PRACTICE PAPER

Time allowed: 45 minutes Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

1. Let $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ then A^4 is equal to

(a)
$$\begin{bmatrix} 4a & 0 & 0 \\ 0 & 4a & 0 \\ 0 & 0 & 4a \end{bmatrix}$$

(b)
$$\begin{bmatrix} a^4 & 0 & 0 \\ 0 & a^4 & 0 \\ 0 & 0 & a^4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0 & 0 & a^4 \\ 0 & a^4 & 0 \\ a^4 & 0 & 0 \end{bmatrix}$$

$$(a) \begin{bmatrix} 4a & 0 & 0 \\ 0 & 4a & 0 \\ 0 & 0 & 4a \end{bmatrix}$$

$$(b) \begin{bmatrix} a^4 & 0 & 0 \\ 0 & a^4 & 0 \\ 0 & 0 & a^4 \end{bmatrix}$$

$$(c) \begin{bmatrix} 0 & 0 & a^4 \\ 0 & a^4 & 0 \\ a^4 & 0 & 0 \end{bmatrix}$$

$$(d) \begin{bmatrix} a^4 & a^4 & a^4 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$

2. The value of the determinant $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$ is $\begin{vmatrix} x^3 - x^2 - 2 & (c) & x^3 + x^2 - 2 \end{vmatrix}$

(a)
$$x^3 - x^2 + 2$$

(b)
$$x^3 - x^2 - 2$$

(c)
$$x^3 + x^2 - 2$$

(d) None of these

3. The solution of system of equations $x + (\sin \alpha)y = 1$ and $(\sin \alpha)x + 4y = 2$ satisfying $x \ge \frac{4}{5}$ and $y \le \frac{1}{2}$, then

(a)
$$\alpha \in \left[\frac{\pi}{4}, \frac{\pi}{3}\right]$$

(b)
$$\alpha \in \left[0, \frac{\pi}{6}\right]$$

(b)
$$\alpha \in \left[0, \frac{\pi}{6}\right]$$
 (c) $\alpha \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$

(d) None of these

4. If $y = x^x$ then $\frac{d^2y}{dx^2}$ is

(a)
$$x^{x} \left\{ (1 + \log x)^{2} - \frac{1}{x} \right\}$$

(a)
$$x^x \left\{ (1 + \log x)^2 - \frac{1}{x} \right\}$$
 (b) $x^x \left\{ (1 + \log x)^2 + \frac{1}{x} \right\}$ (c) 0

(d)
$$x^{x} \left\{ (1 - \log x)^{2} + \frac{1}{x} \right\}$$

5. If x is real, then the minimum value of $x^2 - 8x + 17$ is

$$(a) -1$$

Read the following statements.

Statement I : The value of $\int_{2}^{8} \frac{\sqrt{10-x}}{\sqrt{x}+\sqrt{10-x}} dx$ is equal to 6.

Statement II : Let f be a continuous function on the closed interval [a, b] and let A(x) be the area function. Then $A'(x) = f(x) \forall x \in [a, b].$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these

7. $\int_0^{1.5} [x^2] dx$, where [] denotes the greatest integer function, is	equal to
---	----------

(a)
$$2 + \sqrt{2}$$

(b)
$$\sqrt{2} - 2$$

(d)
$$\sqrt{2} - 3$$

8. The value of
$$\int \frac{dx}{x^2 + 2x + 2}$$
 equals

(a)
$$tan^{-1}(x+1) + C$$

(a)
$$tan^{-1}(x+1) + C$$
 (b) $cot^{-1}(x+1) + C$

(c)
$$tan^{-1}(x+2) + C$$

(d)
$$\cot^{-1} x + C$$

9. The value of
$$\int \frac{dx}{\sqrt{5x^2-2x}}$$
 is

(a)
$$\frac{1}{5}\log \left| x - \frac{1}{5} + \sqrt{x^2 - \frac{2x}{5}} \right| + C$$

(b)
$$\frac{1}{\sqrt{5}} \log \left| \left(x - \frac{1}{5} \right) + \sqrt{x^2 - \frac{2x}{5}} \right| + C$$

(c)
$$\frac{1}{2\sqrt{5}}\log\left|\left(x+\frac{1}{5}\right)+\sqrt{x^2-\frac{x}{5}}\right|+C$$

10. The area of the region included between
$$y^2 = 9x$$
 and $y = x$ is

(b)
$$\frac{27}{2}$$
 sq. units

11. Solution of the equation
$$x^2y - x^3 \frac{dy}{dx} = y^4 \cos x$$
, when $y(0) = 1$ is

$$(a) y^3 = 3x^3 \sin x$$

(b)
$$x^3 = 3y^3 \sin x$$

(c)
$$x^3 = y^3 \sin x$$

(d) None of these

12. Order and degree of differential equation
$$\frac{d^2y}{dx^2} = \left[y + \left(\frac{dy}{dx}\right)^2\right]^{1/4}$$
 are

- (b) 1 and 2
- (c) 1 and 4
- (d) 2 and 4

13. The objective function
$$Z = 4x + 3y$$
 can be maximised subject to constraints $3x + 4y \le 24$, $8x + 6y \le 48$, $x \le 5$, $y \le 6$, $x, y \ge 0$

(a) at only one point

(b) at two points only

(c) at an infinite number of points

(d) none of these

14. A discrete random variable X has probability distribution given below

	-			
X	0.5	1	1.5	2
P(X)	k	k^2	$2k^2$	k

then the value of k is

(a)
$$\frac{2}{3}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{4}{5}$$

(d)
$$\frac{3}{5}$$

15. A die is thrown 2n times, the probability that the number greater than 4 appears at least once in 2n throws is

(a)
$$\left(\frac{1}{3}\right)^{2n}$$

(b)
$$1 - \left(\frac{1}{3}\right)^{2n}$$

(c)
$$\frac{3^{2n}-2^{2n}}{3^{2n}}$$

(d) none of these

Section-B(B1)

Let f, g be the functions f = {(1, 5), (2, 6), (3, 4)}, g = {(4, 7), (5, 8), (6, 9)} then gof is equal to

$$(a)$$
 { $(1, 5)$, $(2, 9)$, $(3, 7)$ }

$$(c) \{(3,7)\}$$

17. Let * be binary operation on \mathbb{R} defined by $a * b = a + b - \sqrt{2}$ then the value of $(\sqrt{3} * \sqrt{2})$ is

18. Let $f: \mathbb{N} \longrightarrow Y$ be a function defined as f(x) = 4x + 3 where

 $Y = \{y \in \mathbb{N} \mid y = 4x + 3, \text{ for some } x \in \mathbb{N}\}\$ then its inverse is

(a)
$$g(y) = \frac{y-3}{4}$$

(b)
$$g(y) = \frac{3y+4}{3}$$

(c)
$$g(y) = 4 + \frac{y+3}{4}$$
 (d) $g(y) = \frac{y+3}{4}$

$$(d) g(y) = \frac{y+3}{4}$$

19.	Let A and B be finite sets containing m and n elements respectively. The number of relations that can defined from A to B is				
	(a) 2 ^{mn}	(b) 2 ^{m+n}	(c) mn	(d) 0	
20.	If a relation R on the set	$\{1, 2, 3\}$ be defined by $R = \{(1, 2, 3)\}$	1, 2)}, then R is		
	(a) Reflexive	(b) Transitive	(c) Symmetric	(d) None of these	
21.	The number of real solut	ion of the equation tan ⁻¹ √	$x^2 - 3x + 2 + \cos^{-1} \sqrt{4x - x^2} -$	$3 = \pi$ is	
	(a) one	(b) two	(c) zero	(d) infinite	
22.	If $\alpha = \tan^{-1} \left\{ \tan \left(\frac{5\pi}{4} \right) \right\}$ as	and $\beta = \tan^{-1} \left\{ -\tan \left(\frac{2\pi}{3} \right) \right\}$ th	en		
	(a) $4\alpha = 3\beta$	(b) $3\alpha = 4\beta$	(c) $\alpha = \beta$	(d) none of these	
23.	Domain of $\cos^{-1}[x]$ is				
	(a) [-2, 1]	(b) (-1, 1)	(c) [-1, 2)	(d) None of these	
24.	If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} y$	$z = \frac{\pi}{2}$, then the value of x^2	$x^2 + y^2 + z^2 + 2xyz$ equals		
	(a) 2	(b) 0	(c) -1	(d) 1	
25.	If $A = \frac{1}{\pi} \begin{cases} \sin^{-1}(x\pi) & \tan^{-1}(x\pi) \\ \sin^{-1}(x\pi) & \cot^{-1}(x\pi) \end{cases}$	$\begin{bmatrix} \frac{x}{\pi} \\ \pi x \end{bmatrix} B = \frac{1}{\pi} \begin{bmatrix} -\cos^{-1}(x\pi) & \tan x \\ \sin^{-1}\frac{x}{\pi} & -\tan x \end{bmatrix}$	$\begin{bmatrix} \sin^{-1} \frac{x}{\pi} \\ \sin^{-1} \pi x \end{bmatrix}$ then $A - B$ is equal	to	
	(a) 1	(b) 0	(c) 2I	(d) $\frac{1}{2}I$	
26.	If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, the	en $A^T A$ is			
	$(a)\begin{bmatrix}0&0\\0&0\end{bmatrix}$	[1 1]	(c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(d) None of these	
27.	The value of the determine	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	is		
	(a) 4	(b) -4	(c) 2	(d) 0	
28.	Let $a, b, c \in \mathbb{R}^+$ then the	following system of equation	on in <i>x, y, z</i> given by		
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{a^2} + \frac{z^2}{c^2} = 1 \text{ and } \frac{-x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ has}$				
	(a) No solution		(b) Unique solution		
	(c) Infinitely many solution	on	(d) Finitely many solutions	;	
29.	The value of p and q for	which the function			
	$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x}, & x < 0 \\ \frac{q}{x}, & x = 0 \\ \frac{\sqrt{x+x^2} - \sqrt{x}}{x^{3/2}}, & x > 0 \end{cases}$ is continuous for all $x \in R$, are				
	(a) $p = \frac{1}{2}, q = \frac{3}{2}$		(b) $p = \frac{5}{2}, q = \frac{7}{2}$		

(d) none of these

(c) $p = -\frac{3}{2}$, $q = \frac{1}{2}$

20	Lot	f(x) =	3/2	13	+ +2	thon
ou.	Let	f(x) =	x -	VX	T.X	tnen

- (a) LHD at x = 0 exists but RHD at x = 0 does not exists
- (b) f(x) is differentiable at x = 0
- (c) RHD at x = 0 exists but LHD at x = 0 does not exists
- (d) None of these
- 31. Number of points at which $f(x) = \frac{1}{\log |x|}$ is discontinuous is

(d) 4

32. If
$$x = \sqrt{a^{\sin^{-1}t}}$$
, $y = \sqrt{a^{\cos^{-1}t}}$, $a > 0$ and $-1 < t < 1$, then $\frac{dy}{dx}$ is

(b) $\frac{x}{y}$

(c) -y

- (d) None of these
- 33. The point at which the normal to the curve $y = 2x^2 2x + 7$ has a slope $\frac{1}{6}$ is
 - (a) (-1, -11)
- (b) (1, -11)
- (c) (-1, 11)
- (d) (-1, -9)

34. Read the following statements.

Statement I: The value of $\int \frac{x^9}{(4x^2+1)^6} dx$ is equal to $\frac{1}{10} \left(4 + \frac{1}{x^2}\right)^{-5} + C$.

Statement II : $\int \frac{dx}{x\sqrt{x^4-1}}$ is equal to $\sec^{-1}(x^2) + C$.

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these
- 35. Read the following statements.

Statement I : $\int f'(x)dx = f(x) + C$

Statement II : $\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these
- 36. The value of $\int_{3\pi/2}^{-\pi/2} [(x+\pi)^3 + \cos^2(x+\pi)] dx$ is

(b) $\frac{\pi^4}{22}$

(c) $\frac{\pi^4}{2}$

- 37. The area of the region enclosed by the parabola $x^2 = y$ and the line y = x + 2 is
 - (a) $\frac{9}{2}$ sq. units
- (b) 4 sq. units
- (c) 2 sq. units
- (d) None of these
- 38. The general solution of the differential equation $x(1 + y^2)dx + y(1 + x^2)dy = 0$ is

(a)
$$(1 + x^2)(1 + y^2) = 0$$

(b)
$$(1 + x^2)(1 + y^2) = 0$$

(a)
$$(1+x^2)(1+y^2) = 0$$
 (b) $(1+x^2)(1+y^2) = C$ (c) $(1+x^2) = C(1+y^2)$

(d)
$$(1 + y^2) = C(1 + x^2)$$

39. $y = e^{-x} (A \cos x + B \sin x)$, where A and B are arbitrary constants is solution of

$$(a) \frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$$

(b)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$$

(a)
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$$
 (b) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$ (c) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$ (d) $\frac{d^2y}{dx^2} + 2y = 0$

$$(d) \frac{d^2y}{dx^2} + 2y = 0$$

40	The vector of h historic	the angle between non-coll	linear vectors a and \vec{b} if	
40.	(a) \vec{a} and \vec{b} are equal vec		(b) \vec{a} and \vec{b} are unequal ve	notore.
	(c) \vec{a} and \vec{b} are orthogonal		(d) none of these	ectors
41.	The value of k, for which	$ ka < a $ and $ka + \frac{1}{2}a$	is parallel to \overrightarrow{a} holds true	if
	4	(b) $k \in]-1, 1[k \neq \frac{-1}{2}]$	(c) 0	(d) none of these
42.	The value of the expressi	ion $ \vec{a} \times \vec{b} ^2 + (\vec{a} \cdot \vec{b})^2$ is		
	(a) $\vec{a} \cdot \vec{b}$	(b) $ \vec{a} \cdot \vec{b} $	(c) $ \vec{a} ^2 \vec{b} ^2$	(d) $(\vec{a} \cdot \vec{b})$
43.	If \vec{a} is any non-zero vec	tor, then $(\vec{a} \cdot \hat{i}) \hat{i} + (\vec{a} \cdot \hat{j}) \hat{j}$	$(\vec{a} \cdot \hat{k}) \hat{k}$ is equal to	
	(a) $\vec{a} \cdot \vec{b}$	(b) a	(c) 0	(d) none of these
44.	The distance of the poi	int A (4, 3, 2) from the li	ine $\frac{x}{2} = \frac{y-2}{6} = \frac{z+3}{2}$ meas	sured parallel to the plane
	2x + 2y + 3z - 5 = 0 is		2 6 3	
	(a) √35	(b) √33	(c) √34	(d) None of these
45.	The equation of plane thi	rough the line of intersection	n of the planes $x + 2y - z = 3$	and $-3x + 5y + 4z + 9 = 0$ and
	parallel to the line $\frac{x-3}{4} = \frac{y-1}{2} = \frac{z-5}{5}$ is			
	(a) $9x + 7y + 10z - 27 = 0$ (c) $9x - 7y - 10z - 27 = 0$		(d) $9x + 7y = 10z - 27 = 0$ (d) $9x + 7y = 10z + 27 = 0$	
		1-x y-2 z-3	. , ,	are perpendicular to each
46.	other is	$\frac{1}{3} = \frac{1}{2\lambda} = \frac{2}{2}$	$\frac{1}{3\lambda} = \frac{1}{1} = \frac{7}{7}$	are perpendicular to each
	(a) = 2	(b) -3	(c) 2	(d) None of these
47.		which divides the line join		-4 , 7) in the ratio $\lambda: 1$ is $\frac{21}{8}$,
	the value of λ equals	, , , , ,	ge p (-, e, e, e, e	8 /
	2	2	5	
	(a) $\frac{3}{5}$	(b) $\frac{2}{5}$	(c) 5/3	(d) None of these
48.	Two aeroplane I and II bomb a target in succession. The probabilities of I and II scoring a hit correctly are 0.3 and 0.2 respectively. The second plane will bomb only if the first misses the target. The probability that			
	the target is hit by II plane is			angen and processing and
	(a) 0.2	(b) 0.7	(c) 0.06	(d) 0.14
49.		***		probability of two success is
	(a) $\frac{128}{256}$	(b) 219 256	(c) $\frac{37}{256}$	(d) $\frac{28}{256}$
50.	A coin is tossed n times,	the probability that head w	ill turn up on even number	of times is
	(a) $\frac{n+1}{2n}$	(b) $\frac{n}{n+1}$	(c) $\frac{1}{2}$	(d) 2^{n-1}
			-	