Chapter 5

Magnetostatics

5.1 The Lorentz Force Law

5.1.1 Magnetic Fields

Remember the basic problem of classical electrodynamics: We have a collection of charges
q1» 42, g3, -.. (the “source” charges), and we want to calculate the force they exert on
some other charge Q (the “test” charge). (See Fig. 5.1.) According to the principle of
superposition, it is sufficient to find the force of a single source charge—the total is then
the vector sum of all the individual forces. Up to now we have confined our attention to the
simplest case, electrostatics, in which the source charge is af rest (though the test charge
need not be). The time has come to consider the forces between charges in motion.
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Figure 5.1

To give you some sense of what is in store, imagine that I set up the following demon-
stration: Twao wires hang from the ceiling, a few centimeters apart; when I turn on a current.
so that it passes up one wire and back down the other, the wires jump apart—they evidently
repel one anpother (Fig. 5.2(a)). How do you explain this? Well, you might suppose that
the battery (or whatever drives the current) is actually charging up the wire, and that the
force is simply due to the electrical repulsion of like charges. But this explanation is in-
correct. I could hold up a test charge near these wires and there would be no force on it.
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(a) Currents in opposite (b) Currents in same

directions repel. directions attract.

Figure 5.2

for the wires are in fact electrically neutral. (It’s true that electrons are flowing down the
line—that’s what a current is—but there are just as many stationary plus charges as moving
minus charges on any given segment.) Moreover, I could hook up my demonstration so as
to make the current flow up both wires (Fig. 5.2(b)); in this case they are found to atrract!

Whatever force accounts for the attraction of parallel currents and the repulsion of
antiparallel ones is nor electrostatic in nature. It is our first encounter with a magnetic
force. Whereas a stationary charge produces only an electric field E in the space around it,
a moving charge generates, in addition, a magnetic field B. In fact, magnetic fields are a lot
casier to detect, in practice—all you need is a Boy Scout compass. How these devices work
18 irrelevant at the moment; it is enough to know that the needle points in the direction of
the local magnetic field. Ordinarily, this means north, in response to the earth’s magnetic
field, but in the laboratory, where typical fields may be hundreds of times stronger than that,
the compass indicates the direction of whatever magnetic field is present.

Now, if you hold up a tiny compass in the vicinity of a current-carrying wire, you
quickly discover a very peculiar thing: The field does not point toward the wire, nor away
from it, but rather it circles around the wire. In fact, if you grab the wire with your right
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hand—thumb in the direction of the current—your fingers curl around in the direction of
the magnetic field (Fig. 5.3). How can such a field lead to a force of attraction on a nearby
parallel current? At the second wire the magnetic field points into the page (Fig. 5.4), the
velocity of the charges is upward, and yet the resulting force is to the left. It’s going to take a
strange law to account for these directions! I’ll introduce this law in the next section. Later
on, in Sect. 5.2, we’ll return to what is logically the prior question: How do you calculate
the magnetic field of the first wire?

5.1.2 Magnetic Forces

It may have occurred to you that the combination of directions in Fig. 5.4 is just right for
a cross product. In fact, the magnetic force in a charge @, moving with velocity v in a
magnetic field B, is!

Fiag = Q(v x B). A.h

This is known as the Lorentz force law. In the presence of both electric and magnetic
fields, the net force on @ would be

F = Q[E + (v x B)]. (5.2)

I do not pretend to have derived Eq. 5.1, of course; it is a fundamental axiom of the theory.
whose justification is to be found in experiments such as the one I described in Sect. 5.1.1.
Our main job from now on is to calculate the magnetic field B (and for that matter the
electric field E as well, for the rules are more complicated when the source charges are in
motion). But before we proceed, it is worthwhile to take a closer look at the Lorentz force
law itself; it is a peculiar law, and it leads to some truly bizarre particle trajectories.

ISince F and v are vectors, B is actually a pseudovector.
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Example 5.1

Cyclotron motion

The archetypical motion of a charged particle in a magnetic field is circular, with the magnetic
force providing the centripetal acceleration. In Fig. 5.5, a uniform magnetic field points into
the page; if the charge Q moves counterclockwise, with speed v, around a circle of radius R,
the magnetic force (5.1) points inward, and has a fixed magnitude QvB—just right to sustain

uniform circular motion: )

QvB = m%, or p=QBR. (5.3)

where m is the particle’s mass and p = muv is its momentum. Equation 5.3 is known as the
cyclotron formula because it describes the motion of a particle in a cyclotron—the first of the
modern particle accelerators. It also suggests a simple experimental technique for finding the
momentum of a particle: send it through a region of known magnetic field, and measure the
radius of its circular trajectory. This is in fact the standard means for determining the momenta
of elementary particles.

Incidentally, I assumed that the charge moves in a plane perpendicular to B. If it starts out
with some additional speed vy, parallel to B, this component of the motion is unaffected by the
magnetic field, and the particle moves in a helix (Fig. 5.6). The radius is still given by Eq. 5.3,
but the velocity in question is now the component perpendicularto B, v .

Figure 5.5 Figure 5.6

Example 5.2

Cycloid Motion

A more exotic trajectory occurs if we include a uniform electric field, at right angles to the
magnetic one. Suppose, for instance, that B points in the x-direction, and E in the z-direction,
as shown in Fig. 5.7. A particle at rest is released from the origin; what path will it follow?

Solution: Let’s think it through qualitatively, first. Initially, the particle is at rest, so the
magnetic force is zero, and the electric field accelerates the charge in the z-direction. As it
picks up speed, a magnetic force develops which, according to Eq. 5.1, pulls the charge around
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Figure 5.7

to the right. The faster it goes, the stronger Fpag becomes; eventually, it curves the particle
back around towards the y axis. At this point the charge is moving against the electrical force.
so it begins to slow down—the magnetic force then decreases, and the electrical force takes
over, bringing the charge to rest at point a, in Fig. 5.7. There the entire process commences
anew, carrying the particle over to point b, and so on.

Now let’s do it quantitatively. There being no force in the x-direction, the position of the
particle at any time ¢ can be described by the vector (0, y(1), z(1)); the velocity is therefore

v=(0,%2),

where dots indicate time derivatives. Thus
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and hence, applying Newton’s second law,
F=0QE+vxB)=QE2+Biy—Byi) =ma=m(Gy+72).
Or, treating the § and Z components separately,
QB:=m¥, QFE — QBy=ms3.

For convenience, let

OB
ot

(This is the cyclotron frequency, at which the particle would revolve in the absence of any

electric field.) Then the equations of motion take the form

. . E . 55
=wi, I=wl=--7]. .
y Z, < B y

B4

Their general solution? is

¥(@)
z(1)

5.6)

Cicoswt + Cpsinwt + (E/B)t + Csz,
Cyrcoswt — Cy sinwt + Cyg.

2 As coupled differential equations, they are easily solved by differentiating the first and using the second to
eliminate Z.
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But the particle started from rest (3(0) = 2(0) = 0), at the origin (y(0) = z(0) = 0); these
four conditions determine the constants Cy, C», C3, and Cy:

E E
¥(1) = —(wt —sinwt), z(t) = — (1 ~ coswt). 5.7)
wB wB
In this form the answer is not terribly enlightening, but if we let
E
= 5.8
B (5.8)

and eliminate the sines and cosines by exploiting the trigonometric identity sin? wf +cos? wt =
1, we find that

(v — Rot)® + (z — R)? = R (5.9)
This is the formula for a circle, of radius R, whose center (0, Rwt, R) travels in the y-direction
at a constant speed,

E .
= wR = —. 5.10
V=w B (5.10)

The particle moves as though it were a spot on the rim of a wheel, rolling down the y axis at
speed v. The curve generated in this way is called a cycloid. Notice that the overall motion is
not in the direction of E, as you might suppose, but perpendicular to it.

One feature of the magnetic force law (Eq. 5.1) warrants special attention:

Magnetic forces do no work. ‘

For if Q moves an amount dl = v dt, the work done is
dWnag = Fryag - dl = Q(v x B) - vdr = 0. (5.11)

This follows because (v x B) is perpendicular to v, so (v x B) - v = 0. Magnetic forces may
alter the direction in which a particle moves, but they cannot speed it up or slow it down.
The fact that magnetic forces do no work is an elementary and direct consequence of the
Lorentz force law, but there are many situations in which it appears so manifestly false that
one’s confidence is bound to waver. When a magnetic crane lifts the carcass of a junked
car, for instance, something is obviously doing work, and it seems perverse to deny that the
magnetic force is responsible. Well, perverse or not, deny it we must, and it can be a very
subtle matter to figure out what agency does deserve the credit in such circumstances. 1l
show you several examples as we go along.

Problem 5.1 A particle of charge g enters a region of uniform magnetic field B (pointing into
the page). The field deflects the particle a distance d above the original line of flight, as shown
in Fig. 5.8. Is the charge positive or negative? In terms of a, d, B and g, find the momentum
of the particle.

Problem 5.2 Find and sketch the trajectory of the particle in Ex. 5.2, if it starts at the origin
with velocity

(@) v(0) = (E/B)§,

(b) ¥v(0) = (E/2B)Y,

(©) v(0) = (E/B)(¥ + 7).
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Field region

Figure 5.8

Problem 5.3 In 1897 J. J. Thomson “discovered” the electron by measuring the charge-to-mass
ratio of “cathode rays” (actually, streams of electrons, with charge ¢ and mass m) as follows:

(a) First he passed the beam through uniform crossed electric and magnetic fields E and B
(mutually perpendicular, and both of them perpendicular to the beam), and adjusted the electric
field until he got zero deflection. What, then, was the speed of the particles (in terms of E and
B)?

(b) Then he turned off the electric field, and measured the radius of curvature, R, of the beam.
as deflected by the magnetic field alone. In terms of E, B, and R, what is the charge-to-mass
ratio (g/m) of the particles?

5.1.3 Currents

The current in a wire is the charge per unit time passing a given point. By definition.
negative charges moving to the left count the same as positive ones to the right. This
conveniently reflects the physical fact that almost all phenomena involving moving charges
depend on the product of charge and velocity—if you change the sign of g and v, you
get the same answer, so it doesn’t really matter which you have. (The Lorentz force law
is a case in point; the Hall effect (Prob. 5.39) is a notorious exception.) In practice, it is
ordinarily the negatively charged electrons that do the moving—in the direction opposite
the electric current. To avoid the petty complications this entails, I shall often pretend it's
the positive charges that move, as in fact everyone assumed they did for a century or so
after Benjamin Franklin established his unfortunate convention.> Current is measured in
coulombs-per-second, or amperes (A):

IA=1C/s. (5.12
A line charge A traveling down a wire at speed v (Fig. 5.9) constitutes a current
I = v, (5.13)

because a segment of length vAr, carrying charge AvAt, passes point P in a time interval
At. Current is actually a vector:
I=Av; 5.1

31f we called the electron plus and the proton minus, the problem would never arise. In the context of Franklin'~
experiments with cat’s fur and glass rods, the choice was completely arbitrary.
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Figure 5.9

since the path of the flow is dictated by the shape of the wire, most people don’t bother
to display the vectorial character of I explicitly, but when it comes to surface and volume
currents we cannot afford to be so casual, and for the sake of notational consistency it is
a good idea to acknowledge this right from the start. A neutral wire, of course, contains
as many stationary positive charges as mobile negative ones. The former do not contribute
to the current—the charge density A in Eq. 5.13 refers only to the moving charges. In the
unusual situation where both types move, [ = A vy + A_v_.
The magnetic force on a segment of current-carrying wire is evidently

Finag = /(v x B)dq = /(v X B)Adl = /(I x B)dl. (5.15)

Inasmuch as I and 41 both point in the same direction, we can just as well write this as

Fmag = [ 1(dl x B). (5.16)

Typically, the current is constant (in magnitude) along the wire, and in that case I comes
outside the integral:

Fingg = 1 / (dl x B). (5.17)

Example 5.3

A rectangular loop of wire, supporting a mass m, hangs vertically with one end in a uniform
magnetic field B, which points into the page in the shaded region of Fig. 5.10. For what
current /, in the loop, would the magnetic force upward exactly balance the gravitational force
downward?

Solution: First of all, the current must circulate clockwise, in order for (I x B) in the horizontal
segment to point upward. The force is

Fmag = I Ba,

where a is the width of the loop. (The magnetic forces on the two vertical segments cancel.)
For Fiag to balance the weight (mg), we must therefore have

mg
1 =—
Ba

The weight just hangs there, suspended in mid-air!

(5.18)
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Figure 5.10

What happens if we now increase the current? Then the upward magnetic force exceeds the
downward force of gravity, and the loop rises, lifting the weight. Somebody’s doing work, and
it sure looks as though the magnetic force is responsible. Indeed, one is tempted to write

Wmag = Fmagh = IBah, (519)

where h is the distance the loop rises. But we know that magnetic forces never do work.
What’s going on here?

Well, when the loop starts to rise, the charges in the wire are no longer moving horizontally—
their velocity now acquires an upward component #, the speed of the loop (Fig. 5.11), in addition
to the horizontal component w associated with the current (I = Aw). The magnetic force.
which is always perpendicular to the velocity, no longer points straight up, but tilts back. It
is perpendicular to the net displacement of the charge (which is in the direction of v), and
therefore it does no work on g. It does have a vertical component (qw B); indeed, the net
vertical force on all the charge (Aa) in the upper segment of the loop is

Fyert = MawB = IBa (5.20)

(as before); but now it also has a horizontal component (quB), which opposes the flow of
current. Whoever is in charge of maintaining that current, therefore, must now push those
charges along, against the backward component of the magnetic force.

quB

Figure 5.11
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Figure 5.12

The total horizontal force on the top segment is evidently
Fhoriz = dauB. (5.21)

In a time dt the charges move a (horizontal) distance w dt, so the work done by this agency
(presumably a battery or a generator) is

Whatiery = )»aB/uw dt = IBah,

which is precisely what we naively attributed to the magnetic force in Eq. 5.19. Was work
done in this process? Absolutely! Who did it? The battery! What, then, was the role of the
magnetic force? Well, it redirected the horizontal force of the battery into the vertical motion
of the loop and the weight.

It may help to consider a mechanical analogy. Imagine you’re pushing a trunk up a frictionless
ramp, by pushing on it horizontally with a mop (Fig. 5.12). The normal force (N) does no
work, because it is perpendicular to the displacement. But it does have a vertical component
(which in fact is what lifts the trunk), and a (backward) horizontal component (which you have
to overcome by pushing on the mop). Who is doing the work here? You are, obviously—and
yet your force (which is purely horizontal) is not (at least, not directly) what lifts the box. The
normal force plays the same passive (but crucial) role as the magnetic force in Ex. 5.3: while
doing no work itself, it redirects the efforts of the active agent (you, or the battery, as the case
may be), from horizontal to vertical.

When charge flows over a surface, we describe it by the surface current density, K,
defined as follows: Consider a “ribbon” of infinitesimal width @I, , running parallel to the

flow (Fig. 5.13). If the current in this ribbon is d1, the surface current density is
dl
K=—. 5.22
L (5.22)

Inwords, K is the current per unit width-perpendicular-to-flow. Inparticular, if the (mobile)
surface charge density is ¢ and its velocity is v, then

K =ov. (5.23)

In general, K will vary from point to point over the surface, reflecting variations in ¢ and/or
v. The magnetic force on the surface current is

Finag = /(v X B)o da = /(K x B)da. (5.24)
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Figure 5.13

Caveat. Just as E suffers a discontinuity at a surface charge, so B is discontinuous at a
surface current. In Eq. 5.24, you must be careful to use the average field, just as we did in
Sect. 2.5.3.

When the flow of charge is distributed throughout a three-dimensional region, we de-
scribe it by the volume current density, J, defined as follows: Consider a “tube” of
infinitesimal cross section da] , running parallel to the flow (Fig. 5.14). If the current in
this tube is dI, the volume current density is

dl

_— (5.25)
da|

J=

In words, J is the current per unit area-perpendicular-to-flow. If the (mobile) volume
charge density is p and the velocity is v, then

J = pv. (5.26)

The magnetic force on a volume current is therefore

Frag = /(v X B)pdr = /(J x B)dr. (5.27)

Flow

Figure 5.14
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Figure 5.15 Figure 5.16

Example 5.4

(@) A current [ is uniformly distributed over a wire of circular cross section, with radius a
(Fig. 5.15). Find the volume current density J.

Solution: The area-perpendicular-to-flow is 7a2, so

This was trivial because the current density was uniform.

(b) Suppose the current density in the wire is proportional to the distance from the axis,
J =ks

(for some constant k). Find the total current in the wire.
Solution: Because J varies with s, we must integrate Eq. 5.25. The current in the shaded
patch (Fig. 5.16) is Jda ,and da| = sdsd¢. So,

a 2 27‘[ka3
I = | (ks)(sdsd¢g) = 2nkf s°ds = 3
0

According to Eq. 5.25, the current crossing a surface S can be written as

1=/ JdaL=/J-da. (5.28)
S S

(The dot product serves neatly to pick out the appropriate component of da.) In particular,
the total charge per unit time leaving a volume V is

fJ-da:/(V-J)dr.
S %
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Because charge is conserved, whatever flows out through the surface must come at the
expense of that remaining inside:

__4 __[ (%
/;(V-J)dt— dt/l;pdt— /;;(m)dr

(The minus sign reflects the fact that an outward flow decreases the charge left in V.) Since
this applies to any volume, we conclude that

dp

v J= .
at

(5.29)

This is the precise mathematical statement of local charge conservation; it is called the
continuity equation.

For future reference, let me summarize the “dictionary” we have implicitly developed
for translating equations into the forms appropriate to point, line, surface, and volume
currents:

> ( )qu/ ( >Idl~/
i=1 line S|

urface

( )Kda~/ ( )Jdr. (5.30)
volume

This correspondence, which is analogousto g ~ A dl ~ ¢ da ~ p dt for the various charge
distributions, generates Egs. 5.15, 5.24, and 5.27 from the original Lorentz force law (5.1).

Problem 5.4 Suppose that the magnetic field in some region has the form
B=kzx

(where k is a constant). Find the force on a square loop (side a), lying in the yz plane and
centered at the origin, if it carries a current I, flowing counterclockwise, when you look down
the x axis.

Problem 5.5 A current I flows down a wire of radius a.

(a) If it is uniformly distributed over the surface, what is the surface current density K ?

(b) If it is distributed in such a way that the volume current density is inversely proportional
to the distance from the axis, what is J?

Problem 5.6

(a) A phonograph record carries a uniform density of “static electricity” o. If it rotates at
angular velocity w, what is the surface current density K at a distance r from the center?

(b) A uniformly charged solid sphere, of radius R and total charge Q, is centered at the origin
and spinning at a constant angular velocity w about the z axis. Find the current density J at
any point (r, 8, ¢) within the sphere.

Problem 5.7 For a configuration of charges and currents confined within a volume V), show
that

/ Jdtr =dpydt,
%

where p is the total dipole moment. [Hinz: evaluate fV V.-@xhhdrl]
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5.2 The Biot-Savart Law

5.2.1 Steady Currents

Statzonary charges produce electric fields that are constant in time; hence the term electro-
statics.* Steady currents produce magnetic fields that are constant in time; the theory of
steady currents is called magnetostatics.

Stationary charges = constant electric fields: electrostatics.
Steady currents = constant magnetic fields: magnetostatics.

By steady current I mean a continuous flow that has been going on forever, with-
out change and without charge piling up anywhere. (Some people call them “stationary
currents”; to my ear, that’s a contradiction in terms.) Of course, there’s no such thing
in practice as a truly steady current, any more than there is a fruly stationary charge. In
this sense both electrostatics and magnetostatics describe artificial worlds that exist only in
textbooks. However, they represent suitable approximations as long as the actual fluctua-
tions are reasonably slow; in fact, for most purposes magnetostatics applies very well to
household currents, which alternate 60 times a second!

Notice that a moving point charge cannot possibly constitute a steady current. If it’s
here one instant, it’s gone the next. This may seem like a minor thing to you, but it’s a
major headache for me. 1 developed each topic in electrostatics by starting out with the
simple case of a point charge at rest; then I generalized to an arbitrary charge distribution
by invoking the superposition principle. This approach is not open to us in magnetostatics
because a moving point charge does not produce a static field in the first place. We are
forced to deal with extended current distributions, right from the start, and as a result the
arguments are bound to be more cumbersome.

When a steady current flows in a wire, its magnitude I must be the same all along the
line; otherwise, charge would be piling up somewhere, and it wouldn’t be a steady current.
By the same token, dp/8¢ = 0 in magnetostatics, and hence the continuity equation (5.29)
becomes

V.J=0. (531

5.2.2 The Magnetic Field of a Steady Current

The magnetic field of a steady line current is given by the Biot-Savart law:

I ar
B(r) = ”"/—x—"dz’ /~£—" (5.32)

4Actually, it is not necessary that the charges be stationary, but only that the charge density at each point be
constant. For example, the sphere in Prob. 5.6b produces an electrostatic field 1/4weg(Q/r?)F, even though it is
rotating, because p does not depend on ¢.
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dr

Figure 5.17

The integration is along the current path, in the direction of the flow; dI’ is an element
of length along the wire, and %, as always, is the vector from the source to the point r
(Fig. 5.17). The constant i is called the permeability of free space:’

wo = 4w x 1077 N/A2. (5.33)

These units are such that B itself comes out in newtons per ampere-meter (as required by
the Lorentz force law), or teslas (T):6

1T=1N/(A m). (5.34)

As the starting point for magnetostatics, the Biot-Savart law plays a role analogous to
Coulomb’s law in electrostatics. Indeed, the 1/2? dependence is common to both laws.

Example 5.5

gIFind the magnetic field a distance s from a long straight wire carrying a steady current /
| (Fig. 5.18).

Solution: In the diagram, (41’ x 4) points out of the page, and has the magnitude
dl' sina = dl’ cos .

Also, !’ = stan#, so
s

dll = 3 deé,
cos- 6
and s = 2cCos#, so
1 cos? 6
/Lz B s2

SThis is an exact number, not an empirical constant. It serves (via Eq. 5.37) to define the ampere, and the ampere
in turn defines the coulomb.

6For some reason, in this one case the cgs unit (the gauss) is more commonly used than the SI unit: 1 tesla =
10* gauss. The earth’s magnetic field is about half a gauss; a fairly strong laboratory magnetic field is, say, 10,000
gauss.
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Wire segment

Figure 5.18 Figure 5.19
Thus
I 6 2
B = B0 cos= 0 (;> cos0do
4 Jg, 52 cos2 @
1 (% 1 ,
- o cos0db = #—Q—(sin 6y —sinBy). (5.35)
4ms Jo, 4ms

Equation 5.35 gives the field of any straight segment of wire, in terms of the initial and final
angles 61 and 6, (Fig. 5.19). Of course, a finite segment by itself could never support a steady
current (where would the charge go when it got to the end?), but it might be a piece of some
closed circuit, and Eq. 5.35 would then represent its contribution to the total field. In the case

of an infinite wire, §; = —7/2 and 6, = /2, s0 we obtain
1
B =20 (5.36)
27s

Notice that the field is inversely proportional to the distance from the wire—just like the
electric field of an infinite line charge. In the region below the wire, B points into the page, and
in general, it “circles around” the wire, in accordance with the right-hand rule stated earlier
(Fig. 5.3).

. il‘ As an application, let’s find the force of attraction between two long, parallel wires a distance

i
{

' d apart, carrying currents /; and /5 (Fig. 5.20). The field at (2) due to (1) is

Mol
B=——,
2nd
and it points into the page. The Lorentz force law (in the form appropriate to line currents,
Eq. 5.17) predicts a force directed towards (1), of magnitude

I
F=Q(%ﬁ>ldk

The total force, not surprisingly, is infinite, but the force per unit length is

_ ko i

= . 53
2 d (5:37)

f
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o @

Figure 5.20

If the currents are antiparallel (one up, one down), the force is repulsive—consistent again
with the qualitative observations in Sect. 5.1.1.

Example 5.6

Find the magnetic field a distance z above the center of a circular loop of radius R, which
carries a steady current I (Fig. 5.21).

4
_
Z

f
{
{
{
{
{

dar

Figure 5.21

Solution: The field dB attributable to the segment d1’ points as shown. As we integrate dl’
around the loop, dB sweeps out a cone. The horizontal components cancel, and the vertical
components combine to give

dl
B(z) = LI:_J(;I_//L_ZCOSH'

(Notice that d¥’ and 4 are perpendicular, in this case; the factor of cos @ projects out the vertical
component.) Now, cos § and 42 are constants, and [ dl’ is simply the circumference, 27 R, so

uol [cosb nol R?
=— | )|2rR= ——— . 38
B@& =7, ( Y ) R BT (5:38)
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For surface and volume currents the Biot-Savart law becomes

K 2 , ~
B(r) = #o / K@) x» *da'  and B(r) = £ / J@) x» adr’, (5.39
dx 22 Am 22

respectively. You might be tempted to write down the corresponding formula for a moving
point charge, using the “dictionary” 5.30:

Mo gV X &
4 22 7

B(r) = (5.40)

but this is simply wrong.” As I mentioned earlier, a point charge does not constitute a steady
current, and the Biot-Savart law, which only holds for steady currents, does not correctly
determine its field.

Incidentally, the superposition principle applies to magnetic ficlds just as it does to

electric fields: If you have a collection of source currents, the net field is the (vector) sum
of the fields due to each of them taken separately.

Problem 5.8

(a) Find the magnetic field at the center of a square loop, which carries a steady current /. Let
R be the distance from center to side (Fig. 5.22).

(b) Find the field at the center of a regular n-sided polygon, carrying a steady current /. Again,
let R be the distance from the center to any side.

(c) Check that your formula reduces to the field at the center of a circular loop, in the limit
n — 0o.

Problem 5.9 Find the magnetic field at point P for each of the steady current configurations
shown in Fig. 5.23.

I/
:
I (a) (b)
Figure 5.22 Figure 5.23

71 say this loud and clear to emphasize the point of principle; actually, Eq. 5.40 is approximately right for
nonrelativistic charges (v < ¢), under conditions where retardation can be neglected (see Ex. 10.4).
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I

Figure 5.24

Problem 5.10

() Find the force on a square loop placed as shown in Fig. 5.24(a), near an infinite straight
wire. Both the loop and the wire carry a steady current /.

(b) Find the force on the triangular loop in Fig. 5.24(b).

JAVaVaVa

L

v

Figure 5.25

Problem 5.11 Find the magnetic field at point P on the axis of a tightly wound solenoid (helical
coil) consisting of » turns per unit length wrapped around a cylindrical tube of radius ¢ and
carrying current [ (Fig. 5.25). Express your answer in terms of 67 and 6, (it’s easiest that
way). Consider the turns to be essentially circular, and use the result of Ex. 5.6. What is the
field on the axis of an infinite solenoid (infinite in both directions)?

—

Figure 5.26

Problem 5.12 Suppose you have two infinite straight line charges A, a distance d apart, moving
along at a constant speed v (Fig. 5.26). How great would v have to be in order for the magnetic
attraction to balance the electrical repulsion? Work out the actual number. . . Is this a reasonable
sort of speed?®

81f you've studied special relativity, you may be tempted to look for complexities in this problem that are not
really there—A and v are both measured in the laboratory frame, and this is ordinary electrostatics (see footnote 4).
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3.3 The Divergence and Curl of B

5.3.1 Straight-Line Currents
The magnetic field of an infinite straight wire is shown in Fig. 5.27 (the current is coming

out of the page). At a glance, it is clear that this field has a nonzero curl (something you’ll
never see in an electrostatic field); let’s calculate it.

C b s

Figure 5.27

According to Eq. 5.36, the integral of B around a circular path of radius s, centered at

the wire, is
1 1
?§ Ll = f“idz HOZ b i = pol.

Notice that the answer is independent of s; that’s because B decreases at the same rate as
the circumference increases. In fact, it doesn’t have to be a circle; any old loop that encloses
the wire would give the same answer. For if we use cylindrical coordinates (s, ¢, z), with
the current flowing along the z axis,

_ Mol g (5.41)

27ts

anddl:ds§+sd¢$+dzi,so
I 1
del HoZ ¢—“L " b = ol
T3 2 Jo

This assumes the loop encircles the wire exactly once; if it went around twice, the ¢ would
run from 0 to 477, and if it didn’t enclose the wire at all, then ¢ would go from ¢; to ¢, and
back again, with [ d¢ = 0 (Fig. 5.28).
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Wire
()

Figure 5.28 Figure 5.29

Now suppose we have a bundle of straight wires. Each wire that passes through our
loop contributes uo/, and those outside contribute nothing (Fig. 5.29). The line integral
will then be

?gB - dl = paolene, (5.42)

where Ienc stands for the total current enclosed by the integration path. If the flow of charge
is represented by a volume current density J, the enclosed current is

lene = /J -da, (5.43)

with the integral taken over the surface bounded by the loop. Applying Stokes’ theorem to
Eq. 5.42, then,

/(VxB)-da:uo/J-da,

and hence
V x B=ugl. (5.44)

With minimal labor we have actually obtained the general formula for the curl of B.
But our derivation is seriously flawed by the restriction to infinite straight line currents (and
combinations thereof). Most current configurations cannot be constructed out of infinite
straight wires, and we have no right to assume that Eq. 5.44 applies to them. So the next
section is devoted to the formal derivation of the divergence and curl of B, starting from the
Biot-Savart law itself.

5.3.2 The Divergence and Curl of B

The Biot-Savart law for the general case of a volume current reads

B(r) = @/Mdr/. (5.45)
4m 2
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w92

Figure 5.30

This formula gives the magnetic field ata pointr = (x, y, z) in terms$ of an integral over the
current distribution J(x’, y’, z’) (Fig. 5.30). It is best to be absolutely explicit at this stage:

B is a function of (x, y, z),

J is a function of (x', ¥, 7)),
2=x—xXNX+ 0 —-y)§+@-2)E,
dt’ =dx'dy' d7’.
The integration is over the primed coordinates; the divergence and the curl are to be taken

with respect to the unprimed coordinates.
Applying the divergence to Eq. 5.45, we obtain:

vB=2[v.(1x2)a. (5.46)
47 22

Invoking product rule number {6),
A R &
V-(Jxlz)=12-(VxJ)—J-(Vx—2>. (5.47)
2 2 2
But V x J = 0, because J doesn’t depend on the unprimed variables (x, y, z), whereas

V x (&/2%) = 0 (Prob. 1.62), so
(5.48)

Evidently, the divergence of the magnetic field is zero.
Applying the curl to Eq. 5.45, we obtain:

~

vxB=4 Vx(Jx%) dr'. (5.49)
4z 2

Again, our strategy is to expand the integrand, using the appropriate product rule—in this
case number 8&:

Vx(Jx%):J(V-:—Z)—(J-V):—z. (5.50)
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(I'have dropped terms involving derivatives of J, because J does not depend on x, y, z.) The
second ternt integrates to zero, as we’ll see in the next paragraph. The first term involves
the divergence we were at pains to calculate in Chapter 1 (Eq. 1.100):

2 3
V. (/ﬁ) =475 (n). .50

Thus

VxB= Z—;; /J(r’)4n33(r— r')dt’ = uoJ(r),

which confirms that Eq. 5.44 is not restricted to straight-line currents, but holds quite
generally in magnetostatics.

To complete the argument, however, we must check that the second term in Eq. 5.50
integrates to zero. Because the derivative acts only on 2/2%, we can switch from V to V' at
the cost of a minus sign:®

~J-V)5 =1 V). (5.52)
72 72

The x component, in particular, is

s fx—x , [(x—=x) x—x' ,
1 ()= [ () o

(using product rule 5). Now, for steady currents the divergence of J is zero (Eq. 5.31), so

& ’ (X—X/)
Fovs] v [

and therefore this contribution to the integral (5.49) can be written

/V’~ [(x EX)J] df/=?§ o _3x)J-da’. (5.53)
v 2 S v

(The reason for switching from V to V’ was precisely to permit this integration by parts.)
But what region are we integrating over? Well, it’s the volume that appears in the Biot-
Savart law (5.45)—large enough, that is, to include all the current. You can make it bigger
than that, if you like; J = 0 out there anyway, so it will add nothing to the integral. The
essential point is that on the boundary the current is zero (all current is safely inside) and
hence the surface integral (5.53) vanishes. !

9The point here is that 2 depends only on the difference between the coordinates, and (3/3x) f(x — x') =
—(@/8x") f(x — x).

101f J itgelf extends to infinity (as in the case of an infinite straight wire), the surface integral is still typically
zero, though the analysis calls for greater care.
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5.3.3 Applications of Ampere’s Law
The equation for the curl of B

st

is called Ampere’s law (in differential form). It can be converted to integral form by the
usual device of applying one of the fundamental theorems—in this case Stokes’ theorem:

f(v xB)-dazny-m:p,ofJ-da.

Now, [ J-da is the total current passing through the surface (Fig. 5.31), which we call Ienc
(the current enclosed by the amperian loop). Thus

$B - dl = 1o lene. (5.55)

This is the integral version of Ampeére’s law; it generalizes Eq. 5.42 to arbitrary steady
currents. Notice that Eq. 5.55 inherits the sign ambiguity of Stokes’ theorem (Sect. 1.3.5):
Which way around the loop am I supposed to go? And which direction through the surface
corresponds to a “positive” current? The resolution, as always, is the right-hand rule: If the
fingers of your right hand indicate the direction of integration around the boundary, then
your thumb defines the direction of a positive current.

Boundary line

>

Figure 5.31

Just as the Biot-Savart law plays a role in magnetostatics that Coulomb’s law assumed
in electrostatics, so Ampere’s plays the role of Gauss’s:

Electrostatics : Coulomb —  Gauss,
Magnetostatics : Biot—Savart —  Ampére.

In particular, for currents with appropriate symmetry, Ampere’s law in integral form offers
a lovely and extraordinarily efficient means for calculating the magnetic field.
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Example 5.7

Find the magnetic field a distance s from a long straight wire (Fig. 5.32), carrying a steady
current I (the same problem we solved in Ex. 5.5, using the Biot-Savart law).

Solution: We know the direction of B is “circumferential,” circling around the wire as indicated
by the right hand rule. By symmetry, the magnitude of B is constant around an amperian loop
of radius s, centered on the wire. So Ampere’s law gives

%B~dl=8%dl= B2ms = polenc = pol,

or

Hol
B=—.
27
This is the same answer we got before (Eq. 5.36), but it was obtained this time with far less
effort.
b4
Sheet of current
Amperian loop \ .
s
. .
Amperian loop
B s !
Figure 5.32 Figure 5.33
Example 5.8

Find the magnetic field of an infinite uniform surface current K = K %, flowing over the xv
plane (Fig. 5.33).

Solution: First of all, what is the direction of B? Could it have any x-component? No: A glance
at the Biot-Savart law (5.39) reveals that B is perpendicular to K. Could it have a z-component?
No again. You could confirm this by noting that any vertical contribution from a filament at
+y is canceled by the corresponding filament at —y. But there is a nicer argument: Suppose
the field pointed away from the plane. By reversing the direction of the current, I could make
it point foward the plane (in the Biot-Savart law, changing the sign of the current switches the
sign of the field). But the z-component of B cannot possibly depend on the direction of the
current in the xy plane. (Think about it!) So B can only have a y-component, and a quick
check with your right hand should convince you that it points to the left above the plane and
to the right below it.
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With this in mind we draw a rectangular amperian loop as shown in Fig. 5.33, parallel to the
yz plane and extending an equal distance above and below the surface. Applying Ampere’s
law, we find

%B -dl = 2Bl = pglenc = oK1,

(one Bl comes from the top segment, and the other from the bottom), so B = (uo/2)K, or,
more precisely,

_ { +(uo/K§ for z <0, (5.56)

—(ng/2)Ky for 7 > 0.

Notice that the field is independent of the distance from the plane, just like the electric field of
a uniform surface charge (Ex. 2.4).

Example 5.9

Find the magnetic field of a very long solenoid, consisting of n closely wound turns per unit
length on a cylinder of radius R and carrying a steady current 7 (Fig. 5.34). [The point of
making the windings so close is that one can then pretend each turn is circular. If this troubles
you (after all, there is a net current / in the direction of the solenoid’s axis, no matter how tight
the winding), picture instead a sheet of aluminum foil wrapped around the cylinder, carrying the
equivalent uniform surface current K = nl (Fig. 5.35). Or make a double winding, going up
to one end and then—always in the same sense—going back down again, thereby eliminating
the net longitudinal current. But, in truth, this is all unnecessary fastidiousness, for the field
inside a solenoid is huge (relatively speaking), and the field of the longitudinal current is at
most a tiny refinement.]

Solution: First of all, what is the direction of B? Could it have a radial component? No.
For suppose By were positive; if we reversed the direction of the current, By would then be
negative. But switching / is physically equivalent to turning the solenoid upside down, and

-

/\/\/\(\/\/\/\
VVVVVVTYV

Figure 5.34 Figure 5.35



228

CHAPTER 5. MAGNETOSTATICS

b

Amperian loo
Q i i Amperian loops

Figure 5.36 Figure 5.37

that certainly should not alter the radial field. How about a “circumferential” component? No.
For By would be constant around an amperian loop concentric with the solenoid (Fig. 5.36).
and hence

%B ~dl = By (27s) = polenc = 0,
since the loop encloses no current.
So the magnetic field of an infinite, closely wound solenoid runs parallel o the axis. From
the right hand rule, we expect that it points upward inside the solenoid and downward outside.
Moreover, it certainly approaches zero as you go very far away. With this in mind, let's

apply Ampere’s law to the two rectangular loops in Fig. 5.37. Loop 1 lies entirely outside the
solenoid, with its sides at distances @ and b from the axis:

y{B -dl = [B(a) — BB)IL = pglenc = 0,
SO
B(a) = B(b).

Evidently the field outside does not depend on the distance from the axis. But we know that it
goes to zero for large 5. It must therefore be zero evervwhere! (This astonishing result can also
be derived from the Biot-Savart law, of course, but it’s much more difficult. See Prob. 544)

As for loop 2, which is half inside and half outside, Ampere’s law gives

fB-dl = BL = pglenc = poni L,

where B is the field inside the solenoid. (The right side of the loop contributes nothing, since
B =0 out there.) Conclusion:

B— { noni z, inside the solenoid, (5.57)

0, outside the solenoid.

Notice that the field inside is uniform; in this sense the solenoid is to magnetostatics what
the parallel-plate capacitor is to electrostatics: a simple device for producing strong uniform
fields.
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Like Gauss’s law, Ampere’s law is always true (for steady currents), but it is not always
useful. Only when the symmetry of the problem enables you to pull B outside the integral
¢ B - dl can you calculate the magnetic field from Ampere’s law. When it does work, it’s
by far the fastest method; when it doesn’t, you have to fall back on the Biot-Savart law. The
current configurations that can be handled by Ampere’s law are

1. Infinite straight lines (prototype: Ex. 5.7).
2. Infinite planes (prototype: Ex. 5.8).

3. Infinite solenoids (prototype: Ex. 5.9).

4. Toroids (prototype: Ex. 5.10).

The last of these is a surprising and elegant application of Ampere’s law; it is treated in the
following example. As in Exs. 5.8 and 5.9, the hard part is figuring out the direction of the
field (which we will now have done, once and for all, for each of the four geometries); the
actual application of Ampere’s law takes only one line.

Example 5.10

A toroidal coil consists of a circular ring, or “donut,” around which a long wire is wrapped
(Fig. 5.38). The winding is uniform and tight enough so that each turn can be considered
a closed loop. The cross-sectional shape of the coil is immaterial. I made it rectangular in
Fig. 5.38 for the sake of simplicity, but it could just as well be circular or even some weird
asymmetrical form, as in Fig. 5.39, just as long as the shape remains the same all the way
around the ring. In that case it follows that the magnetic field of the toroid is circumferential
at all points, both inside and outside the coil.

Figure 5.38

Proof: According to the Biot-Savart law, the field at r due to the current element at r’ is

We may as well put r in the xz plane (Fig. 5.39), so its Cartesian components are (x, 0, z),
while the source coordinates are

r' = (s'cos¢’, s"sing’, 7).
Then
n=(x—s"cos ¢/, —s'sing’, z — 7).

Since the current has no ¢ component, I = I § + I Z, or (in Cartesian coordinates)

1= (cos¢, Igsing’, I).
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Figure 5.39
Accordingly,
X y Z
Ixa = I cos ¢’ Issing’ I,

(x —s'cosd’) (—s'sing’y (z—12))

fl

[sing’(Is(z ~ 7'y + s’ ;)1 %

+ [L(x — s'cos @) — Iycos ¢’ (z — 21§ + [~ Icx sin @] .

But there is a symmetrically situated current element at r”, with the same s, the same 2, the
same dl’, the same I, and the same I, but negative ¢’ (Fig. 5.39). Because sin ¢’ changes
sign, the X and Z contributions from r” and r”’ cancel, leaving only a § term. Thus the field at
ris in the ¥ direction, and in general the field points in the 43 direction. qed

Now that we know the field is circumferential, determining its magnitude is ridiculousls
easy. Just apply Ampere’s law to a circle of radius s about the axis of the toroid:

B2ns = polenc,

and hence s
MZO : o for points inside the coil,
B(r) = s - (5.58
0, for points outside the coil,

where N is the total number of turns.
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Problem 5.13 A steady current I flows down a long cylindtical wire of radius a (Fig. 5.40).
Find the magnetic field, both inside and outside the wire, if

(a) The current is uniformly distributed over the outside surface of the wire.

(b) The current is distributed in such a way that J is proportional to s, the distance from the
axis.

Figure 5.40 Figure 5.41
Problem 5.14 A thick slab extending from z = —a to z = +a carries a tmiform volume
current J = J X (Fig. 5.41). Find the magnetic field, as a furiction of z, both inside and outside

the slab.

Problem 5.15 Two long coaxial solenoids each carry curfent 7, but in opposite directions, as
shown in Fig. 5.42. The inner solenoid (radius a) has n{ turns per unit length, and the outer
one (radius b) has ny. Find B in each of the three regions: (1) inside the inner solenoid, (ii)
between them, and (iii) outside both.

Figure 5.42 Figure 5.43

Problem 5.16 A labge parallel-plate capacitor with uniform surface chargé o on the ipper
plate and —o on the lower is moving with a constant speed v, as shown in Fig. 5.43.

(a) Find the magnetic field between the plates and also above and below them.
(b) Find the magnetic force per unit area on the upper plate, including its directiom.

(c) At what speed v would the magnetic force balance the electrical force?!!

Hgee footnote 8.
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Problem 5.17 Show that the magnetic field of an infinite solenoid runs parallel to the axis.
regardless of the cross-sectional shape of the coil, as long as that shape is constant along the
length of the solenoid. What is the magnitude of the field, inside and outside of such a coil?
Show that the toroid field (5.58) reduces to the solenoid field, when the radius of the donut is
8o large that a segment can be considered essentially straight.

Problem 5.18 In calculating the current enclosed by an amperian loop, one must, in general.
evaluate an integral of the form
Tene = / J - da.
S

The trouble is, there are infinitely many surfaces that share the same boundary line. Which
one are we supposed to use?

5.3.4 Comparison of Magnetostatics and Electrostatics

The divergence and curl of the electrostatic field are

1
V.E=—p, (Gauss’s law);
€0

VXE=0, (no name).

These are Maxwell’s equations for electrostatics. Together with the boundary condition
E — 0 far from all charges, Maxwell’s equations determine the field, if the source charge
density p is given; they contain essentially the same information as Coulomb’s law plus the
principle of superposition. The divergence and curl of the magnetostatic field are

V.B=0, (no name);

V xB=pupJ, (Ampere’slaw).

These are Maxwell’s equations for magnetostatics. Again, together with the boundary
condition B — 0 far from all currents, Maxwell’s equations determine the magnetic field:
they are equivalent to the Biot-Savart law (plus superposition). Maxwell’s equations and
the force law

F=QE+vxB)

constitute the most elegant formulation of electrostatics and magnetostatics.

The electric field diverges away from a (positive) charge; the magnetic field line curls
around a current (Fig. 5.44). Electric field lines originate on positive charges and terminate
on negative ones; magnetic field lines do not begin or end anywhere—to do so would
require a nonzero divergence. They either form closed loops or extend out to infinity.
To put it another way, there are no point sources for B, as there are for E; there exists
no magnetic analog to electric charge. This is the physical content of the statement V -
B = 0. Coulomb and others believed that magnetism was produced by magnetic charges
(magnetic monopoles, as we would now call them), and in some older books you will still
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(a) Electrostatic field (b) Magnetostatic field
of a point charge of a long wire

Figure 5.44

find references to a magnetic version of Coulomb’s law, giving the force of attraction or
repulsion between them. It was Ampere who first speculated that all magnetic effects are
attributable to electric charges in motion (currents). As far as we know, Ampere was right;
nevertheless, it remains an open experimental question whether magnetic monopoles exist
in nature (they are obviously pretty rare, or somebody would have found one!?), and in
fact some recent elementary particle theories require them. For our purposes, though, B is
divergenceless and there are no magnetic monopoles. It takes a moving electric charge to
produce a magnetic field, and it takes another moving electric charge to “feel” a magnetic
field.

Typically, electric forces are enormously larger than magnetic ones. That’s not some-
thing you can tell from the theory as such; it has to do with the sizes of the fundamental
constants €g and p0. In geheral, it is only when both the source charges and the test charge
are moving at velocities comparable to the speed of light that the magnetic force approaches
the electric force in strength, (Problems 5.12 and 5.16 illustrate this rule.) How is it, then,
that we ever notice magnetic effects at all? The answer is that both in the production of
a magnetic field (Biot-Savart) and in its detection (Lorentz) it is the current (charge times
velocity) that enters, and we can compensate for a smallish velocity by pouring huge quan-
tities of charge down the wire. Ordinarily, this charge would simultaneously generate so
large an electric force as to swamp the magnetic one. But if we arrange to keep the wire
neutral, by embedding in it an equal amount of opposite charge at rest, the electric field
cancels out, leaving the magnetic field to stand alone. It sounds very elaborate, but of course
this is precisely what happens in an ordinary current carrying wire.

2An apparent detection (B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982)) has never been reproduced—and not for
want of trying. For a delightful brief history of ideas about magnetism, see Chapter 1 in D. C. Mattis, The Theory
of Magnetism (New York: Harper and Row, 1965).
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Problem 5.19

(a) Find the density p of mobile charges in a piece of copper, assuming each atom contributes
one free electron. [Look up the necessary physical constants.]

(b) Calculate the average electron velocity in a copper wire 1 mm in diameter, carrying a
current of 1 A. [Note: this is literally a snail’s pace. How, then, can you carry on a long
distance telephone conversation?]

(c) What is the force of attraction between two such wires, 1 cm apart?

(d) If you could somehow remove the stationary positive ions, what would the electrical
repulsion force be? How many times greater than the magnetic force is it?

Problem 5.20 Is Ampere’s law consistent with the general rule (Eq. 1.46) that divergence-of-
curl is always zero? Show that Ampere’s law eannor be valid, in general, outside magneto-
statics. Is there any such “defect” in the other three Maxwell equations?

Problem 5.21 Suppose there did exist magnetic monopoles. How would you modify Maxwell’s
equations and the force law, to accommodate them? If you think there are several plausible
options, list them, and suggest how you might decide experimentally which one is right.

5.4 Magnetic Vector Potential

5.4.1 The Vector Potential

Justas V x E = ( permitted us to introduce a scalar potential (V') in electrostatics,
E=-VV,

so V - B = 0 invites the introduction of a vector potential A in magnetostatics:

55

The former is authorized by Theorem 1 (of Sect. 1.6.2), the latter by Theorem 2 (the proof
of Thearem 2 is developed in Prob. 5.30). The potential formulation automatically takes
care of V - B = 0 (since the divergence of a curl is always zero); there remains Ampere’s
law:

VxB=V x(VxA)=V(V-A) — VA = uol. (5.60)

Now, the electric potential had a built-in ambiguity: youcanaddto V any function whose
gradient is zero (which is to say, any constant), without altering the physical quantity E.
Likewise, you can add to the magnetic potential any function whose cur! vanishes (which
is to say, the gradient of any scalar), with no effect on B. We can exploit this freedom to
eliminate the divergence of A:

V-A=0. (5.61)
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To prove that this is always possible, suppose that our original potential, Ao, is not
divergenceless. If we add to it the gradient of A (A = A, + V1), the new divergence is

V-A=V.A,+ V2
We can accommodate Eq. 5.61, then, if a function A can be found that satisfies
VA =-V_.A,.
But this is mathematically identical to Poisson’s equation (2.24),

vy =2,
€0
with V-A, in place of p/¢q as the “source.” And we know how to solve Poisson’s equation—
that’s what electrostatics is all about (“given the charge distribution, find the potential”). In
particular, if p goes to zero at infinity, the solution is Eq. 2.29:

1
V= Bd‘t/,
dreg 2

and by the same token, if V - A, goes to zero at infinity, then

1 V'A()

= — dt’.
4 2

A

If V - A, does not go to zero at infinity, we’ll have to use other means to discover the
appropriate A, just as we get the electric potential by other means when the charge distribu-
tion extends to infinity. But the essential point remains: It is always possible to make the
vector potential divergenceless. To put it the other way around: The definition B = V x A
specifies the curl of A, but it doesn’t say anything about the divergence—we are at liberty
to pick that as we see fit, and zero is ordinarily the simplest choice.

With this condition on A, Ampeére’s law (5.60) becomes

V2A = —ugl. (5.62)

This again is nothing but Poisson’s equation—or rather, it is three Poisson’s equations, one

for each Cartesian'3 component. Assuming J goes to zero at infinity, we can read off the
solution:
/
Ay = 20 / LU (5.63)
4r 3

131n Cartesian coordinates, V2A = (V2A,)% + (VZA}-))A' + (V2A;)%, 50 Eq. 5.62 reduces to V2 A, = —ugJxs
V24 y = —ugJy, and V24 7z = —ugJz. In curvilinear coordinates the unit vectors themselves are functions of
position, and must be differentiated, so it is nof the case, for example, that V24, = —uoJr. The safest way to
calculate the Laplacian of a vector, in terms of its curvilinear components, is to use VZA = V(V.A)—V x (V x A).
Remember also that even if you caleulate integrals such as 5.63 using curvilinear coordinates, you must first express
J in terms of its Cartesian components (see Sect. 1.4.1).
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For line and surface currents,

I I 1 K
P _d,/zﬁo_/_dl/; A=t [ 20 (5.64)
47 2 4 2 4 2

(If the current does not go to zero at infinity, we have to find other ways to get A; some of
these are explored in Ex. 5.12 and in the problems at the end of the section.)

It must be said that A is not as useful as V. For one thing, it’s still a vector, and although
Eqgs. 5.63 and 5.64 are somewhat easier to work with than the Biot-Savart law, you still have
to fuss with components. It would be nice if we could get away with a scalar potential,

B=-VU, (5.65)

but this is incompatible with Ampere’s law, since the curl of a gradient is always zero. (A
magnetostatic scalar potential can be used, if you stick scrupulously to simply-connected.
current-free regions, but as a theoretical tool it is of limited interest. See Prob. 5.28.) More-
over, since magnetic forces do no work, A does not admit a simple physical interpretation
in terms of potential energy per unit charge. (In some contexts it can be interpreted as
momentum per unit charge.'#) Nevertheless, the vector potential has substantial theoretical
importance, as we shall see in Chapter 10.

Example 5.11
A spherical shell, of radius R, carrying a uniform surface charge o, is set spinning at angular
velocity . Find the vector potential it produces at point r (Fig. 5.45).

Solution: It might seem natural to align the polar axis along @, but in fact the integration is
easier if we let r lie on the z axis, so that e is tilted at an angle . We may as well orient the
x axis so that @ lies in the xz plane, as shown in Fig. 5.46. According to Eq. 5.64,

AQr) = &/ K(I‘)da/’
47

2

Figure 5.45 Figure 5.46

14\, D. Semon and J. R. Taylor, Am. J. Phys. 64, 1361 (1996).
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where K = ov,2 = vVR2 + 72 — 2Rrcos0', and da’ = R? sing’ df’' d¢’. Now the velocity
of a point 1’ in a rotating rigid body is given by @ x 1’; in this case,

A A ~

b ¥ Z
v=oxr =| osiny 0 wcos Y
Rsinf' cos¢’ Rsin®'sing’ Rcosh’

= Rwl[—(cos  sin§’ sin¢") X 4 (cos ¥ sin 8’ cos ¢’ —sin 1 cos8') § +(sin ¢ sin 6’ sin ¢’) Z].

Notice that each of these terms, save one, involves either sin ¢’ or cos ¢’. Since
2 2
/ sing’ d¢’ = / cos¢’ dp’ =0,
0 0

such terms contribute nothing. There remains

Ar) = _,uoR3aa) sin ¥ (/” cos 8’ sin6’ d9/> ;.
0

2 VR2 42 _2Rrcost’

Letting u = cos 6, the integral becomes

+1 u R2 .2 R I
- du= _M,/RZ +7r2 —2Rru

RZ +r2 —2Rru 3R2r2

+1

-1
_ 1
© 3R%?
If the point r lies inside the sphere, then R > r, and this expression reduces to (2r-/3R2): if r lies

outside the sphere, so that R < r, it reduces to 2R/ 3r2). Noting that (@ x ) = —wr siny ¥,
we have, finally,

[(R2+r2+Rr)|R—V|—(R2+72_R”)(R+"):|'

R

Hoo (@ x 1), for points inside the sphere,
R

,u03 3 i (w x 1), for points outside the sphere.
-

Having evaluated the integral, I revert to the “natural” coordinates of Fig. 5.45, in which @
coincides with the z axis and the point r is at (r, 8, ¢):

R .
%rsin@d), (r < R),
A(r,0,¢) = . (5.67)
#oR wo sinf -
Of—Z‘P, (r = R).
r

Curiously, the field inside this spherical shell is uniform:

2uoR . A 2 . 2
B=VxA= M(cos¢9i'—sm490)= g,uoaRa)z= = oo Rw. (5.68)

3
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Example 5.12

Find the vector potential of an infinite solenoid with n turns per unit length, radius R, and
current /.

Solution: This time we cannot use Eq. 5.64, since the current itself extends to infinity. But
here’s a cute method that does the job. Notice that

.(}gA-dl:f(VxA)-da:/B-da:dl (5.69

where @ is the flux of B through the loop in question. This is reminiscent of Ampére’s law in
the integral form (5.55),

%B -dl = pglenc.

In fact, it’s the same equation, with B — A and pglenc — ©. If symmetry permits, we can
determine A from @ in the same way we got B from Jepc, in Sect. 5.3.3. The present problem
(with a uniform longitudinal magnetic field ugn/ inside the solenoid and no field outside) 1s
analogous to the Ampere’s law problem of a fat wire carrying a uniformly distributed current.
The vector potential is “circumferential” (it mimics the magnetic field of the wire); using a
circular “amperian loop” at radius s inside the solenoid, we have

%Awﬂ:ﬂhﬁ:/Bda:mwwﬁx
S0
_ Hond
2
For an amperian loop outside the solenoid, the flux is

A

scﬁ, fors < R. (5.70)

fB -da= ,u,()nI(nRz),

since the field only extends out to R. Thus

I1R? ,
A=M""2 3 fors > R. (5.71)
2 s
If you have any doubts about this answer, check it: Does V x A = B? Does V - A = 0? If so.

we’re done.

Typically, the direction of A will mimic the direction of the current. For instance, both
were azimuthal in Exs. 5.11 and 5.12. Indeed, if all the current flows in one direction, then
Eq. 5.63 suggests that A must point that way too. Thus the potential of a finite segment of
straight wire (Prob. 5.22) is in the direction of the current. Of course, if the current extends
to infinity you can’t use Eq. 5.63 in the first place (see Probs. 5.25 and 5.26). Moreover.
you can always add an arbitrary constant vector to A—this is analogous to changing the
reference point for V, and it won’t affect the divergence or curl of A, which is all that matters
(in Eq. 5.63 we have chosen the constant so that A goes to zero at infinity). In principle
you could even use a vector potential that is not divergenceless, in which case all bets are
off. Despite all these caveats, the essential point remains: Ordinarily the direction of A
will match the direction of the current.
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Problem 5.22 Find the magnetic vector potential of a finite segment of straight wire, carrying
a current /. [Put the wire on the z axis, from z; to z, and use Eq. 5.64.] Check that your
answer is consistent with Eq. 5.35.

Problem 5.23 What current density would produce the vector potential, A = k(f) (where k is
a constant), in cylindrical coordinates?

Problem 5.24 If B is uniform, show that A(r) = —%(r x B) works. That is, check that
V-A =0and V x A = B. Is this result unique, or are there other functions with the same
divergence and curl?

Problem 5.25

(a) By whatever means you can think of (short of looking it up), find the vector potential a
distance s from an infinite straight wire carrying a current 7. Check that V - A = 0 and
V xA=B.

(b) Find the magnetic potential inside the wire, if it has radius R and the current is uniformly
distributed.

Problem 5.26 Find the vector potential above and below the plane surface current in Ex. 5.8.

Problem 5.27

(a) Check that Eq. 5.63 is consistent with Eq. 5.61, by applying the divergence.
(b) Check that Eq. 5.63 is consistent with Eq. 5.45, by applying the curl.

(c) Check that Eq..5.63 is consistent with Eq. 5.62, by applying the Laplacian.

Problem 5.28 Suppose you want to define a magnetic scalar potential U/ (Eq. 5.65), in the
vicinity of a current-carrying wire. First of all, you must stay away from the wire itself (there
V x B # 0); but that’s not enough. Show, by applying Ampére’s law to a path that starts at a
and circles the wire, returning to b (Fig. 5.47), that the scalar potential cannot be single-valued
(that is, U(a) # U(b), even if they represent the same physical point). As an example, find
the scalar potential for an infinite straight wire. (To avoid a multivalued potential, you must
restrict yourself to simply-connected regions that remain on one side or the other of every wire,
never allowing you to go all the way around.)

Amperian loop

I
Ny

Figure 5.47
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Problem 5.29 Use the results of Ex. 5.11 to find the field inside a uniformly charged sphere.
of total charge Q and radius R, which is rotating at a constant angular velocity .

Problem 5.30

(a) Complete the proof of Theorem 2, Sect. 1.6.2. That is, show that any divergenceless vector
field F can be written as the curl of a vector potential A. What you have to do is find A, A,.
and A, such that: (i) 9A;/dy — dAy/dz = Fy; (i) dAx/8z — 3A,/8x = Fy; and (iii)
0Ay/0x —dAy /0y = F;. Here’s one way to do it: Pick Ay = 0, and solve (ii) and (iii) for
Ay and A;. Note that the “constants of integration” here are themselves functions of y and
z—they’re constant only with respect to x. Now plug these expressions into (i), and use the
fact that V - F = 0 to obtain

X y x
Ay:./o F,(x',y,2) dx'; AZ:/O Fe(0,Y,2) dy’—fo Fy(x',y,2)dx’.

(b) By direct differentiation, check that the A you obtained in part (a) satisfies V. x A =F. Is
A divergenceless? [This was a very asymmetrical construction, and it would be surprising if
it were—although we know that there exists a vector whose curl is F and whose divergence is
Z€10.]

(c) As an example, let F = yX + zy + x Z. Calculate A, and confirm that V x A = F. (For
further discussion see Prob. 5.51.)

5.4.2 Summary; Magnetostatic Boundary Conditions

In Chapter 2, I drew a triangular diagram to summarize the relations among the three
fundamental quantities of electrostatics: the charge density p, the electric field E, and the
potential V. A similar diagram can be constructed for magnetostatics (Fig. 5.48), relating

Figure 5.48
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the current density J, the field B, and the potential A. There is one “missing link” in the
diagram: the equation for A in terms of B. It’s unlikely you would ever need such a formula,
but in case you are interested, see Probs. 5.50 and 5.51.

Just as the electric field suffers a discontinuity at a surface charge, so the magnetic field
is discontinuous at a surface currenr. Only this time it is the tangential component that
changes. For if we apply Eq. 5.48, in the integral form

%B-da:O,

to a wafer-thin pillbox straddling the surface (Fig. 5.49), we get

Bove = Biiow- (5.72)

above

As for the tangential components, an amperian loop running perpendicular to the current
(Fig. 5.50) yields

%B ~dl = (Bglllbove - B[’,lelow)l = polenc = poKl,

or
B) Bl = oK. (5.73)

above

Thus the component of B that is parallel to the surface but perpendicular to the current is
discontinuous in the amount oK. A similar amperian loop running parallel to the current
reveals that the parallel component is continuous. These results can be summarized in a
single formula:

Babove — Brelow = 10 (K x n), (5.74)

where 1 is a unit vector perpendicular to the surface, pointing “upward.”

BJ_

above

Figure 5.49
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Figure 5.50

Like the scalar potential in electrostatics, the vector potential is continuous across any
boundary:
Aabove = Abelow> (5.7

forV-A=0 guarantees15 that the normal component is continuous, and V x A = B, in

the form
%A-dl:/B-da:@,

means that the tangential components are continuous (the flux through an amperian loop of
vanishing thickness is zero). But the derivative of A inherits the discontinuity of B:

9Aabove _ 9 Abelow = — oK. (5.761
on on

Problem 5.31
(a) Check Eq. 5.74 for the configuration in Ex. 5.9.
(b) Check Eqgs. 5.75 and 5.76 for the configuration in Ex. 5.11.

Problem 5.32 Prove Eq. 5.76, using Egs. 5.61, 5.74, and 5.75. [Suggestion: I'dsetup Cartesian
coordinates at the surface, with z perpendicular to the surface and x parallel to the current. ]

5.4.3 Multipole Expansion of the Vector Potential

If you want an approximate formula for the vector potential of a localized current distri-
bution, valid at distant points, a multipole expansion is in order. Remember: the idea of a
multipole expansion is to write the potential in the form of a power series in 1/r, where 7 i
the distance to the point in question (Fig. 5.51); if r is sufficiently large, the series will be

15Note that Eqgs. 5.75 and 5.76 presuppose that A is divergenceless.
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Figure 5.51

dominated by the lowest nonvanishing contribution, and the higher terms can be ignored.
As we found in Sect. 3.4.1 (Eq. 3.94),

1 1 1 3 /7 \" ,
- = ' = - Z — ] Pu(cos®). (5.77)
2 r =0 r

VP2 4+ ()2 = 2rr cos 8

Accordingly, the vector potential of a current loop can be written

wol Al Mol /
A ="~ - Z_: — f(r) Py(cos6'ydl’, (5.78)

or, more explicitly:

Ay = Mol 1?§d1’+i?§r’cose’d1’
4 | r r2
%(r) ( cos@——)dl/+--~:|.

As in the multipole expansion of V, we call the first term (which goes like 1/r) the monopole
term, the second (which goes like 1/r2) dipole, the third quadrupole, and so on.

Now, it happens that the magnetic monopole term is always zero, for the integral is just
the total vector displacement around a closed loop:

(5.79)

f dl =0. (5.80)

This reflects the fact that there are (apparently) no magnetic monopoles in nature (an as-
sumption contained in Maxwell’s equation V - B = 0, on which the entire theory of vector
potential is predicated).
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In the absence of any monopole contribution, the dominant term is the dipole (except
in the rare case where it, too, vanishes):

Agip(r) = fn—orlz%r’ cosf dll = % ff(f' -r)dl. (5.81)
This integral can be rewritten in a more illuminating way if we invoke Eq. 1.108, with¢ = -
%(f' thdl = —F x /da/. (5.82)

Then _
Adip(r) = 5—2% (5.83)

where m is the magnetic dipole moment:

m=][da=]a. (5.84)

Here a is the “vector area” of the loop (Prob. 1.61); if the loop is flat, a is the ordinary area
enclosed, with the direction assigned by the usual right hand rule (fingers in the direction
of the current).

Example 5.13

Find the magnetic dipole moment of the “bookend-shaped” loop shown in Fig. 5.52. All sides
have length w, and it carries a current /.

Solution: This wire could be considered the superposition of two plane square loops (Fig. 5.53).
The “extra” sides (A B) cancel when the two are put together, since the currents flow in opposite
directions. The net magnetic dipole moment is

m:Iw2§r+Iw22;

its magnitude is +/2/w?2, and it points along the 45° line z = y.

Figure 5.52
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Figure 5.53

Itis clear from Eq. 5.84 that the magnetic dipole moment is independent of the choice of
origin. You may remember that the electric dipole moment is independent of the origin only
when the total charge vanishes (Sect. 3.4.3). Since the magnetic monopole moment is always
zero, it is not really surprising that the magnetic dipole moment is always independent of
origin.

Although the dipole term dominates the multipole expansion (unless m = 0), and thus
offers a good approximation to the true potential, it is not ordinarily the exact potential;
there will be quadrupole, octopole, and higher contributions. You might ask, is it possible to
devise a current distribution whose potential is “pure” dipole—for which Eq. 5.83is exacr?
Well, yes and no: like the electrical analog, it can be done, but the model is a bit contrived.
To begin with, you must take an infinitesimally small loop at the origin, but then, in order to
keep the dipole moment finite, you have to crank the current up to infinity, with the product
m = Ia held fixed. In practice, the dipole potential is a suitable approximation whenever
the distance r greatly exceeds the size of the loop.

The magnetic field of a (pure) dipole is easiest to calculate if we put m at the origin
and let it point in the z-direction (Fig. 5.54). According to Eq. 5.83, the potential at point

<D
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Figure 5.54
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z z
y y
(a) Field of a "pure” dipole (a) Field of a "physical” dipole
Figure 5.55
(r,0, ¢)is
QLo msing
Agin(r) = ——— ¢, 5.85)
dlp( ) 4n }’2 ¢ (
and hence Lom
Biip(r) =V x A = ﬁ(200s9f+sin99). (5.86)
Tr

Surprisingly, this is identical in structure to the field of an electric dipole (Eq. 3.103)! (Up
close, however, the field of a physical magnetic dipole—a small current loop—looks quite
different from the field of a physical electric dipole—plus and minus charges a short distance
apart. Compare Fig. 5.55 with Fig. 3.37.)

. Problem 5.33 Show that the magnetic field of a dipole can be written in coordinate-free form:

no 1 . _
Byip(r) = Zj%;;mmm)r—m]. (5.87)

Problem 5.34 A circular loop of wire, with radius R, lies in the xy plane, centered at the origin.
and carries a current / running counterclockwise as viewed from the positive z axis.

(a) What is its magnetic dipole moment?

(b) What is the (approximate) magnetic field at points far from the origin?

(c) Show that, for points on the z axis, your answer is consistent with the exact field (Ex. 5.6).
when z > R.

Problem 5.35 A phonograph record of radius R, carrying a uniform surface charge o. i~
rotating at constant angular velocity w. Find its magnetic dipole moment.

Problem 5.36 Find the magnetic dipole moment of the spinning spherical shell in Ex. 5.11.
Show that for points r > R the potential is that of a perfect dipole.

Problem 5.37 Find the exact magnetic field a distance z above the center of a square loop ot
side w, carrying a current /. Verify that it reduces to the field of a dipole, with the appropriate
dipole moment, when z > w.
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More Problems on Chapter 5

Problem 5.38 It may have occurred to you that since parallel currents attract, the current within
asingle wire should contract into a tiny concentrated stream along the axis. Yetin practice the
current typically distributes itself quite uniformly over the wire. How do you account for this?
If the positive charges (density p.1) are at rest, and the negative charges (density p—) move at
speed v (and none of these depends on the distance from the axis), show that p_ = — p+y2,
where y = 1/y/1 — (v/¢)? and 2= = 1/ugeg. If the wire as a whole is neutral, where is
the compensating charge located?'® [Notice that for typical velocities (see Prob. 5.19) the
two charge densities are essentially unchanged by the current (since y 2 1). In plasmas,
however, where the positive charges are also free to move, this so-called pinch effect can be
very significant.]

Problem 5.39 A current / flows to the right through a rectangular bar of conducting material,
in the presence of a uniform magnetic field B pointing out of the page (Fig. 5.56).

(a) If the moving charges are positive, in which direction are they deflected by the magnetic
field? This deflection results in an accumulation of charge on the upper and lower surfaces of
the bar, which in turn produces an electric force to counteract the magnetic one. Equilibrium
occurs when the two exactly cancel. (This phenomenon is known as the Hall effect.)

(b) Find the resulting potential difference (the Hall voltage) between the top and bottom of
the bar, in terms of B, v (the speed of the charges), and the relevant dimensions of the bar.!”

(c) How would your analysis change if the moving charges were negative? [The Hall effect is
the classic way of determining the sign of the mobile charge carriers in a material.]

Figure 5.56 Figure 5.57

Problem 5.40 A plane wire loop of irregular shape is situated so that part of it is in a uniform
magnetic field B (in Fig. 5.57 the field occupies the shaded region, and points perpendicular
to the plane of the loop). The loop carries a current /. Show that the net magnetic force on the
loop is F = I Bw, where w is the chord subtended. Generalize this result to the case where
the magnetic field region itself has an irregular shape. What is the direction of the force?

16For further discussion, see D. C. Gabuzda, Am. J. Phys. 61, 360 (1993).
17 The potential within the bar makes an interesting boundary-value problem. See M. J. Moelter, J. Evans and
G. Elliot, Am. J. Phys. 66, 668(1998).
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Field region

Particle trajectory

Figure 5.58

Problem 5.41 A circularly symmetrical magnetic field (B depends only on the distance from
the axis), pointing perpendicular to the page, occupies the shaded region in Fig. 5.58. If the
total flux (f B - da) is zero, show that a charged particle that starts out at the center will emerge
from the field region on a radial path (provided it escapes at all—if the initial velocity is too
great, it may simply circle around forever). On the reverse trajectory, a particle fired at the
center from outside will hit its target, though it may follow a weird route getting there. {Hint:
Calculate the total angular momentum acquired by the particle, using the Lorentz force law.)

Problem 5.42 Calculate the magnetic force of attraction between the northern and southern
hemispheres of a spinning charged spherical shell (Ex. 5.11). [Answer: (/4) uoazwz R*]

Problem 5.43 Consider the motion of a particle with mass m and electric charge g, in the field
of a (hypothetical) stationary magnetic monopole g,, at the origin:

= Hodm g

4 2

(a) Find the acceleration of ¢, expressing your answer in terms of ¢, gy, m, r (the position of
the particle), and v (its velocity).
(b) Show that the speed v = |v| is a constant of the motion.
(c) Show that the vector quantity

Hodeqdm S
4

is a constant of the motion. [Hint: differentiate it with respect to time, and prove—using the
equation of motion from (a)—that the derivative is zero.]

Q=m@Exv)—

(d) Choosing spherical coordinates (r, 8, ¢), with the polar (z) axis along Q,

(i) calculate Q - &, and show that 6 is a constant of the motion (so g, moves on the surface
of a cone—something Poincaré first discovered in 1896)18;

181, point of fact the charge follows a geodesic on the cone. The original paper is H. Poincaré, Comptes rends
de I’Academie des Sciences 123, 530 (1896); for a more modern treatment see B. Rossi and S. Olbert, Introduction
to the Physics of Space (New York: McGraw-Hill, 1970).
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(ii) calculate Q - ¥, and show that the magnitude of Q is
— Hodedm
47 cosf’

(iii) calculate Q - , show that
d¢p &
dt ~ 2
and determine the constant k.

(e) By expressing v2 in spherical coordinates, obtain the equation for the trajectory, in the form
dr
_—= r
1 fr)

(that is: determine the function f(r)).

(f) Solve this equation for r(¢).

Problem 5.44 Use the Biot-Savart law (most conveniently in the form 5.39 appropriate to
surface currents) to find the field inside and outside an infinitely long solenoid of radius R,
with r turns per unit length, carrying a steady current /.

Problem 5.45 A semicircular wire carries a steady current / (it must be hooked up to some other
wires to complete the circuit, but we’re not concerned with them here). Find the magnetic field

atapoint P onthe other semicircle (Fig. 5.59). [Answer: (ugl /87 R) In{tan (9—‘5—”—) / tan (%)}]

,/’/"\‘x P 2
.'/ R 9 \\‘1 I((%
z=0 d
' =
Figure 5.59 Figure 5.60

Problem 5.46 The magnetic field on the axis of a circular current loop (Eq. 5.38) is far from
uniform (it falls off sharply with increasing z). You can produce a more nearly uniform field
by using two such loops a distance d apart (Fig. 5.60).

(a) Find the field (B) as a function of z, and show that dB/dz is zero at the point midway
between them (z = 0). Now, if you pick d justright the second derivative of B will also vanish
at the midpoint. This arrangement is known as a Helmholtz coil; it’s a convenient way of
producing relatively uniform fields in the laboratory.

(b) Determine d such that 8%B/9z2 = 0 at the midpoint, and find the resulting magnetic field
at the center. [Answer: 8uqgl/5+/3R]
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Problem 5.47 Find the magnetic field at a point z > R on the axis of (a) the rotating disk and
(b) the rotating sphere, in Prob. 5.6.

Problem 5.48 Suppose you wanted to find the field of a circular loop (Ex. 5.6) at a point r
that is not directly above the center (Fig. 5.61). You might as well choose your axes so that r
lies in the yz plane at (0, y, z). The source point is (R cos ¢’, R sin ¢’, 0), and ¢’ runs from 0
to 2. Set up the integrals from which you could calculate By, By, and By, and evaluate By
explicitly.

dy

X dll

Figure 5.61 Figure 5.62

Problem 5.49 Magnetostatics treats the “source current” (the one that sets up the field) and
the “recipierit current” (the one that experiences the force) so asymmetrically that it is by no
means obvious that the magnetic force between two current loops is consistent with Newton's
third law. Show, starting with the Biot-Savart law (5.32) and the Lorentz force law (5.16), that
the force on loop 2 due to loop 1 (Fig. 5.62) can be written as

140 2
Fp=——0LI —dly - dly. 5.88)
2=-"hh f f ;2 - dl (
In this form it is clear that F; = —F1, since 4 changes direction when the roles of 1 and 2 are

interchanged. (If you seem to be getting an “extra” term, it will help to note that dly - 2 = dz.)

Problem 5.50

(a) One way to fill in the “missing link” in Fig. 5.48 is to exploit the analogy between the
defining equations for A (V - A = 0, V x A = B) and Maxwell’s equations for B (V - B = 0.
V x B = ugl). Evidently A depends on B in exactly the same way that B depends on oJ (to
wit: the Biot-Savart law). Use this observation to write down the formula for A in terms of B.

(b) The electrical analog to your result in (a) is

1 [Ex)-2
=—-— dt’.
Vo 4 / 22 ‘

Derive it, by exploiting the appropriate analogy.



5.4. MAGNETIC VECTOR POTENTIAL 251

Problem 5.51 Another way to fill in the “missing link” in Fig. 5.48 is to look for a magnetostatic
analog to Eq. 2.21. The obvious candidate would be

r
A(r) = / (B x dl).
(@)

(a) Test this formula for the simplest possible case—uniform B (use the origin as your reference
point). Is the result consistent with Prob. 5.24? You could cure this problem by throwing in a
factor of 4, but the flaw in this equation runs deeper.

(b) Show that {(B x dl) is not independent of path, by calculating ¢(B x dl) around the
rectangular loop shown in Fig. 5.63.

As far as I know!? the best one can do along these lines is the pair of equations
(i) V() = —r - [y EGr) da,
(i) A(r) = —1 x [ AB(ir)dA.

{Equation (i) amounts to selecting a radial path for the integral in Eq. 2.21; equation (ii)
comnstitutes a more “‘symmetrical” solution to Prob. 5.30.]

(c) Use (i) to find the vector potential for uniform B.

(d) Use (ii) to find the vector potential of an infinite straight wire carrying a steady current /.
Does (ii) automatically satisfy V - A = 0? {Answer: (ugl /2ms)(z8 — 5 2}

~Y

Figure 5.63

Problem 5.52
(a) Construct the scalar potential U (r) for a “pure” magnetic dipole m.

(b) Construct a scalar potential for the spinning spherical shell (Ex. 5.11). [Hint: forr > R
this is a pure dipole field, as you can see by comparing Egs. 5.67 and 5.85.]

(¢) Try doing the same for the interior of a solid spinning sphere. [Hint: if you solved Prob. 5.29,
you already know the field; set it equal to —V U, and solve for U. What's the trouble?]

19R. L. Bishop and S. L. Goldberg, Tensor Analysis on Manifolds, Section 4.5 (New York: Macmillan, 1968).
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Problem 5.53 Just as V - B = 0 allows us to express B as the curl of a vector potential
(B=V xA),s0V-A = 0 permits us to write A itself as the curl of a “higher” potential:
A =V x W. (And this hierarchy can be extended ad infinitum.)

(a) Find the general formula for W (as an integral over B), which holds when B — 0 at oc.
(b) Determine W for the case of a uniform magnetic field B. [Hint: see Prob. 5.24.]
(c) Find W inside and outside an infinite solenoid. [Hint: see Ex. 5.12.]

Problem 5.54 Prove the following uniqueness theorem: If the current density J is specified
throughout a volume V, and either the potential A or the magnetic field B is specified on the
surface S bounding V, then the magnetic field itself is uniquely determined throughout V.
[Hint: First use the divergence theorem to show that

/{(V xU) - (VxV)—U-[Vx(V xV)]}dr:f[Ux(V x V)] -da,
for arbitrary vector functions U and V.}

Problem 5.55 A magnetic dipole m = —m z is situated at the origin, in an otherwise uniform
magnetic field B = Byz. Show that there exists a spherical surface, centered at the origin.
through which no magnetic field lines pass. Find the radius of this sphere, and sketch the field
lines, inside and out.

Problem 5.56 A thin uniform donut, carrying charge Q and mass M, rotates about its axis as
shown in Fig. 5.64.

(a) Find the ratio of its magnetic dipole moment to its angular momentum. This is called the
gyromagnetic ratio (or magnetomechanical ratio).

(b) What is the gyromagnetic ratio for a uniform spinning sphere? [This requires no new
calculation; simply decompose the sphere into infinitesimal rings, and apply the result of part
(a).]

(c) According to quantum mechanics, the angular momentum of a spinning electron is %h.
where 7 is Planck’s constant. What, then, is the electron’s magnetic dipole moment, in A - m37
[This semiclassical value is actually off by a factor of almost exactly 2. Dirac’s relativistic
electron theory got the 2 right, and Feynman, Schwinger, and Tomonaga later calculated tiny
further corrections. The determination of the electron’s magnetic dipole moment remains the
finest achievement of quantum electrodynamics, and exhibits perhaps the most stunningly
precise agreement between theory and experiment in all of physics. Incidentally, the quantity
(efi/2m), where e is the charge of the electron and m is its mass, is called the Bohr magneton ]

Figure 5.64
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Problem 5.57

(a) Prove that the average magnetic field, over a sphere of radius R, due to steady currents

within the sphere, is
Ho 2m

4n R3’ :
where m is the total dipole moment of the sphere. Contrast the electrostatic result, Eq. 3.105.
[This is tough, so I'll give you a start;
al
Bdr.
% 7R3

Write B as (V x A), and apply Prob. 1.60b. Now put in Eq. 5.63, and do the surface integral
first, showing that
1 4
/ Z da = §JTI'/

(see Fig. 5.65). Use Eq. 5.91, if you like.]

(b) Show that the average magnetic field due to steady currents outside the sphere is the same
as the field they produce at the center.

(5.89)

Bave =

Bave =

Figure 5.65

Problem 5.58 A uniformly charged solid sphere of radius R carries a total charge Q, and is )
set spinning with angular velocity w about the z axis.

(a) What is the magnetic dipole moment of the sphere?
(b) Find the average magnetic field within the sphere (see Prob. 5.57).
(c) Find the approximate vector potential at a point (r, 8) where r >> R.

(d) Find the exact potential at a point (r, §) outside the sphere, and check that it is consistent
with (c). [Hint: refer to Ex. 5.11.]

(e) Find the magnetic field at a point (r, @) inside the sphere, and check that it is consistent
with (b).

Problem 5.59 Using Eq. 5.86, calculate the average magnetic field of a dipole over a sphere
of radius R centered at the origin. Do the angular integrals first. Compare your answer with
the general theorem in Prob. 5.57. Explain the discrepancy, and indicate how Eq. 5.87 can be
corrected to resolve the ambiguity at r = 0. (If you get stuck, refer to Prob. 3.42.)
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Evidently the true field of a magnetic dipole is

1 . 2
Baip(m) = 20— 3m- )F — ml + Lms3(r). (5.90)
47 r 3
Compare the electrostatic analog, Eq. 3.106. [Incidentally, the delta-function term is respon-
sible for the hyperfine splitting in atomic spectra—see, for example, D. J. Griffiths, Am. J,

Phys. 50, 698 (1982).]

Problem 5.60 I worked out the multipole expansion for the vector potential of a /ine current
because that’s the most common type, and in some respects the easiest to handle. For a volume
current J:

(a) Write down the multipole expansion, analogous to Eq. 5.78.
(b) Write down the monopole potential, and prove that it vanishes.

(¢) Using Egs. 1.107 and 5.84, show that the dipole moment can be written
mz%/(rx.])dr. 5.91)

Problem 5.61 A thin glass rod of radius R and length L carries a uniform surface charge o.
It is set spinning about its axis, at an angular velocity w. Find the magnetic field at a distance
s > R from the center of the rod (Fig. 5.66). [Hint: treat it as a stack of magnetic dipoles.]
[Answer: powo LR /4[s% + (L/2)213/2]

Figure 5.66




