Time allowed: 45 minutes

Maximum Marks: 200

(d) k = p = -5

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

(c) k = 3, p = 1/3, A = B = C

(a) $k \neq p$

7. If $\int \sin^4 x \, e^{\log \cos x} dx = \frac{1}{k} \sin^p x + C$, then

(b) k = 3, p = 5

1.	If matrix $A = [a_{ij}]_{2 \times 2^i}$ where $a_{ij} = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases}$ then A^2 is equal to							
	(a) I	(b) A	(c) 0	(d) None of these				
2.	If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then x is equal to							
	(a) 6	(b) ±6	(c) -6	(d) 0				
3.	If A is a square matrix, B is singular matrix of same order, then for a positive integer n , $(A^{-1}BA)^n$ equals to							
	(a) $A^{-n}B^nA^n$	(b) $A^n B^n A^{-n}$	(c) $A^{-1}B^{n}A$	(d) $n(A^{-1}BA)$				
4.	If $f(x) = x^n$, then the value	ue of						
	$f(1) = \frac{f'(1)}{1!} + \frac{f''(1)}{2!} + \frac{f'''(1)}{3!} \pm \dots + \frac{(-1)^n f^n(1)}{n!}$ is							
	(a) 1	(b) 0	(c) 2 ⁿ	(d) 2				
5.	The point of intersection of the tangent drawn to the curve $x^2y = 1 - y$ at the points where it is meet by the curve $xy = 1 - y$, is given by							
	(a) (0, -1)	(b) (1, 1)	(c) (0, 1)	(d) (-1, 0)				
6.	If $\int (x^2 + 2x^4 + 3x^6) (1 + x^2 + x^4)^{1/2} dx = k(Ax^2 + Bx^4 + Cx^6)^p$ then							
	(a) $k = \frac{1}{3}$, $A = B = C = p$		(b) $k = \frac{1}{3}$, $A = B = C$, $p = \frac{3}{2}$					

(d) none of these

(c) k = p = 5

8.	If $f(x) = \int_0^x t \sin t dt$, then $f'(x)$ is							
	(a) $\cos x + x \sin x$	(b) x sin x	c	(c) x cos x	$(d) \sin x$	$+ x \cos x$		
9.	The value of $\int_{-\pi/2}^{\pi/2}$	ne value of $\int_{-\pi/2}^{\pi/2} (x^3 + x \cos x + \tan^5 x + 1) dx$ is						
	(a) 0	(b) 2		(c) π	(d) 1			
10.	Area lying between the curves $y^2 = 4x$ and $y = 2x$ is (in square units)							
	(a) $\frac{2}{3}$	(b) 1/3		(c) 1/4	$(d) \frac{3}{4}$			
	3	3		4	4			
11.	The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{3}} + x^{\frac{1}{4}} = 0$ are respectively							
	(a) 2, 3	(b) 3, 3		(c) 2, 6	(d) 2, 4			
12.	12. The solution of $\frac{dy}{dx} = 2^{y-x}$ is							
	(a) $2^x + 2^y = C$	(b) $2^x - 2^x$	y = C	(c) $\frac{1}{2^x} - \frac{1}{2^y} = C$	(d) $\frac{1}{2^x} + \frac{1}{2^x}$	$\frac{1}{2^y} = C$		
13.	The corner points of the feasible region determined by the system of linear inequalities are $(0, 0)$, $(4, 0)$, $(2, 4)$ and $(0, 5)$. If the maximum value of $Z = ax + by$, where $a, b > 0$ occurs at both $(2, 4)$ and $(4, 0)$, then							
	(a) $a = 2b$	(b) $2a = b$	((c) $a = b$	$(d) \ 3a = b$,		
14.	Consider the probability distribution of a random variable X							
	X	0	1	2	3	4		
	P(X)	0.1	0.25	0.3	0.2	0.15		
	then the variance (a) 1.4475	of X is (b) 0.4575		(c) 1.5475	(d) None	of these		
15.		(b) 0.4575 is tossed n times.	If the probability					
15.	(a) 1.4475 An unbiased coin 6 heads then prob	(b) 0.4575 is tossed n times.	If the probability of the probab			bability of getting		
15.	(a) 1.4475 An unbiased coin 6 heads then prob	(b) 0.4575 is tossed n times. I ability of getting 3	If the probability of the heads, is $\left(\frac{1}{2}\right)^6$	of getting 5 heads in $C_3 \left(\frac{1}{2}\right)^{11}$	is equal to the prol	bability of getting		
	(a) 1.4475 An unbiased coin 6 heads then prob	(b) 0.4575 is tossed n times. It ability of getting 3 (b) $^{11}C_6$	If the probability of the heads, is $\frac{1}{2} \int_{0}^{6} Section - B$	of getting 5 heads in (c) ${}^{11}C_3\left(\frac{1}{2}\right)^{11}$ (B1)	is equal to the prol	bability of getting		
	(a) 1.4475 An unbiased coin 6 heads then probable (a) ${}^{11}C_5 \left(\frac{1}{2}\right)^5$	(b) 0.4575 is tossed n times. It ability of getting 3 (b) $^{11}C_6$	If the probability of the heads, is $\frac{1}{2} \Big)^{6}$ Section—B by > in the set of	of getting 5 heads in (c) ${}^{11}C_3\left(\frac{1}{2}\right)^{11}$ (B1)	is equal to the prol	bability of getting		
16.	(a) 1.4475 An unbiased coin 6 heads then prob (a) $^{11}C_5\Big(\frac{1}{2}\Big)^5$ The relation "great"	(b) 0.4575 is tossed n times. It ability of getting 3 (b) $^{11}C_6$ ter than" denoted (b) Reflex	If the probability of the heads, is $\frac{1}{2} \int_{0}^{6} \frac{Section - B}{Section}$ by > in the set of tive	of getting 5 heads in $(c)^{-11}C_3\left(\frac{1}{2}\right)^{11}$ (B1) integers is (c) Transitive	is equal to the probability (d) $\frac{11}{1024}$	bability of getting		
16.	(a) 1.4475 An unbiased coin 6 heads then prob (a) ${}^{11}C_5 \left(\frac{1}{2}\right)^5$ The relation "great (a) Symmetric	(b) 0.4575 is tossed n times. It ability of getting 3 (b) $^{11}C_6$ ter than" denoted (b) Reflex	If the probability of the heads, is $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Section—B by > in the set of ive (in a set A, then R	of getting 5 heads in $(c)^{-11}C_3\left(\frac{1}{2}\right)^{11}$ (B1) integers is (c) Transitive	is equal to the probability (d) $\frac{11}{1024}$	bability of getting		
16. 17.	(a) 1.4475 An unbiased coin 6 heads then probe (a) ${}^{11}C_5\left(\frac{1}{2}\right)^5$ The relation "great (a) Symmetric If R_1 and R_2 are symmetric	(b) 0.4575 is tossed n times. It ability of getting 3 (b) $^{11}C_6$ ter than" denoted (b) Refleximmetric relations (b) Symm	If the probability of the probability of the probability of the section—B by > in the set of the set of the set A, then R etric (of getting 5 heads in $C_3 \left(\frac{1}{2}\right)^{11}$ (B1) integers is $C_1 \cup R_2$ is	is equal to the probability (d) $\frac{11}{1024}$	bability of getting		
16. 17.	(a) 1.4475 An unbiased coin 6 heads then probe (a) ${}^{11}C_5\left(\frac{1}{2}\right)^5$ The relation "great (a) Symmetric If R_1 and R_2 are symmetric (a) Reflexive The function $f: R$ (a) one-one and interpretation	(b) 0.4575 is tossed n times. It ability of getting 3 (b) ¹¹ C ₆ (ter than" denoted (b) Reflexionmetric relations (b) Symm → R defined by p	If the probability of the heads, is $\frac{1}{2} \int_{0}^{6} \frac{Section - B}{Section - B}$ by > in the set of the ive (in a set A, then Referric (f(x) = $4^{x} + 4^{ x }$ is	of getting 5 heads in $C_3 \left(\frac{1}{2}\right)^{11}$ (B1) integers is $C_1 \cup R_2$ is $C_2 \cup C_3$ in $C_3 \cup C_3$ in $C_4 \cup C_4$ in $C_5 \cup C_5$ in C_6 one-one and one	is equal to the probability (d) $\frac{11}{1024}$ (d) None (d) None to	bability of getting		
16. 17. 18.	(a) 1.4475 An unbiased coin 6 heads then problem (a) ${}^{11}C_5\left(\frac{1}{2}\right)^5$ The relation "great (a) Symmetric If R_1 and R_2 are sytten (a) Reflexive The function $f:R$ (a) one-one and into (c) many one and in	(b) 0.4575 is tossed n times. It ability of getting 3 (b) ¹¹ C ₆ (ter than" denoted (b) Refleximmetric relations (b) Symm → R defined by ponto	If the probability of the heads, is $\frac{1}{2} \int_{0}^{6} Section - B$ by > in the set of the five (in a set A, then R etric (f(x) = $4^{x} + 4^{ x }$ is (f(x) = $4^{x} + 4^{ x }$)	of getting 5 heads in $C_3 \left(\frac{1}{2}\right)^{11}$ (B1) integers is $C_1 \cup R_2$ is $C_2 \cup R_3$ is $C_4 \cup R_4$ in $C_4 \cup R_4$ in $C_4 \cup R_5$ in $C_5 \cup R_6$ one-one and on $C_6 \cup R_6$ many one and $C_6 \cup R_6$	is equal to the probability (d) $\frac{11}{1024}$ (d) None (d) None to onto	of these		
16. 17. 18.	(a) 1.4475 An unbiased coin 6 heads then problem (a) ${}^{11}C_5\left(\frac{1}{2}\right)^5$ The relation "great (a) Symmetric If R_1 and R_2 are symmetric If effective The function $f:R$ (a) one-one and into (c) many one and into Let * be binary open.	(b) 0.4575 is tossed n times. It ability of getting 3 (b) ¹¹ C ₆ (ter than" denoted (b) Refleximmetric relations (b) Symm → R defined by ponto	If the probability of the heads, is $\frac{1}{2} \int_{0}^{6} Section - B$ by > in the set of tive in a set A, then Referric $f(x) = 4^{x} + 4^{ x } \text{ is}$ (of reals) such that	of getting 5 heads in the second of getting 5 heads in the second of th	is equal to the probability (d) $\frac{11}{1024}$ (d) None (d) None to onto	of these		
16. 17. 18.	(a) 1.4475 An unbiased coin 6 heads then problem (a) ${}^{11}C_5 \left(\frac{1}{2}\right)^5$ The relation "great (a) Symmetric If R_1 and R_2 are symmetric (a) Reflexive The function $f:R$ (a) one-one and into (c) many one and into (c) many one and into (d) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{2}$ (e) $\frac{1}{2}$ (e) $\frac{1}{2}$ (f)	(b) 0.4575 is tossed n times. It ability of getting 3 (b) ¹¹ C ₆ (ter than" denoted (b) Refleximmetric relations (b) Symm → R defined by ponto	If the probability of the heads, is $\frac{1}{2} \int_{0}^{6} Section - B$ by > in the set of the ive (in a set A, then Referric (f(x) = $4^{x} + 4^{ x }$ is	of getting 5 heads in the second of getting 5 heads in the second of th	is equal to the probability (d) $\frac{11}{1024}$ (d) None (d) None to onto	of these		
16. 17. 18.	(a) 1.4475 An unbiased coin 6 heads then problem (a) ${}^{11}C_5 \left(\frac{1}{2}\right)^5$ The relation "great (a) Symmetric If R_1 and R_2 are symmetric If effective The function $f:R$ (a) one-one and into (c) many one and into (c) many one and into (c) many one and into (c) $\sqrt{3} + \sqrt{2}$ (c) $\sqrt{3} + \sqrt{2} + 2$	(b) 0.4575 is tossed n times. It ability of getting 3 (b) ¹¹ C ₆ (ter than" denoted (b) Reflex mmetric relations (b) Symm → R defined by ponto eration on R (set of	If the probability of the heads, is $\frac{1}{2} \int_{0}^{6} \frac{Section - B}{Section - B}$ by > in the set of tive (in a set A, then Retric (f(x) = $4^{x} + 4^{ x }$ is (of reals) such that $a = \frac{1}{2} \int_{0}^{6} \frac{dx}{dx} dx$	of getting 5 heads in the second of getting 5 heads in the second of th	is equal to the probability (d) $\frac{11}{1024}$ (d) None (d) None to onto	of these		
16. 17. 18.	(a) 1.4475 An unbiased coin 6 heads then problem (a) ${}^{11}C_5 \left(\frac{1}{2}\right)^5$ The relation "great (a) Symmetric If R_1 and R_2 are symmetric (a) Reflexive The function $f:R$ (a) one-one and into (c) many one and into (c) many one and into (d) $\frac{1}{2}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{2}$ (e) $\frac{1}{2}$ (e) $\frac{1}{2}$ (f)	(b) 0.4575 is tossed n times. It ability of getting 3 (b) ¹¹ C ₆ (ter than" denoted (b) Reflex mmetric relations (b) Symm → R defined by ponto eration on R (set of	If the probability of the heads, is $\frac{1}{2} \int_{0}^{6} \frac{Section - B}{Section - B}$ by > in the set of tive (in a set A, then Retric (f(x) = $4^{x} + 4^{ x }$ is (of reals) such that $a = \frac{1}{2} \int_{0}^{6} \frac{dx}{dx} dx$	of getting 5 heads in the second of getting 5 heads in the second of th	is equal to the probability (d) $\frac{11}{1024}$ (d) None (d) None to onto	of these		

(a)
$$\log_{10} \frac{2x}{2-x}$$

(b)
$$\log_{10} \frac{x}{2-x}$$

(b)
$$\log_{10} \frac{x}{2-x}$$
 (c) $\log_e \left(\frac{2x}{2-x}\right)^{1/2}$

$$(d) \log \left(\frac{1}{2-x}\right)^{1/2}$$

- 21. The number of solution of the equation $\tan^{-1}\left(\frac{x}{3}\right) + \tan^{-1}\left(\frac{x}{2}\right) = \tan^{-1}x$ is

- (d) 1
- 22. The greatest and least values of (sin-1x)3 + (cos-1x)3 are respectively
 - (a) $\frac{\pi^3}{8}$ and $\frac{\pi^3}{8}$
- (b) $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (c) $\frac{7\pi^3}{8}$ and $\frac{\pi^3}{32}$
- (d) $\frac{\pi^3}{32}$ and $\frac{\pi^3}{8}$
- 23. If $u = \cot^{-1} \sqrt{\tan \alpha} \tan^{-1} \sqrt{\tan \alpha}$, then $\tan \left(\frac{\pi}{4} \frac{u}{2}\right)$ is equal to
 - (a) √tan α
- (b) √cot α
- (c) tan a

(d) cot a

24. If $\cos^{-1} x > \sin^{-1} x$, then

$$(a) \ \frac{1}{\sqrt{2}} < x \le 1$$

(b)
$$0 \le x < \frac{1}{\sqrt{2}}$$

(a)
$$\frac{1}{\sqrt{2}} < x \le 1$$
 (b) $0 \le x < \frac{1}{\sqrt{2}}$ (c) $-1 \le x < \frac{1}{\sqrt{2}}$

- 25. On using elementary column operation $C_2 \rightarrow C_2 C_1$ in the following matrix equation

$$\begin{bmatrix} 5 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$
 we get

$$(a) \begin{bmatrix} 5 & -4 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 2 & -2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 5 & -4 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$(c) \begin{bmatrix} 5 & -4 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 2 & -2 \end{bmatrix}$$

- (d) none of these
- 26. If $A = \begin{bmatrix} \alpha & \beta \\ \sim & \aleph \end{bmatrix}$ is such that $A^2 = I$ (identity matrix) then
 - (a) $1 + \alpha^2 + \beta \gamma = 0$
- (b) $1 \alpha^2 + \beta \gamma = 0$
- (c) $1 \alpha^2 \beta \gamma = 0$ (d) $1 + \alpha^2 \beta \gamma = 0$
- 27. Which of the following is correct?
 - (a) Determinant is a square matrix.
 - (b) Determinant is a number associated to a matrix.
 - (c) Determinant is a number associated to a square matrix.
 - (d) None of these
- For what values of a and b the system of equations

$$2x + ay + 6z = 8$$
$$x + 2y + bz = 5$$
$$x + y + 3z = 4$$

has a unique solution?

(a)
$$a = 2, b = 3$$

(b)
$$a \neq 2, b \neq 3$$

(c)
$$a = -2, b = -3$$

(d) None of these

- 29. Read the following statements.
 - Statement I : If the function f(x) defined by $f(x) = \begin{cases} \frac{\log(1+ax) \log(1-bx)}{x}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at x = 0, then k = a + b.

Statement II : We say function f(x) is continuous at x = a, if $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \neq f(a)$

Choose the correct option:

30.	If $f(x)$, $g(x)$, $h(x)$ are p	olynomials in x of degree 2 an	$d F(x) = \begin{vmatrix} f(x) & g(x) & h \\ f'(x) & g'(x) & h \\ f''(x) & g''(x) & h \end{vmatrix}$	f(x) f'(x), then $F'(x)$ is equal to		
	(a) -1	(b) 2	(c) 0	(d) none of these		
31.	. If g is inverse function of f and $f'(x) = \sin x$, then $g'(x)$ is					
	$(a) \sin (g(x))$	$(b) \sin^{-1} x$	(c) $\frac{1}{\sqrt{1-x^2}}$	(d) cosec $(g(x))$		

32. The function
$$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases}$$

(a) is continuous.

(b) has removable discontinuity.

(c) has jump discontinuity.

(d) has oscillating discontinuity.

33. The global minimum value of $f(x) = x^4 - x^2 - 2x + 6$ is

(d) does not exists

34.
$$\int \frac{x^2 - 1}{(x^4 + 3x^2 + 1) \tan^{-1}(x + \frac{1}{x})} dx$$
 equals

(a)
$$\tan^{-1}(x + \frac{1}{x}) + C$$

(b)
$$\cot^{-1}\left(x + \frac{1}{x}\right) + C$$

(c)
$$\log\left(x + \frac{1}{x}\right) + C$$

(d)
$$\log \left[\tan^{-1} \left(x + \frac{1}{x} \right) \right] + C$$

35. Read the following statements.

Statement I : The value of $\int_{\pi/6}^{\pi/4} \csc x \, dx$ is equal to $\log \left| \frac{\sqrt{2} - 1}{2 - \sqrt{3}} \right|$

Statement II : If $f:[a,b] \longrightarrow \mathbb{R}$ and let a < c < b, then

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$$

Choose the correct option:

(a) Statement I is correct but statement II is not correct.

(b) Statement II is correct but statement I is not correct.

(c) Both statements I and II are correct.

(d) None of these

36. Read the following statements.

Statement I :
$$\int_{a}^{b} f(x) dx = \int_{b}^{a} f(x) dx$$

Statement II: Let f be a continuous function defined on the closed interval [a, b] and F is antiderivative of f.

Then
$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Choose the correct option:

(a) Statement I is correct but statement II is not correct.

(b) Statement II is correct but statement I is not correct.

(c) Both statements I and II are correct.

(d) None of these

37. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is (in square units)

38. The differential equation having $y = (\sin^{-1} x)^2 + A(\cos^{-1} x) + B$, where A and B are arbitrary constant, is

(a) $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 2$

(b) $(1-x^2)\frac{d^2y}{dx^2} + y\frac{dy}{dx} = 0$

(c) $(1-x)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$

(d) None of these

39. The general solution of $\frac{dy}{dx} = 2xe^{x^2-y}$ is

(a) $e^{x^2-y} = C$

- (b) $e^{-y} + e^{x^2} = C$
- (c) $e^y = e^{x^2} + C$
- $(d) e^{x^2+y} = C$
- 40. If \vec{a} and \vec{b} are unit vectors, then the angle between \vec{a} and \vec{b} for $\sqrt{3} \vec{a} \vec{b}$ to be a unit vector is

(a) 30°

(a) π

(b) 45°

(c) 60°

(d) 90°

41. If $|\vec{a}| = 3$ and $-1 \le k \le 2$, then $|\vec{k}| = 1$ lies in the interval

(a) [0, 6]

- (b) [-3, 6]
- (c) [3, 6]

- (d) [1, 2]
- 42. The position vector of the point which divides the joining of points $2\vec{a} 3\vec{b}$ and $\vec{a} + \vec{b}$ in the ratio 3:1 is

(a) $\frac{3\vec{a} - 2\vec{b}}{2}$

- (b) $\frac{7\vec{a} 8\vec{b}}{4}$
- (c) $\frac{3\vec{a}}{4}$

(d) $\frac{5\vec{a}}{4}$

43. If $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$, then value of $|\vec{a} \times \vec{b}|$ is

(a) 5

(b) 10

(c) 14

- (d) 16
- 44. Co-ordinates of the point where the line joining the points (- 3, 2, 4) and (3, 4, 5) meets the ZX plane is

(a) (-9, 0, 13)

- (b) (9, 0, 13)
- (c) (-9, 0, 12)
- (d) (9, 0, 12)
- 45. If the distance of the point A(8, 6, 10) from the x axis is α , then the value of α^2 is

(a) 136

(b) 134

(c) 13

- (d) None of these
- 46. The shortest distance between the skew lines $\frac{x+3}{-4} = \frac{y-6}{3} = \frac{z}{2}$ and $\frac{x+2}{-4} = \frac{y}{1} = \frac{z-7}{1}$ is

(a) 9 units

- (b) 10 units
- (c) 8 units
- (d) None of these
- 47. The equation of the plane which is perpendicular to the plane 3x + 5y 6z 2 = 0 and which contains the line of intersection of the planes 2x 3y + z 4 = 0 and x + y 3z + 5 = 0 is

(a) 67x - 63y - 19z + 29 = 0

(b) 67x - 63y + 19z - 29 = 0

(c) 67x + 63y - 19z - 29 = 0

- (d) 67x 63y 19z 29 = 0
- 48. A and B are two events $P(A \cup B) = \frac{5}{6}$ and $P(A \cap B) = \frac{1}{3}$, $P(\overline{B}) = \frac{1}{2}$, then the events A and B are

(a) dependent

- (b) independent
- (c) mutually exclusive
- (d) none of these
- 49. It is given that events A and B are such that $P(A) = \frac{1}{4}$, $P(A/B) = \frac{1}{2}$ and $P(B/A) = \frac{2}{3}$. Then P(B) is

(a) $\frac{1}{2}$

(b) $\frac{1}{6}$

(c) 1/2

- (d) $\frac{2}{3}$
- 50. If $P(A) = \frac{3}{10}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{3}{5}$, then P(B/A) + P(A/B) is equal to

(a) $\frac{11}{4}$

(b) $\frac{11}{3}$

(c) 5 12 (d) $\frac{7}{12}$