MATHEMATICAL LOGIC

11	m	2m	3m	4m	5m	6m	Total
1(U)	1(K)	_	_	1(K)	_	8

1 MARK QUESTIONS

(Understanding)

- 1. Symbolise the following propositions: (i) 2 + 5 = 6 or all integers are rationals.
- 2. Write the verbal form of the following compound propositions given.
 - p: x is a real no
 - q: Mathematics is easy
 - $p \wedge q$
- 3. Symbolise the proposition 3x = 9 and x < 7
- 4. Symbolise the proposition "If two numbers are equal then their squares are not equal".
- 5. Symbolise the proposition $y + 4 \neq 4$ or e is not a vowel.
- 6. Negate the proposition : $p \lor \sim q$
- 7. Negate the proposition : $\sim p \land \sim q$
- 8. Negate the proposition : $\sim p \rightarrow \sim q$
- 9. Negate: 4 is an even integer or 7 is a prime number.
- 10. Negate: He likes Mathematics and he does not like Logic.
- 11. Negate: If 6 is a divisor of 120 then 486 is not divisible by 6.
- 12. Negate: If 2 triangles are similar then their areas are equal.

2 MARK QUESTIONS

(Knowledge)

- 1. If the truth values of the propositions p, q, r are T, T, F respectively, then find the truth values of the compound proposition: $p \rightarrow (q \land r)$
- 2. If $(\sim p \lor q) \land \sim r$ is a false proposition, then find the truth values of p, q and r.
- 3. If the compound proposition $(p \rightarrow q) \land (p \land r)$ " is true, then find the truth values of p, q and r.
- 4. If the compound proposition $p \rightarrow (q \lor r)$ is false, then find the truth values of p, q and r.
- 5. If the truth value of the proposition $(p \land q) \rightarrow (r \lor \sim s)$ is false, then find the truth values of p, q, r and s.

BASIC MATHEMATICS

- 6. Negate $p \rightarrow (q \wedge r)$
- 7. Negate $q \vee [\sim (p \wedge r)]$
- 8. Negate: If an integer is greater than 3 and less than 5 then it is a multiple of 5.
- 9. Negate: Weather is fine and my friends are not coming or we do not go to a movie.
- 10. Negate: 14 is a divisor of 48 and 28 is not divisible by 82.
- 11. Write converse and inverse of the proposition "If $x \in A \cap B$ then $x \in A$ and $x \in B$ ".
- 12. Write converse and contrapositive of "If I get a seat then I will watch a movie and have fun".
- 13. Write inverse and contrapositive of "If x is less than 1 then it is a prime number".
- 14. Write converse and inverse of "If 2 lines are parallel then they do not intersect".

5 MARK QUESTIONS

(Knowledge)

- 1. Construct truth table for $p \vee (q \wedge \sim r)$
- 2. Construct truth table for $(p \rightarrow q) \rightarrow \sim r$
- 3. Construct truth table for $(p \land \sim q) \leftrightarrow \sim q$
- 4. Show that the proposition $(p \rightarrow q) \leftrightarrow (\sim p \lor q)$ is a Tautology.
- 5. Show that the proposition $(p \land q) \land \sim (p \lor q)$ is a contradiction.
- 6. Verify whether the proposition $(p \land \neg q) \land (\neg p \lor q)$ is a contradiction or not.
- 7. Prove that $[p \lor (p \land r)] \leftrightarrow [(p \lor q) \land (p \lor r)$ is a tautology.
- 8. Show that $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a Tautology.
- 9. Show that $\sim (p \vee q) \rightarrow (\sim p \wedge \sim q)$ is a Tautology.
- 10. Prove that $(p \lor q) \land (\sim p \land \sim q)$ is a contradiction.
- 11. Show that $(\sim p \land q) \land (q \land r) \land (\sim q)$ is a contradiction.
- 12. Examine whether the propositions are logically equivalent $p \leftrightarrow q$ and $(p \rightarrow q) \land (q \rightarrow p)$
- 13. Examine whether the propositions are logically equivalent $p \leftrightarrow q$ and $(\sim p \lor q) \land (\sim q \lor p)$
- 14. Examine if the propositions $\sim (p \leftrightarrow q)$ and $(p \land \sim q) \lor (q \land \sim p)$ are logically equivalent.
- 15. Examine if the propositions $(p \land \neg q) \lor q$ and $(p \lor q)$ are logically equivalent.
