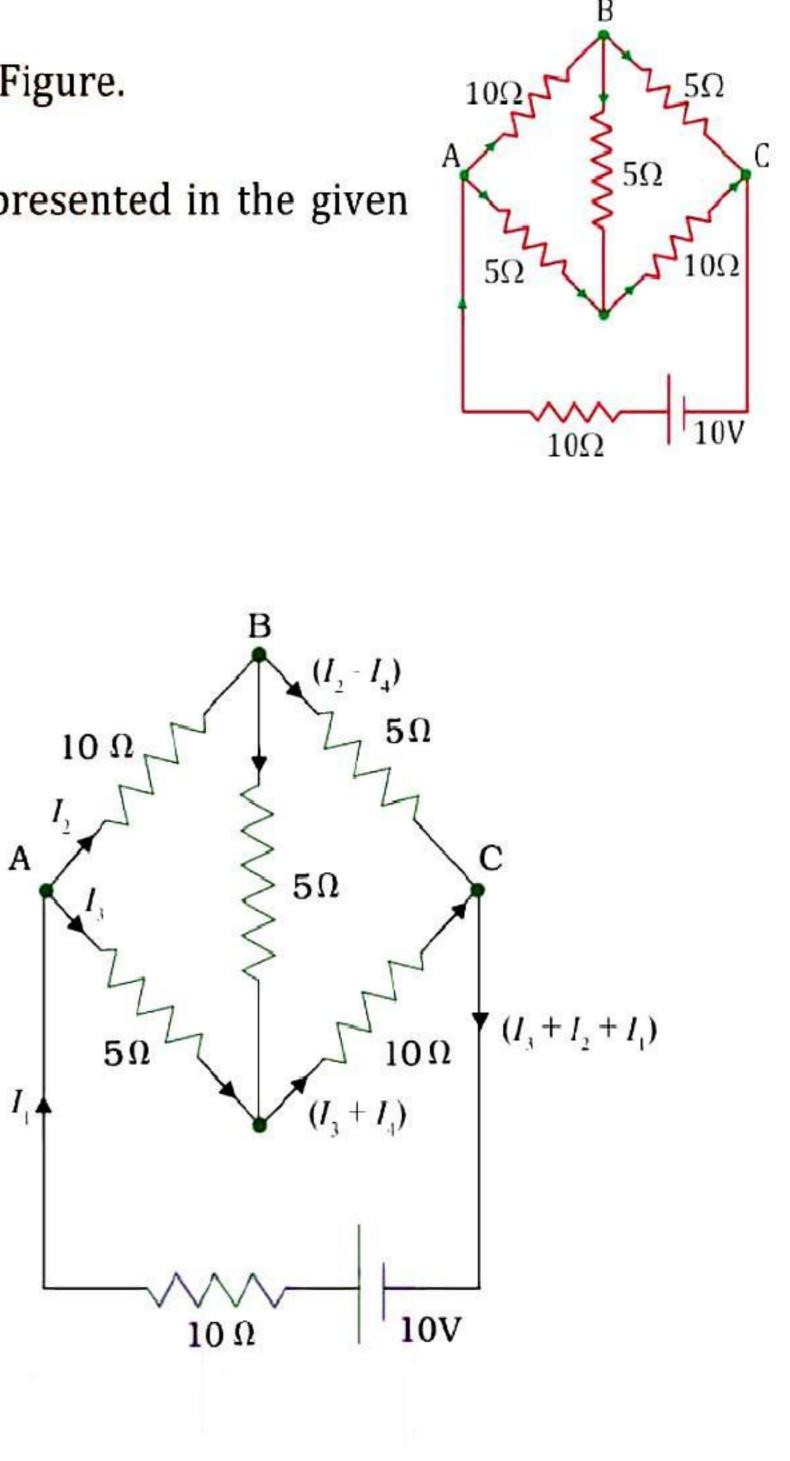
Supply voltage, V = 230 V and Initial current drawn, I₁ = 3.2 A

Initial resistance = R₁, which is given by the relation, $R_1 = \frac{V}{I} = \frac{230}{3.2} = 71.87\Omega$ Steady state value of the current, I₂ = 2.8 A Resistance at the steady state = R₂, which is given as $R_1 = \frac{230}{2.8} = 82.14 \Omega$ Temperature co-efficient of nichrome, $\alpha = 1.70 \times 10^{-4} \,^{\circ}\text{C}^{-1}$ Initial temperature of nichrome, T₁= 27.0°C Study state temperature reached by nichrome = T_2 T₂ can be obtained by the relation for α , $T_1 = 1027 \text{ }^{\circ}\text{C}$

$$\alpha = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \Rightarrow T_2 - 27 \text{ °C} = \frac{82.14 - 71.87}{71.87 - 1.7 \times 10^{-4}} = 840.5$$

$$T_2 = 840.5 + 27 = 867.5 \text{ °C}$$

Therefore, the steady temperature of the heating element is 867.5°C


Question 3.7:

Determine the current in each branch of the network shown in Figure.

Answer 3.7:

Current flowing through various branches of the circuit is represented in the given figure.

- I_1 = Current flowing through the outer circuit

I₂ = Current flowing through branch AB I_3 = Current flowing through branch AD I₂ – I₄ = Current flowing through branch BC I₃ + I₄ = Current flowing through branch CD I₄ = Current flowing through branch BD

For the closed circuit ABDA, potential is zero *i.e.*, $10I_2 + 5I_4 - 5I_3 = 0$ $2I_2 + I_4 - I_3 = 0$... (1) $I_3 = 2I_2 + I_4$

```
For the closed circuit BCDB, potential is zero i.e.,
5(I_2 - I_4) - 10(I_3 + I_4) - 5I_4 = 0
5I_2 + 5I_4 - 10I_3 - 10I_4 - 5I_4 = 0
5I_2 - 10I_3 - 20I_4 = 0
                                           ... (2)
I_2 = 2I_3 + 4I_4
```

```
For the closed circuit ABCFEA, potential is zero i.e.,
-10 + 10(I_1) + 10(I_2) + 5(I_2 - I_4) = 0
10 = 15I_2 + 10I_1 - 5I_4
3I_2 + 2I_1 - I_4 = 2
                                                 ... (3)
```

```
From equations (1) and (2), we obtain
I_3 = 2(2I_3 + 4I_4) + I_4
```

13 - 2(213 + 414) + 14	
$I_3 = 4I_3 + 8I_4 + I_4$	
$-3I_3 = 9I_4$	
$-3I_4 = +I_3$ (4	·)
Putting equation (4) in equation (1), we obtain	1
$I_3 = 2I_2 + I_4$	
$-4I_4 = 2I_2$	

 $I_2 = -2I_4$ It is evident from the given figure that, $I_1 = I_3 + I_2$

... (5)

... (6)

Putting equation (6) in equation (1), we have $3I_2 + 2(I_3 + I_2) - I_4 = 2$ $5I_2 + 2I_3 - I_4 = 2$... (7) Putting equations (4) and (5) in equation (7), we have $5(-2I_4) + 2(-3I_4) - I_4 = 2 \implies -10I_4 - 6I_4 - I_4 = 2 \implies 17I_4 = -2$ $I_4 = -\frac{2}{17}A$ Equation (4) reduces to $I_3 = -3I_4 = -3\left(-\frac{2}{17}\right) = \frac{6}{17}A$ $I_2 = -2I_4 = -2\left(-\frac{2}{17}\right) = \frac{4}{17}A$ $I_2 - I_4 = \frac{4}{17} - \left(-\frac{2}{17}\right) = \frac{6}{17}A$ $I_3 + I_4 = \frac{6}{17} + \left(-\frac{2}{17}\right) = \frac{4}{17}A$ $I_1 = I_3 + I_2 = \frac{6}{17} + \frac{4}{17} = \frac{10}{17} A$ Therefore, the current in branch in AB = $I_2 = \frac{4}{17}A$ The current in branch in BC = $I_2 - I_4 = \frac{6}{17}A$ In branch CD = $I_3 + I_4 = \frac{4}{17}A$ In branch AD = $I_3 = \frac{6}{17}A$ In branch BD = $I_4 = -\frac{2}{17}A$ Total current = $I_1 = \frac{10}{17}A$

Question 3.8:

A storage battery of emf 8.0 V and internal resistance 0.5 Ω is being charged by a 120 V dc supply using a series resistor of 15.5 Ω . What is the terminal voltage of the battery during charging? What is the purpose of having a series resistor in the charging circuit?

Answer 3.8:

Emf of the storage battery, E = 8.0 V and Internal resistance of the battery, r = 0.5 Ω

DC supply voltage, V = 120 V and Resistance of the resistor, R = 15.5 Ω

Effective voltage in the circuit = V¹

R is connected to the storage battery in series. Hence, it can be written as $V^1 = V - E$

```
V<sup>1</sup> = 120 - 8 = 112 V

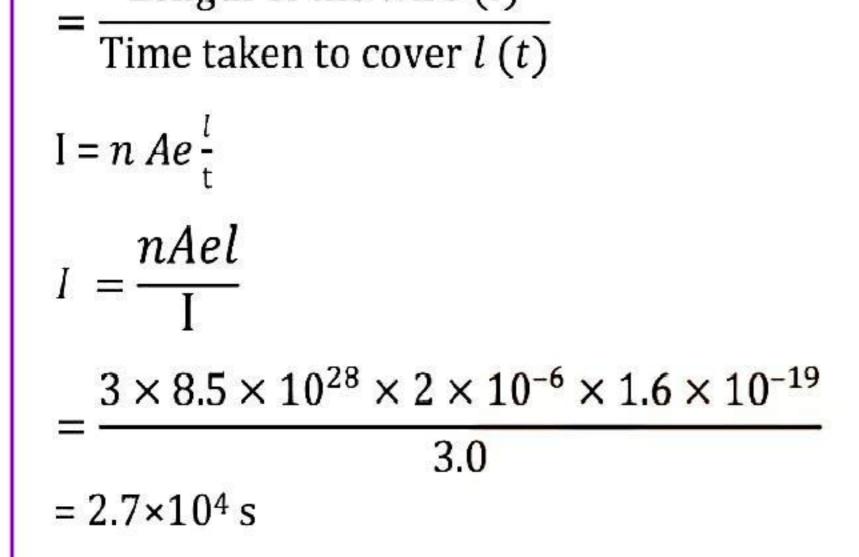
Current flowing in the circuit = I, which is given by the relation,

I = \frac{V^{1}}{R+r} = \frac{112}{15.5+5} = \frac{112}{16} = 7A
Voltage across resistor R given by the product, IR = 7 × 15.5 = 108.5 V

DC supply voltage = Terminal voltage of battery + Voltage drop across R

Terminal voltage of battery = 120 - 108.5 = 11.5 V

A series resistor in a charging circuit limits the current drawn from the external source.


The current will be extremely high in its absence. This is very dangerous.
```

Question 3.9:

The number density of free electrons in a copper conductor estimated in Example 3.1 is 8.5×10^{28} m⁻³. How long does an electron take to drift from one end of a wire 3.0 m long to its other end? The area of cross-section of the wire is 2.0×10^{-6} m² and it is carrying a current of 3.0 A.

Answer 3.9:

```
Number density of free electrons in a copper conductor, n = 8.5 \times 10^{28} m<sup>-3</sup>
Length of the copper wire, l = 3.0 m
Area of cross-section of the wire, A = 2.0 \times 10^{-6} m<sup>2</sup>
Current carried by the wire, I = 3.0 A, which is given by the relation, I = nAeV<sub>d</sub>
Where, e = Electric charge = 1.6 \times 10^{-19} C
V_d = Drift Velocity
Length of the wire (l)
```


Therefore, the time taken by an electron to drift from one end of the wire to the other is 2.7×10^4 s.

