CBSE Test Paper 03 Chapter 2 Polynomials

- 1. If the polynomial $3x^3 4x^2 17x k$ is exactly divisible by x 3, then the value of 'k'
 - is **(1)**
 - a. 6
 - b. 5
 - c. -5
 - d. -6
- 2. The number of zeroes that the polynomial $f(x) = (x 2)^2 + 4$ can have is (1)
 - a. 0
 - b. 2
 - c. 3
 - d. 1
- 3. If '2' is the zero of both the polynomials $3x^2 + mx 14$ and $2x^3 + nx^2 + x 2$, then the value of m 2n is (1)
 - a. 5
 - b. -1
 - c. 9
 - d. -9
- 4. If one of the zeroes of the cubic polynomial $x^3 + ax^2 + bx + c$ is –1, then the product of the other two zeroes is (1)
 - a. b a + 1
 - b. b + a + 1
 - c. b + a 1
 - d. b a 1
- 5. A quadratic polynomial with zeroes $\frac{1}{4}$ and 1 is (1)
 - a. $4x^2 + 3x 1$ b. $4x^2 - 3x - 1$ c. $4x^2 - 3x + 1$
 - d. $4x^2 + 3x + 1$
- 6. If(a-b), a and (a+b) are zeros of the polynomial $2x^3-6x^2+5x-7$, write the value of a. (1)

- 7. The sum of the zeros and the product of zeros of a quadratic polynomial are $\frac{-1}{2}$ and -3 respectively. Write the polynomial. (1)
- 8. Find the quadratic polynomial whose zeroes are $\sqrt{3}+\sqrt{5}$ and $\sqrt{5}-\sqrt{3}$ (1)
- 9. Sum and product of zeroes of quadratic polynomial are 5 and 17 respectively. Find the polynomial. **(1)**
- 10. Find a quadratic polynomial whose one zero is -8 and sum of zeroes is 0. (1)
- 11. Find the zeros of the quadratic polynomial $f(x) = abx^2 + (b^2 ac)x bc$, and verify the relationship between the zeros and its coefficients. (2)
- 12. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients: $8x^2 4$ (2)
- 13. Find a quadratic polynomial whose zeroes are 5 + $\sqrt{2}$ and 5 $\sqrt{2}$. (2)
- 14. Find a quadratic polynomial of the given number as the sum and product of its zeroes respectively. 0, $\sqrt{7}$ (3)
- 15. Find all the zeroes of $p(x) = x^3 9x^2 12x + 20$ if x + 2 is a factor of p(x). (3)
- 16. If α and β are the zeroes of the quadratic polynomial $f(x) = 6x^2 + x 2$, then, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$. (3)
- 17. Can (x 2) be the remainder on division of a polynomial p(x) by (2x + 3)? Justify your answer. **(3)**
- 18. α, β and γ are zeroes of the polynomial $x^3 + px^2 + qx + 2$ such that $\alpha, \beta + 1 = 0$. Find the value of 2p + q + 5. (4)
- 19. Obtain all other zeroes of the polynomial x⁴ + 6x³ + x² 24x 20, if two of its zeroes are + 2 and 5. (4)
- 20. When a polynomial f(x) is divided by $x^2 5$, the quotient is $x^2 2x 3$ and remainder is zero. Find the polynomial and all its zeroes. (4)

CBSE Test Paper 03 Chapter 2 Polynomials

Solution

1. d. -6

Explanation: If the polynomial $3x^3 - 4x^2 - 17x - k$ is exactly divisible by x - 3, then p(3) = 0 (By factor theorem) $\Rightarrow 3(3)^3 - 4(3)^2 - 17 \times 3 - k = 0$ $\Rightarrow 81 - 36 - 51 - k = 0$ $\Rightarrow -6 - k = 0$ $\Rightarrow k = -6$

2. b. 2

Explanation: $f(x) = (x-2)^2 + 4 = x^2 - 4x + 4 + 4 = x^2 - 4x + 8$ Here the largest exponent of variable is 2,

therefore number of zeroes of the given polynomial is 2.

3. c. 9

Explanation: According to the question, $p(2) = 3x^2 + mx - 14 = 0$ $\Rightarrow 3(2)^2 + m \times 2 - 14 = 0$ $\Rightarrow 12 + 2m - 14 = 0 \Rightarrow m = 1$ Also $p(2) = 2x^3 + nx^2 + x - 2 = 0$ $\Rightarrow 2 \times (2)^3 + n \times (2)^2 + 2 - 2 = 0$ $\Rightarrow 16 + 4n = 0$ $\Rightarrow n = -4$ $\therefore m - 2n = 1 - 2 \times (-4) = 1 + 8 = 9$

4. a. b - a + 1

Explanation: Let α, β, γ are the zeroes of the given polynomial. Given: $\alpha = 1$ and To find : $\beta\gamma$ Since, $\alpha + \beta + \gamma = \frac{-b}{a} \Rightarrow -1 + \beta + \gamma = \frac{-a}{1} \Rightarrow \beta + \gamma = -a + 1$ (i) Also $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} \Rightarrow (-1)\beta + \beta\gamma + (-1)\gamma = \frac{b}{1} \Rightarrow -\beta + \beta\gamma - \gamma = b \Rightarrow \beta\gamma - (\beta + \gamma) = b \Rightarrow \beta\gamma - (-a + 1) = b$ [From eq. (i)] $\Rightarrow \beta\gamma = b - a + 1$

5. a. $4x^2 + 3x - 1$

Explanation:
$$x^2 \cdot (\alpha + \beta)x + (\alpha\beta) = 0$$

Here $\alpha + \beta = \frac{1}{4} + (-1) = \frac{1-4}{4} = \frac{-3}{4}$ And $\alpha\beta = \frac{1}{4} \times (-1) = \frac{-1}{4} = \frac{c}{a}$
 $x^2 \cdot (\frac{-3}{4})x + (\frac{-1}{4}) = 0$
 $x^2 + \frac{3}{4}x - \frac{1}{4} = 0$
 $\frac{4x^2 + 3x - 1}{4} = 0$ (By L.C.M)
 $4x^2 + 3x - 1 = 0$

6. Given polynomial is $p(x) = 2x^3 - 6x^2 + 5x - 7$

Let
$$\alpha = (a - b), \beta = a \text{ and } \gamma = (a + b)$$

Now, $\alpha + \beta + \gamma = -\frac{(-6)}{2} = 3$
 $\Rightarrow (a - b) + a + (a + b) = 3$
 $\Rightarrow a - b + a + a + b = 3$
 $\Rightarrow 3a = 3$
 $\Rightarrow a = 3/3$
 $\Rightarrow a = 1$

So the value of a in given polynomial is 1.

7. Let α and β be the zeros of the required quadratic polynomial.

As per given condition the sum of the zeros and the product of zeros of a quadratic polynomial are $\frac{-1}{2}$ and -3 respectively.

Then, we have

 $lpha+eta=-rac{1}{2}$ and lphaeta = -3

Now, a quadratic polynomial whose zeros are lpha and eta is given by

p(x) =
$$x^2 - (\alpha + \beta)x + \alpha\beta$$

: Required quadratic polynomial,

$$p(x) = x^{2} - \left(-\frac{1}{2}\right)x + (-3)$$
$$= x^{2} + \frac{1}{2}x - 3$$

Hence the given polynomial is $x^2 + \frac{1}{2}x - 3$.

8. Sum of zeroes = $\sqrt{3} + \sqrt{5} + \sqrt{5} - \sqrt{3} = 2\sqrt{5}$ Product of zeroes = $(\sqrt{3} + \sqrt{5})(\sqrt{5} - \sqrt{3}) = \sqrt{15} - \sqrt{9} + \sqrt{25} - \sqrt{15}$ $= \sqrt{15} - 3 + 5 - \sqrt{15}$ = -3 + 5 = 2

Quadratic polynomial is x²-(sum of zeroes)x + product of zeroes = $x^2 - 2\sqrt{5}x + 2$

- 9. Sum of zeroes = 5 Product of zeroes = 17 Quadratic Polynomial = x^2 - (sum of zeroes)x+ product of zeroes = $x^2 - 5x + 17$
- 10. It is given that One zero = 8 and Sum of zeroes = 0 Since sum of zeroes = $\alpha + \beta$ \therefore Other zero = 0 - (-8) = 8 Product of zeroes = $8 \times (-8) = -64$ Hence, Polynomial $p(x) = x^2 - (S)x + P$ = $x^2 - 64$
- 11. We have,

$$f(x) = abx^{2} + (b^{2} - ac)x - bc$$

$$= abx^{2} + b^{2}x - acx - bc$$

$$= bx(ax + b) - c(ax + b)$$

$$= (ax + b) (bx - c)$$
Now r(x)=0 if

$$ax+b=0 \text{ or } bx-c=0$$
i. e. $X = -\frac{b}{a}$ or $X = \frac{c}{b}$
Thus, the zeroes of f(x) are :

$$\alpha = -\frac{b}{a} \text{ and } \beta = \frac{c}{b}$$

$$\alpha + \beta = -\frac{b}{a} + \frac{c}{b} = \frac{-b^{2}+ac}{ab} = -\frac{(b^{2}-ac)}{ab} - (1)$$

$$\alpha\beta = \frac{b}{a} \times -\frac{c}{b} = -\frac{c}{a} \dots (2)$$
Now for f(x) = $abx^{2} + (b^{2} - ac)x - bc$

$$A = ab, B = b^{2} - ac, C = -b$$

$$-\frac{B}{A} = -\frac{b^{2}-ac}{ab} - -(3)$$

$$\frac{C}{A} = -\frac{b}{ab} = -\frac{c}{a} - - - -(4)$$

From (1) & (3) and (2) & (4) we conclude:

$$lpha + eta = -rac{B}{A} \ lpha eta = rac{C}{A}$$

12.
$$f(x) = 8x^2 - 4$$

 $= 4 (2x^2 - 1)$
 $= 4[(\sqrt{2}x)^2 - 1^2)$
 $= 4(\sqrt{2}x - 1)(\sqrt{2}x + 1)$
 $f(x) = 0 \Rightarrow (\sqrt{2}x - 1)(\sqrt{2}x + 1) = 0$
 $\therefore \sqrt{2}x - 1 = 0 \text{ or } \sqrt{2}x + 1 = 0$
 $\therefore x = \frac{1}{\sqrt{2}} \text{ or } x = -\frac{1}{\sqrt{2}}$
So, the zeros of f(x) are $\frac{1}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$
Sum of zeros $= (\frac{1}{\sqrt{2}}) + (-\frac{1}{\sqrt{2}}) = 0 = \frac{0}{8} = \frac{\text{Coeff. of } x}{\text{coeff. of } x^2}$
Product of zeros $= (\frac{1}{\sqrt{2}}) \times (-\frac{1}{\sqrt{2}}) = -\frac{1}{2} = -\frac{4}{8}$
 $= \frac{\text{constant term}}{\text{Coeff. of } x^2}$

13. Let α, β are zeroes of quadratic polynomial p(x).

$$\therefore \quad p(x) = x^2 - (\alpha + \beta)x + \alpha\beta$$

Here, $\alpha = 5 + \sqrt{2}, \beta = 5 - \sqrt{2}$
$$\therefore \quad \alpha + \beta = 5 + \sqrt{2} + 5 - \sqrt{2} = 10$$

and $\alpha\beta = (5 + \sqrt{2})(5 - \sqrt{2}) = 25 - 2 = 23$
Hence the polynomial is $p(x) = x^2 - 10x + 23$.

14. 0, $\sqrt{7}$

Let the quadratic polynomial be $ax^2 + bx + c$ and its zeroes be α and β , Then, $\alpha + \beta = 0 = -\frac{b}{a}$ and, $Q\beta = \sqrt{3} = \frac{c}{a}$ If a = 1, then b = 0 and $c = \sqrt{7}$ So, one quadratic polynomial which fits the given conditions is $x^2 + \sqrt{7}$

15. Given polynomial is $p(x) = x^3 - 9x^2 - 12x + 20$ and x + 2 is a factor of p(x).

$$x^{2} - 11x + 10 x + 2 x^{3} - 9x^{2} - 12x + 20 x^{3} + 2x^{2} - 14x^{2} - 12x - 14x^{2} - 12x - 14x^{2} - 22x 10x + 20 10x + 20 0 - 0 \\ - 0$$

dividend = divisor × quotient + remainder

$$\therefore p(x) = (x + 2) (x^{2} - 11x + 10)$$

= (x + 2) (x² - 10x - x + 10)
= (x + 2) [x (x - 10) - 1 (x - 10)]
= (x + 2) (x - 1) (x - 10)
$$\therefore \text{ Zeroes of } p(x) \text{ are } -2, 1, 10.$$

16.
$$f(x) = 6x^{2} + x - 2$$

$$a = 6, b = 1, c = -2$$
Let zeroes be α and β . Then
$$Sum of zeroes = \alpha + \beta = -\frac{b}{a} = -\frac{1}{6}$$
Product of zeroes $\alpha \times \beta = -\frac{c}{a} = -\frac{1}{6} = -\frac{1}{3}$

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^{2} + \beta^{2}}{\alpha\beta}$$

$$= \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha\beta} [\because (\alpha + \beta)^{2} = \alpha^{2} + \beta^{2} + 2\alpha\beta]$$

$$= \frac{\left[-\frac{1}{6}\right]^{2} - 2\left[-\frac{1}{3}\right]}{\left[-\frac{1}{3}\right]}$$

$$= \frac{\frac{1}{36} + \frac{2}{3}}{-\frac{1}{3}}$$

$$= \frac{\frac{1 + 24}{36}}{-\frac{1}{3}}$$

$$= \frac{\frac{25}{36} \times \frac{-3}{1}}{= -\frac{-25}{12}}$$

17. No, (x - 2) cannot be remainder on division of polynomial p(x) by (2x + 3) because the degree of remainder is either 0 or its degree is less than the degree of the divisor.

18.
$$P(x) = x^{3} + px^{2} + qx + 2$$

Here, $a = 1, b = p, c = q, d = 2$
Now, $\alpha + \beta + \gamma = \frac{-b}{a} = -p$(i)
 $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a} = q$
 $\Rightarrow \alpha\beta + \gamma(\beta + \alpha) = q$(ii)
and $\alpha \cdot \beta \cdot \gamma = \frac{-d}{a} = -2$
 $\Rightarrow \alpha \cdot \beta \cdot \gamma = -2$(iii)
Also, $\alpha\beta + 1 = 0 \Rightarrow \alpha\beta = -1$
Therefore, (iii) becomes $-1 \times \gamma = -2 \Rightarrow \gamma = 2$
Substituting in (i), we get
 $\alpha + \beta + 2 = -p \Rightarrow \alpha + \beta = -p - 2$
Substituting these value in (ii), we get
 $-1 + 2(-p - 2) = q$
 $\Rightarrow -1 - 2p - 4 = q$
 $\Rightarrow 2p + q + 5 = 0$

Dividend = divisor \times quotient + remainder

 $\Rightarrow x^{4} + 6x^{3} + x^{2} - 24x - 20 = (x^{2} + 3x - 10) (x^{2} + 3x + 2)$ = (x - 2) (x + 5) (x + 2) (x + 1)

Hence, other two zeroes are -2 and -1.

20.
$$g(x) = x^2 - 5$$

 $q(x) = x^2 - 2x - 3$

 $\begin{aligned} r(x) &= 0 \\ \text{By division algorithm for polynomials, we have} \\ f(x) &= q(x) \cdot g(x) + r(x) \\ f(x) &= (x^2 - 5)(x^2 - 2x - 3) + 0 \\ f(x) &= x^4 - 2x^3 - 3x^2 - 5x^2 + 10x + 15 \\ f(x) &= x^4 - 2x^3 - 8x^2 + 10x + 15 \\ \text{So, the required polynomial is } f(x) &= x^4 - 2x^3 - 8x^2 + 10x + 15 \\ \text{Now,} \\ q(x) \text{ and } g(x) \text{ will be factors of } f(x) \\ x^2 - 5 &= 0 \text{ and } x^2 - 2x - 3 &= 0 \\ x^2 - (\sqrt{5})^2 &= 0 \text{ and } x^2 + x - 3x - 3 &= 0 \\ (x - \sqrt{5})(x + \sqrt{5}) &= 0 \text{ and } (x + 1)(x - 3) &= 0 \\ x &= \sqrt{5}, x &= -\sqrt{5}, x &= -1 \text{ and } x &= 3 \\ \text{So, the zeroes are } \alpha &= \sqrt{5}, \beta &= -\sqrt{5}, \gamma &= -1 \text{ and } \delta &= 3 . \end{aligned}$