
Chapter 3
Stability Analysis

After reading this chapter, you will be able to understand:

 • Stability

 • Routh–Hurwitz criterion

 • Auxiliary equation

 • Root locus 

 • Angle and magnitude conditions

 • Break away point

 • Frequency response analysis

 • Frequency-Domine specifi cations

 • Resonant peak 

 • Polar plot

LEARNING OBJECTIVES

intRoduCtion to stABiLity

Stability
A linear time-invariant system is stable if the output of the system 
is bounded for a bounded input and the output of the system tends 
towards zero in the absence of the input.

Stability is classifi ed as follows:

 1. Absolute stability
 2. Conditional stability
 3. Marginal stability
 4. Unstable

Absolute Stability
A system is absolutely stable with respect to a parameter, if the 
system is stable for all values of that parameter.

Conditional Stability
A system in conditionally stable with respect to a parameter, if the 
system is stable for only certain bounded ranges of values of this 
parameter.

Marginal Stability
A system is marginally stable if the natural response of the system 
neither decays nor grows but remains constant or oscillates as time 
approaches infi nity.

Unstable: A system is unstable if its response is unbounded with a 
bounded input applied.

Stability and Poles
The system poles that are in the left half plane yield either pure 
exponential decay or damped sinusoidal natural response, which is 
the necessary condition for a system to be stable.

Note 1:  Stable system have closed loop transfer function with 
poles only in the left half plane.

Note 2:  Unstable systems have loop transfer function with at least 
one pole in the right half plane or poles of multiplicity 
greater than 1 on the imaginary axis.

Note 3:  Marginally stable system have closed loop transfer func-
tion with only imaginary poles of multiplicity 1 and poles 
in the left half plane.

Necessary Conditions for Stability
 1. Positiveness of the coeffi cients of characteristic equation is 

necessary as well as suffi cient condition for stability of fi rst 
and second-order system.

 2. Positiveness and existence of the all coeffi cients of the char-
acteristic equation is necessary condition for stability of the 
system.



Chapter 3 Stability Analysis | 3.1015

Note:  Roots with negative real part indicates all positive 
coefficients in characteristic equation but all positive 
coefficients does not indicate proofs with negative 
real part in the characteristic equation.

Routh–huRwitz CRiteRion
Routh–Hurwitz Criterion gives the necessary and sufficient 
condition for all roots of polynomial to lie in the left half 
of the S-plane, without actually solving for the roots of the 
equation.

The characteristic equation of the nth-order system is
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This process will continue till we get a zero as the least 
coefficient in the third row. Similarly the coefficients of the 
other rows are also evaluated.

The roots of the characteristic equation are all in the left 
half of S-plane if all the Coefficients of the first column of 
the Routh’s tabulation are of the same sign.

The number of changes of signs in the elements of the 
first column equals the number of roots with positive real 
parts or in the right half of S-plane.

Special case 1: When the first term in any row of the Routh 
array is zero while rest of the row has at least one non-zero 
term.

In this case, if zero appears as the first element of a row, 
the elements in the next row will all becomes infinite, to 
overcome this problem we replace the zero element by an 
arbitrary small positive number ‘e’ and then proceed with 
Routh’s tabulation.

Finally substitute the value of e = 0 and find the values 
of the elements of the array which are functions of ‘e’. The 
resultant Routh’s array is analysed as usual.

Note:  If there is a single element zero in s’ row, it is consid-
ered as row of all zeros.

Special case 2: When all the elements in one row of Routh’s 
tabulation are zeros before the tabulation is properly termi-
nated, it indicates the following:

 (i) There are symmetrically located roots in S-plane
 (ii) Pair of real roots with opposite signs and/or pair of 

conjugate roots on the imaginary axis and/or complex 
conjugate roots forming quadrates in the S-plane.

Auxiliary Equation
The polynomial formed by the coefficients of the row just 
above the row of zeros in the Routh array is called auxiliary 
equation [A(s) = 0].

Note 1:  The order of the auxiliary equation is always even
Note 2:  The roots of the auxiliary equation also satisfy the 

original characteristic equation.
Note 3:  Break down in the Routh table due to zero row is 

overcome by replacing the row of zeros with first 

derivative of auxiliary equation 
dA s

ds

( )⎛
⎝⎜

⎞
⎠⎟  

with 
respect to ‘s’.

Solved Examples

Example 1: If a system transfer function has some poles 
lying on the imaginary axis, it is
(A) Unconditionally stable
(B) Conditionally stable
(C) Unstable
(D) Marginally stable

Solution: (D)
When the poles are on imaginary axis, system is marginally 
stable.

Example 2: System has some roots with real parts equal to 
zero, but none with positive real part is
(A) Absolutely unstable (B) Absolutely stable
(C) Relatively stable (D) Marginally stable

Solution: (D)
Marginally stable

Example 3: Closed loop stability implies that 1 + G(s)H(s) 
has only _________ in the left half of the S-plane
(A) Poles (B) Zeros
(C) Poles and zeros (D) Poles or zeros

Solution: (B)
Zeros of characteristic equation are poles of the transfer 
function

Example 4: None of the poles of a linear control system lie 
in the right half of S-plane. For a bounded input the output 
of this system
(A) Could be bounded (B) Always tends to zero
(C) Is always bounded (D) None of the above
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Solution: (D)
Poles are not on the right half indicates they can be on imag-
inary axis, so stability cannot be justified

Example 5: For the equation s3 – 4s2 + s + 5 = 0, the num-
ber of roots in the left half of S-plane will be
(A) Zero  (B) One
(C) Two  (D) Three

Solution: (B)
Routh array for s3 – 4s2 + s + 5 = 0

 s3 1 1

 s2 – 4 5

 s1 2.25

 s° 5

Sign changes in first column of Routh array are 2(1 → 
–4 → 1) poles on left half = 3 – 2 = 1

Example 6: The number of roots of the equation 2s4 + s3 + 
5s + 6 = 0 that lie in the right half of S-plane is
(A) Zero  (B) One
(C) Two  (D) Four

Solution: (C)
Routh array for 2s4 + s3 + 3s2 + 5s + 6 = 0

 s4  2 3 6

 s3  1 5

 s2  – 7 6

 s1  
41

7
 s° 6
No. of sign changes in Routh array are 2 (1 → – 7 → 

41

7
)

No. of poles on the right half = 2

Example 7: For what range of K is the following system is 
asymptotically stable; assume K ≥ 0

C(S)R(S)

s + 5
s − 4

+
–

K

(A) 0 ≤ K < 
5

4
 (B) 0 ≤ K < 

4

5

(C) K > – 
4

5
 (D) K > –

5

4

Solution: (A)
Given system transfer function

= 
K s

K s K

( )

( ) ( )

−
+ + −

4

1 5 4

Characteristic equation of the system is

(1 + K) s + (5 – 4K) = 0

For the system to be stable, all the coefficients of ‘s’ in the 
characteristic equation must be positive

1 + K > 0  5 – 4K > 0

K > – 1  – 4K > – 5

 K < 
5

4  

Actual ranges of ‘K’ is –1 < K < 
5

4

Given K ≥ 0; 0 ≤ K < 
5

4
.
 

Example 8: The open loop transfer function of a unity 
feedback system is given below

G(s) = 
K s

s s

( )

( )( )

+
+ +

4

1 2

The range of positive values of ‘K’ for which the closed 
loop system will remain stable is

(A) 2 < K < 3 (B) 
2

4
 < K < 3

(C) 0 < K < ∞  (D) 
2

4
 < K < ∞

Solution: (C)
Closed loop transfer function

= 
G s

G s

( )

( )1+
 = 

K s

s K s K

( )

( ) ( )

+
+ + + +

4

3 2 42

Characteristic equation of the system s2 + (3 + K)s + 
(2 + 4K) = 0

Condition for stability is that all coefficients of ‘s’ must 
be greater than zero in characteristic equation

3 + K > 0  2 + 4K > 0

K > – 3  4K > – 2

 K > – 
2

4  
\ System is stable for all value of K > – 

2

4

\ Range of positive values of ‘k’ for stability is 0 < k < ∞

Example 9: A certain closed loop system with unity feed-
back has the following transfer function given by G(s) = 

k

s s s( )( )+ +2 4
 with the gain set at the ultimate value, the 

system will oscillate at an angular frequency of
(A) 2 rad/sec (B) 4 rad/sec

(C) 8 rad/sec (D) 2 2 rad/sec

Solution: (D)
Characteristic equation of the system is

s3 + 6s2 + 8s + K = 0
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System will oscillate when it is marginally stable/ from 
Routh array

 s3 1 8

 s2 6 K

 s1 
48

6

− K

 s0 K

System is marginally stable if 48 – K = 0 ⇒ K = 48
Then Auxiliary equation is 6s2 + 48 = 0

 s2 = – 8 

⇒ s = j 2 2  

Oscillation frequency = 2 2  rad/sec

Root LoCus
The root locus is basically the technique of finding the locus 
of roots as a single gain is changed, by solving for the roots 
of the characteristic equation, at each gain.

The gain that is to be varied will be open loop gain. Note 
this does not mean the gain of the open loop system that is 
typically fixed: this refers to cascading a controller in the 
forward path. Using the root locus method the control sys-
tem engineer can predict the effect of varying gain on the 
open loop poles or what effect will be caused by adding 
open loop poles or open loop zeros.

Angle and Magnitude Conditions
Consider the following general system

C s

R s

G s

G s H s

( )
( ) =

( )
+ ( ) ( )1

The characteristic equation of the system is obtained by 
 setting the denominator of the closed loop system to zero 
as follows.

 1 + G(s) H(s) = 0 

\ G(s) H(s) = –1 

Since complex variable has both an angle and a magnitude, 
we can split the above equation into two separate equations 
as follows.

∠G(s) H(s) = ± 180° (2K + 1) (K = 0, 1, 2, …)
 Angle condition

G s H s( ) ( ) = 1  Magnitude condition

The values of ‘s’ that satisfy the angle and magnitude condi-
tions are the roots of the characteristic equation (The closed 
loop poles). ONLY these values will be the roots. As we 
vary the gain, these values of ‘s’ that satisfy both conditions 
will change. The resulting collection of point in S-plane are 
called root locus.

Note:  Open loop gain ‘K’ corresponding to any point on 
root locus can be calculated using the equation.

K =

Product of lengh of vectors from
open loop poles to the point

Productt of lenght of vectors form
open loop zeros to the point

Rules for Construction of Root Locus
 1. The root locus is symmetric about origin
 2. Number of branches in a root locus is equal to either 

the number of poles (n) or the number of zeros (m) 
whichever is greater. Each branch of root locus starts 
form open poles (Assuming number of poles is great-
er than zero) corresponding to K = 0 and terminates at 
either a finite open loop zero or infinity correspond-
ing to K = ∞. ‘n’ number of branches will terminate to 
finite open loop zeros and remaining branches of root 
locus (n – m) will terminate to infinity.

  B = P if P > Z ⇒ P – Z branches will terminate at ∞
  B = Z if Z > P ⇒ Z – P branches will terminate at ∞
  P = Number of poles, Z = number of zeros
  B = Number of branches of root locus
 3. A section of real axis lies on root locus if the total 

number of open loops poles plus zeros to the right of 
that section is odd.

 4. The angle of asymptotes and centroid:
  If P > Z, P – Z number of branches will terminate at ∞ 

along straight line (asymptotes) making angle with 
real axis given by

  f
A 

= 
180 2 1q

P Z

+( )
−

; (q = 0, 1, 2, 3, … (P – Z – 1))

  If Z > P ⇒ f
A
 = 

180 2 1q

Z P

+( )
−

; (q = 0, 1, 2, 3, … 
(Z – P–1))

  The point of intersection of the asymptotes with the 
real axis is called centroid denoted by ‘s’

  Centroid (s) =

Sum of real part of pole
Sum of real part of zeros

−

−P Z
 5. Breakaway/in point:
  A point on root locus where multiple poles/zeros 

 exist is known as breakaway/ in point.
  The breakaway or breakin point is given by the roots 

of the equation 
dK

ds
= 0, where ‘K’ is obtained form 

1 + KG(S) H(S) = 0
  Note 1:  Breakaway point exists if there is a root  locus 

on real axis between two adjacent poles.
  Note 2:  Breakin point exists if there is a root locus 

on real axis between two adjacent zeros.
  Note 3:  Breakin point exists if there is a zero on real 

axis and left to that there is no root loci or 
poles or zeros.
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 6. The angle of departure/arrival:
  The angle of departure or angle of arrival is given by
  Angle of departure = 180 – f
  Angle of arrival = 180 + f
  where f =

Sum of angles of vectors Sum of angles of vectors

to the compplex pole/zero from  to the complex pole/zero from

other 

−
ppoles other zeros.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 7. The intersection of root locus with the imaginary 
axis can be determined by the use of Routh criterion 
[ finding poles on imaginary axis]

Example 10: Plot the root locus for a transfer function 

G(s) = 
K

s s s( ) ( )+ +2 3

Solution: The number of poles = 3
The poles are at s = 0, s = – 2 and s = – 3

Re(s)

Im

0–2–3

Break-away Point

 

d

ds
s s s( )3 25 6 0+ + =

 
 3s2 + 10s + 6 = 0 

 s = – 0.784 and s = –2.549 

s = –2.549 does not lie on the root locus

Asymptotes

 q
1
 = ± = ±180

3
60°

 

 q
3
 = ± × = ±3 180

3
180°
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− − −

−
( ) ( )0 2 3 0

3 0
 = –1.667

Imaginary Axis Cross-over

 G(jw) = 
K
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−
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⎢
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⎥

5

25 6
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25 6

2
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4 3 2

ω
ω ω ω

ω ω
ω ω ω( )
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Equating the imaginary part to zero

w = ± 2.5 rad/sec.

The root locus is drawn as shown in the figure

Re(s)

Im(s)

0–2–3

–1.667

–0.784
w = 2.5 rad/sec

Example 11: G(s) = 
K s

s s

( )+
+ +

2

2 32
, H(s) = 1

Sketch the root locus

Solution: No of branches of root locus = 2

The poles are at s = – 1± j 2

The zero is at s = – 2

–2 –1

–1–j

Re(s)

Im(s)

q1

q2

–1+j 2

2

The root locus starts from the conjugate poles and break in 
on the real axis between –2 and –∞. One root locus ends in 
s = –2, the other ends at s = –∞.

Asymptote

q
1
 = ±

−
= ±

180

2 1
180

Angle of Departure

= 180 – 90
2

1
−

⎛
⎝
⎜

⎞
⎠
⎟tan  = 145°

Break-away Point

 

dG s

ds

( ) =0
 

 s = – 3.73 
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The root locus is drawn in the following figure.

Im(s)

Re(s)

–3.73
K = ∞

–2 –1

K = ∞

145o

–j 2

j 2

 1. N – P = Z
  Here P = 1
  If K > 1, N = 1,
  Z = 0, then the closed loop system is stable
 2. If K < 1, N = 0
  Z ≠ 0, then the closed loop system is unstable.

Example 13: Given G(s) H(s) = 
K

s s s+( ) +( )2 5
, the point 

of intersection of the asymptotes of the root locus with the 
real axis is
(A) 0   (B) – 2   (C) – 2.3   (D) – 3.5

Solution: (C)
No. of poles (P) = 3 (0, – 2, – 5)
No. of zeros (Z) = 0
No. of asymptotes = 3
Centroid (Intersection of the asymptotes)

 = 
Σ ΣReal part of all poles Real part of all zero−

−P Z  

 = 
0 2 5 0

3

7

3

− − −
=
−

 = –2.33. 

Example 14: The open loop transfer function of a unity 
feedback control system is given by

 G s
K s

s s s
( ) =

+( )
+ +( )

2

2 12

 
The centroid and angles of root locus are, respectively,

(A) −
2

3
and +60°, –60° (B) –2 and +90°, –90°

(C) Zero and +90°, –90° (D) – 2 and +60°, –60°

Solution: (C)
No. of poles = 3 (0, – 1, – 1)
No. of  zeros = 1 (– 2)
No. of asymptotes = 2
Angle of asymptotes = +90° and –90°

Centroid = Σ ΣReal part of all poles Real part of all zero−
2

 = 
0 1 1 2

2

2 2

2

− −( ) − −( )
=
− +

 = 0. 

Example 15: Figure shown below gives root locus of the 
open loop transfer function G(s) H(s) of a system.

Consider the following inference drawn from the figure.

 (1) It has no zero.
 (2) It is a stable system.
 (3) It is a second-order system.

Which of these inferences are correct?

jw

xx

s-plane

s

(A) 1, 2, and 3 (B) 1 and 2
(C) 2 and 3 (D) 1 and 3
Two poles are terminated to infinity indicates that there are 
no zeros.

Two poles indicates the order of the system as ‘2’.

Example 16: The characteristic equation of a unity-feed-
back control system is given by S3 + AS2 + S + B = 0.

Consider the following statements in this regard.

 1. For a given value of B, all the root-locus branches 
will terminate at infinity for the variable ‘A’ in the 
positive direction.

 2. For a given value of B, only one root locus branch 
will terminate at infinity for the variable K, in the 
positive direction.

 3. For a given value, of A, all the root locus branches 
will terminate at infinity for the variable ‘B’ in the 
positive direction.

 Of these statement
(A) 1 and 3 are correct.
(B) 2 and 3 are correct.
(C) Only 2 is correct.
(D) Only 1 is correct.

Solution: (B).

Example 17: The root locus of a unity feedback system is 
shown in the following figure. The open loop transfer func-
tion is given by

x0

Imaginary

K = 0

Real
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(A) 
K

s s s+( ) +( )2 4
 (B) 

K s

s s s

+( )
+( ) +( )

4

3 5

(C) 
K s

s s

+( )
+( )

4

3
 (D) 

Ks

s s+( ) +( )3 5

Solution: (C)
The given root locus indicates that the open loop transfer 
function has 2 poles and one zero.

One pole is at origin and another pole location is on the 
right side to the zero.

So option ‘C’ is correct.

Example 18: The closed loop transfer function of a feed-
back system is given by

 
C S

R S

K

s K s

( )
( ) = + −( ) +2 4 3  

Which of the following diagrams represents a root locus of 
the system for K > 0?

(A) 

jw

xx s
K = 0K = 0

K→ ∞ 

K→ ∞ 

(B) jw

xx s
K = 0

K→∞ K→∞ 

K = 0

(C) jw

x s
K = 0 

K → ∞

K = 0

K → ∞ 

(D) jw

xx
K = 0 K = 0

K → ∞ 
s

Solution: (B)
When the value of ‘K’ is increasing the location of poles 
will tend to right-hand side of the S-plane when K > 4
→ When K = 4 characteristic equation s2 + 3 = 0

 s = ± j 3 =
 (Poles are on the imaginary axis)
→ When K = 10 characteristic equation s2 – 6s + 3 = 0
 (s – 3)2 = 0
 s = + 3, + 3
 (Poles are on RHS and equal)
→ When K > 10 poles are on RHS but not equal
 \ Option ‘B’ is the suitable root locus.

Example 19: A control system has

 G(s) H(s) = 
K s

s s

+( )
+( ) +( )

5

2 3  
The break away and break in points are located, 
 respectively, at
(A) –2 and –1 (B) –1.589 and –7.5
(C) –2.55 and –7.5 (D) –1.5 and –6.89

Solution: (C)
Characteristic equation
 1 + G(s) H(s) = 0 

⇒ K = 
− +( ) +( )

+( ) =
+ +
+

s s

s

s s

s

2 3

5

5 6

5

2

 
Breakaway or breakin points are roots of 

dK

ds
= 0

 
dK

ds

s s s s

s
=

+( ) +( ) − + +( )
+( )

2 5 5 5 6

5

2

2  = 0 

 2s2 + 15s + 25 – s2 – 5s – 6 = 0 

 s2 + 10s – 19 = 0 

 s = –2.55, –7.449 

Breakaway point is –2.55, breakin point –7.449.

Example 20: A transfer function G(s) has type pole zero 
plot as shown in figure. Given that the steady-state gain is 3, 
the transfer function G(s) will be

jw

–1–2
s

x

x

(A) 
2 1

4 52

s

s s

+( )
+ +

 (B) 
5 1

4 52

s

s s

+( )
+ +

(C) 
15 1

4 52

s

s s

+( )
+ +

 (D) 
15 1

2
2

s

s

+( )
+( )
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Solution: (C)
Form the given pole zero plot transfer function has

1. Zero is at (–1, 0)
2. Complex poles
Only for option ‘C’ steady-state gain is ‘3’.

 Lt Lt
s s

G s
s

s s→ →
( ) = +( )

+ +
=

0 0 2

15 1

4 5

15

5
 = 3. 

FRequenCy Response AnALysis
The magnitude and phase relationship between the sinusoi-
dal input and the steady state output of a system is termed 
as frequency response. In linear time-invariant systems, the 
frequency response is independent of the amplitude and 
phase of the input signal

when the input of a linear time-invariant system is sinu-
soidal with amplitude A and frequency w

0
.

r(t) = Asinw
0
t.

The steady-state output of a system y(t) will be a sinusoi-
dal with the same frequency w

0
 but possibly with different 

amplitude and phase

y(t) = Bsin(w
0
t + f)

B

A

G j

G j H j
M j= =

( )
+

=Transfer function
ω

ω ω
ω

1 ( ) ( )
( )

f = ∠Transfer function = ∠G(jw) – ∠[1 + G(jw) H(jw)] = 
∠M(jw)

G(s)
Y(s)R(s)

∑
–

+

H(s)

Figure 1 Closed loop control system

M ( jw) ∠ M ( jw)
R(s) Y(s)

The ease and accuracy of measurements are some of the 
advantages of the frequency response method. Extraction 
of transfer function is easy from frequency response test 
than step response test (time response). The design and 
parameter adjustment of the open-loop transfer function of 
a system for specific. Closed loop performance is carried 
out more easily in frequency domain than in time domain. 
The effect of noise disturbance and parameter variation are 
relatively easy to visualize and access through frequency 
response. Nyquist criterion is a powerful frequency domain 
method of extracting. The information regarding stability 
as well as relative stability of a system without the needs to 
evaluate roots of the characteristic equation.

Frequency-domain Specifications
Resonant Peak (Mr)
The resonant peak M

r
 is the maximum value of M j( ) .ω  

The magnitude M
r
 gives indication on the relative stability 

of a stable closed loop system.
For second-order system,

 M
r
 = 1

2 1

1

22ξ ξ
ξ

−
≤for

 
 M

r
 = 1 for ξ >

1

2  
Note:  A large M

r
 corresponds to a large maximum over 

short of the step response.

Resonant Frequency (wr ) 
The resonant frequency w

r
 is the frequency at which the 

peak resonance M
r
 occurs.

For second-order system, w
r
 = w

n
 1 2

1

2
2− ≤ξ ξfor

 w
r
 = 0 for ξ >

1

2  
Bandwidth (BW)
The bandwidth (BW) is the frequency at which M j( )ω
drops to 70.7% of or 3 dB down from its zero frequency 
value.

For second-order system

BW = w
n
 1 2 4 4 22 4 2

1 2

−( ) + − +⎡
⎣

⎤
⎦ξ ξ ξ

/

Bandwidth gives an indication of the transient response of 
a control system, noise filtering characteristics and robust-
ness of the system.

Gain Margin (GM)
Gain margin is the amount of gain in decibel (dB) that can 
be added to the open loop before the closed loop system 
becomes unstable.

Gain margin = GM = 20 log
10

 
1

M j( )ωpc
⎡⎣ ⎤⎦

 = – 20 log M j( )ωpc dB
 

The phase crossover frequency (w
pc

) is the frequency at 
which phase angle becomes –180°.

Phase Margin
Phase margin (PM) is defined as the angle m degrees through 
which the M(jw) plot must be rotated about the origin so that 
the gain cross over passes through the (–1. j0) point.

Phase margin = PM = ∠M(jw
gc

) – 180°

Gain crossover frequency (w gc) is the frequency at which 
M(jw) becomes 1 or decibel magnitude of

M(jw) becomes zero.
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Relation Between Time Domain and 
Frequency Domain Characteristics
 1. The resonant peak M

r
 of the closed loop frequency 

response depends on x only. when x = 0, M
r
 = ∞ when 

x is negative, the system is unstable, and the value of 
M

r
 ceases to have any meaning. As x increases, M

r
 

decreases.
  In comparison to time response, maximum peak over-

shoot also depends on ‘x’ only. The peak overshoot is 
zero if x ≥ 1.

 2. Bandwidth is directly proportional to w
n
.

  → Bw increases linearly with w
n
.

  → Bw decreases with increase in x for a fixed w
n
.

  For time response, rise time increases as w
n
  decreases.

  \ Bandwidth α
1

Rise time
.

 3. Band width (BW) and M
r
 are proportional to each 

other for 0 ≤ x ≤ 
1

2
.

Example 21: For the system shown in figure, the input 
x(t) = sint.

In the steady-state, the response y(t) will be

s + 1

2 y(t)x(t)

(A) 
1

2
sin(t –45°) (B) 2 sin(t − 45°)

(C) 
1

2
sin(t – 45°) (D) 2 sin(t – 45°)

Solution: (D)
Transfer function (T) = 

2

1

2

1s j+
=

+ω
Input = sint [\ w = 1]

 
T ∠ =

+
∠− ⎛

⎝⎜
⎞
⎠⎟

−θ 2

1 1

1

1
1tan

 
 = 2  ∠–45° 

 y(t) = 1 × 2  sin (t – 45°) 

 y(t) = 2  sin (t – 45°) 

Example 22: A system with zero initial condition has the 
closed loop transfer function

 T(s) = 
s

s s

2 16

2 3

+
+( ) +( )  

The system output is zero at the frequency.
(A) 1 rad/s (B) 2 rad/s
(C) 3 rad/s (D) 4 rad/s

Solution: (D)
Magnitude of transfer function

= 
− +

+( ) +( )
ω

ω ω

2 16

2 3j j

Magnitude of transfer function will affect the magnitude 
of the system output. output becomes zero when transfer 
 function magnitude is zero

 

− +

+( ) +( ) =
ω

ω ω

2 16

2 3
0

j j
 

 –w2 + 16 = 0 

 w = 4 rad/sec 

Example 23: The gain margin of a unity feedback control 

system with the open loop transfer function G(s) = 
s

s

+ 4
2

is

(A) 0  (B) 
1

4

(C) 4   (D) ∞

Solution: (A)
Phase crossover frequency ∠G(s) = –180°

 tan–1 
ωpc

4

⎛

⎝
⎜

⎞

⎠
⎟ – 180° = –180° 

 tan–1
ωpc

4

⎛

⎝
⎜

⎞

⎠
⎟  = 0 

 w
pc

 = 0 

Magnitude of transfer function at phase crossover frequency

j

j

ω

ω
ωpc

pc

pc

+

( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= ∞=

4
2 0

Gain margin = 
1 1

0
G jωpc( )

= ∞ =

Example 24: The open loop transfer function of a unit 

feedback control system B given as G(s) = 
sx

s

+1
2

. The value 

of ‘x’ to give a phase margin of 
π
4

is equal to

(A) 0.441 (B) 0.141
(C) 1.141 (D) 0.841

Solution: (D)
Phase margin = 180° ∠G(jw) = 45°

 180° + tan–1 
xωgc

1

⎛

⎝
⎜

⎞

⎠
⎟ – 180° = 45° 

 xw
gc

 = 1 
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Magnitude phase margin G jωpc( ) =1

 
j

j

ω

ω
gc

gc

+

( )
=

1
1

2

 
 

gc
 = 121/4 

 xw
gc

 = 1 

 x = 
1

2
0 841

1 4/
.=

 
Example 25: In the G H(s) plane, the Nyquist plot of the 

loop transfer function G(s) H(s) = 
π .e

s

s−

passes through the 

negative real axis at the point
(A) (–1, j0) (B) (– 0.5, j0)
(C) (– 3, j0) (D) (– 2, j0)

Solution: (D)
At the point of intersection with negative real axis,

 ∠G(s) H(s) = – p 

 − +⎛
⎝⎜

⎞
⎠⎟

ω π
pc 2

 = – p 

 w
pc

 = 
π
2  

Magnitude of the G(s) H(s) at p = w
pc

 in the intersection 
point with negative real axis

G s H s w w
e

s

e

j

s j

( ) ( ) = = =
− −

pc
pc

pcπ π
ω

ω

 = π
ω

π
π

pc

= =

2

2
 

\ Nyquist plot passes through (–2, 0).

Bode pLot
Bode plot is a graph of the transfer function of a linear, time-
invariant system frequency plotted with a  log-frequency 
axis, to show the system’s frequency response. It is usually a 
combination of a Bode magnitude plot, expressing the mag-
nitude of the frequency response gain, and a Bode phase 
plot expressing the frequency response phase shift.

The standard logarithmic magnitude of open loop trans-

fer function of G(jw) is 20 log
10

G jω( ) . The units used in 
this representation of the magnitude are the decibel, usually 
denoted as dB.

Generally, a transfer function can be expressed in terms 
of factors of its poles and zeros. The advantage of the loga-
rithmic plot is the conversion of these multiplicative factors 
to additive terms.

Consider the general open loop transfer function.

 G(s) = 
K sT sT sT

s sT sT sT

z z

P
P p

1 1 1

1 1 1

1 2

1 2

+( ) +( ) +( )
+( ) +( ) +( )





zm

pn  

In this example, the transfer function includes ‘m’ number 
of zeros, ‘p’ number of poles at origin and in the mentioned 
part ‘n’ number of poles. Let m = 1, n = 2, p = 1.

⇒ G(s) = 
K sT

s sT sT

z

p p

1

1 1

1

1 2

+( )
+( ) +( )  

 G(jw) = 
K j T

j j T j T

z

p p

1

1 1

1

1 2

+( )
+( ) +( )

ω
ω ω ω

 

Magnitude of G(jw) =
K T

T T

z

p p

1

1 1

2
1
2

2 2 2 2

1 2

+

+ +

ω

ω ω ω
 

Magnitude of G(jw) is decibels is

 G jω( ) in dB = 20log G j( )ω  

 = 20logK + 20log 1 2
1
2+ω Tp  – 20 logw 

 – 20log 1 20 12 2 2 2

1 2
+ − +ω ωT Tp plog

 
The phase angle of G(jw) = ∠G(jw) = tan–1wT

z1 
– 90° – tan–1 

wT
P1 

– tan–1 wT
P2

Note:  From the above analysis, it is clear that, when the 
magnitude is expressed in dB, the multiplication is 
converted to addition.

Therefore to sketch the magnitude plot, knowledge of the 
magnitude variation of individual factors of the open loop 
transfer function is essential. The various factors of open 
loop transfer function are

 1. Constant gain, K

 2. Poles (or zeros) at origin, 
1

j
j

n

m

ω
ω

( )
( )or

 3. First-order factor, 
1

1
1

+
+

j T
j T

ω
ω

p
zor

 4. Quadratic factor,  
1

1 2

2

+ ( ) + ⎛
⎝
⎜

⎞

⎠
⎟ξ ω ω ω

ω
j

j
n

n

/

  or 1 2

2

+
⎛
⎝⎜

⎞
⎠⎟
+
⎛
⎝⎜

⎞
⎠⎟

ξ ω
ω

ω
ω

j j

n n

Constant Gain: K
Let G(s) = K

\ G(jw) = K ∠0° 

 G jω( ) in dB = 20 log K 

 f = ∠G(jw) = tan–1 0

k

⎛
⎝⎜

⎞
⎠⎟

= 0° 
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K > 1 

|G( jw)| in dB

K = 1

K < 1 

0 dB log w

Note 1:  The magnitude plot and phase plot of a constant 
‘K’ is independent of frequency and straight line.

Note 2:  A constant (K) greater than unity has a positive 
value in decibels, while a number smaller than 
unity has a negative value in decibels.

Note 3:  The change in the value of gain (K) of transfer 
function is increase or decrease in the magnitude 
plot.

Poles (zeros) at Origin (jw)±n

Pole: Open loop transfer function [G(s)] = 
1

sn

Phase angle f = − ⎛
⎝⎜

⎞
⎠⎟

−n . tan 1

0

ω
= – n × 90°

s2 = ( jw)2 

s–2 = ( jw)–2 
s–1 = ( jw)–1 

s = jw 

40

w

20

0
0.1

–20

–40

101

Mag in dB 20 log |G( jω)|

w

s = ( jw)

0

–90°

j( jw) in degrees

s
1 = ( jw)–1

90°

Zeros: Open loop transfer function [G(S)] = sn

Log magnitude = 20 log|(jw)n) = 20n logw

 Phase angle (f) = n n× ⎛
⎝⎜

⎞
⎠⎟
= × °−tan 1

0
90

ω
 

Note 1:  Magnitude plot of S ±n is a straight line with slop 
of ±20 × n dB/decade that passes through the point 
[0 dB, 1 rad/s]

Note 2:  Phase angle plot of S ±n is independent of frequency 
and it is constant angle of value ± 90n degrees.

First-order Factor (1+ jwT)±1

Pole: open loop transfer function G(s) = 
1

1+ sTp

Log magnitude = 20
1

1
20 1 2 2log log

+
= − +

j T
T

ω
ω

p
p

For ω << 1

Tp

; the asymptote is 20 log1 = 0 dB

For w >> 1

Tp

; the asymptote is –20 log wT
p
: It is a straight 

line with slope of –20 dB/decade. This asymptote intersect 
0 dB at the break frequency w

c
 = 1/T

p
, which is known as 

corner frequency.

 Phase angle f = −
⎛

⎝
⎜

⎞

⎠
⎟ = − ( )− −tan tan1 1

1

ω
ω

T
Tp

p

 
At corner frequency f = –tan–1(wT

p
)

 = –tan–11 = 45° 

The phase angle of the factor (1 + sT
p
)–1 varies from 0 to 

–90° as ‘w’ is varied from 0 to infinity. The phase angle plot 

crosses –45° at w = w
c
 = 

1

Tp

Zero: open loop transfer function

 G(s) = (1 + sT
z
) 

 Log magnitude = 20 1 2 2log +ω Tz  

For w < < 
1

Tz

; the asymptote is 20 log 1 = 0 dB

For w > > 
1

Tz

; the asymptote is 20 logwT
z
: it is a straight 

line with slope of +20 dB/decade. This asymptote intersect 

0 dB at the break frequency w
c 
= 

1

Tz

, which is known as 
corner frequency.

Phase angle f = tan–1wT
z

The phase angle of the factor (1 + sT
z
) varies from 0 to 90° 

as ‘w’ is varied from zero to infinity. The phase angle plot 

crosses 45° at w = w
c
 = 

1

Tz

.
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Slope
– 20 dB/dec

Approximate plot

Exact plot

w = 
TP

1

log w 

in dBG( jw)

 (a)

Slop

+ 20 dB/dec

Approximate plotExact plot

w = 
Tz

1

log w 

in dBG( jw)

 (b)

Figure 2  Magnitude plot for first-order pole (a)  
and first-order zero (b)

Quadratic Factor

1 2

2 1

+
⎛
⎝⎜

⎞
⎠⎟
+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

±

ξ ω
ω

ω
ω

j j

n n

 = Open loop transfer function =

1 2

2 1

+
⎛
⎝⎜

⎞
⎠⎟
+
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

±

ξ ω
ω

ω
ω

j j

n n

The magnitude in decibels is

= ± −
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+
⎛
⎝⎜

⎞
⎠⎟

20 1 4

2 2

2

2

log
ω
ω

ξ ω
ωn n

For w < < w
n
, the log magnitude is asymptotic to a straight 

line of constant gain 0 dB and phase angle approaches to 
0 deg.

For w >> w
n
, the log magnitude approaches ±

⎛
⎝⎜

⎞
⎠⎟

40 log
ω
ωn

;  
a straight line with slop of ± 40 dB/dec.

Asymptote intersect 0 dB at corner frequency w = w
n
.

Note: The resonant frequency is given by

 w
r
 = ω ξn 1 2 2−  for x < 

1

2  
The maximum magnitude is

 Mp = G jω
ξ ξ

r( ) =
−

1

2 1 2
for ξ <

1

2  

in dBG( jw) x = 0.1

x = 0.3

x = 0.5

log w

x = 1

w = wr

Figure 3 Bode plot for quadratic factor in denominator

Example 26: Draw the Bode plot for a system having

G(s)H(s) = 
100

1 2s s s( ) ( )+ +
Find
(A) Gain margin
(B) Phase margin
(C) Gain crossover frequency
(D) Phase crossover frequency

Solution: G(jw)H(jw) = 
50

1 1 0 5j j jω ω ω( ) ( . )+ +
The corner frequencies are

w = 1 rad/s and w = 2 rad/s

For w ≤ 1 rad/s

G(jw)H(jw) = 
50

jω
Slope = –20 dB/decade

|G(jw)H(jw)|
dB

 = 20 log 50 – 20 log w

at w = 0.1

|G(jw)H(jw)|
dB

 = 20 log 50 – 20 log(0.1) = 53.98 dB

At w = 1

|G(jw)H(jw)| = 20 log 50 = 33.98 dB

For 1 < w ≤ 2

G(jw)H(jw) = 
50

1j jω ω( )+
Slope = –20 – 20

 = –40 dB/decade 

As w increases from 1 to 2, the reduction in gain

 = 40 log 
2

1
⎛
⎝⎜

⎞
⎠⎟

= 12.04 dB 

At w = 2

|G(jw)H(jw)|
dB

 = 21.94 dB
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For w > 2

G(jw)H(jw) = 
50

1 1 0 5j j jω ω ω( ) ( . )+ +

Slope = –40 – 20 = –60 dB/decade
As w increases from 2 to 10, the reduction in gain = 

60 log 
10

2
⎛
⎝⎜

⎞
⎠⎟

 = 41.94 dB

At w = 10,

 |G(jw)H(jw)|
dB

 = –19.99 dB 

 ∠G(jw)H(jw) = –90 – tan–1 w – tan–1(0.5w) 

w ∠G(jw)H(jw)

0 –90

0.1 –98.6

0.2 –107

0.5 –130.6

1 –161.6

1.3 –175.5

1.4 –179.5

1.5 –183.2

2 –198.4

–100°

–180°

–200°

0.1
1 2

–60 dB/decade

w

Phase plot

20

40

54

–40 dB/decade

–20 dB/decade

Magnitude 
Bode plot

Gain crossover frequency = 4.45 rad/s
Phase crossover frequency = 1.40 rad/s
Gain margin = 27 dB
Phase margin = 53°

Example 27: Find the transfer function of the system whose 
asymptotic Bode plot is shown in the following  figure.

dB

–9

log w 10 20 40

–20 dB/decade

+20 dB/decade

Solution: The line with a slope of –20 dB/decade does not 

pass through w = 1 rad/s, i.e. there is a term 
K

s
 20 log K = –9 

 K = 0.35 

At w = 1 rad/sec, slope changes to 0 dB/dec indicating a 
zero at w = 1 rad/sec. The term is (1 + s)

At w = 20 rad/sec, the slope changes to +20 dB/decade, 

indicating a term 1
20

+⎛
⎝⎜

⎞
⎠⎟

s
or (1 + 0.05 s)

At w = 40 rad/sec, the slope changes to 0 dB/dec indicat-

ing a term 1
40

+⎛
⎝⎜

⎞
⎠⎟

s

 
in the denominator.

i.e., G(s) = 
0 35 1 1 0 05

1 0 025

. ( ) ( . )

( . )

+ +
+

s s

s s  
Example 28: The Bode magnitude plot of H(s) = 

10 1

10 100

4

2

+( )
+( ) +( )

s

s s

(A) 

1 2 3

40

–20

–40

log w 

20

–1

in dBH( jw)

(B) 

1 2 3

40

–20

–40

log w

20

–1

in dBH( jw)

(C) 

1 2 3

40

–20

–40

log w 

20

–1

in dBH( jw)
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(D) 

1 2 3

40

–20

–40

log w

20

–1

in dBH( jw)

Solution: (A)
Given function H(s) = 

10 1

10 10

4

2

+( )
+( ) +( )

s

s s

 H(s) = 
10 1

1 0 1 1 0 01 10 100

4

2 2

+( )
+( ) +( ) × ×

s

s s. .

 H(s) = 
0 1 1

1 0 1 1 0 01
2

.

. .

+( )
+( ) +( )

s

s s

Corner frequencies are 1, 10 and 100

 Initial magnitude = 20 log 0.1 = –20 dB 

Magnitude starts increasing with slop of +20 dB/dec at w
c
 = 

1 rad, constant at w = 10 rad and decays with a slope of 
20 dB/dec at w = 100 rad.

log (w)

20

20

0
w = 1

log w = 0  
w = 100

log w = 2

w = 10

log w = 1

Mag in dB

Example 29: The function corresponding to the Bode plot 
of figure is

20 dB per decade

G( jw) Mag in dB

0 dB
f1

f
0

(A) G = jf / f
1 

(B) G = 
1

1
1

+
⎛
⎝⎜

⎞
⎠⎟

j
f

f

(C) G = 
1

1
1

−
⎛
⎝⎜

⎞
⎠⎟

j
f

f

 (D) G = 1 + jf / f
1

Solution: Magnitude plot slop change at frequency ‘f
1
’ and 

its increasing. This indicates there is a zero at f = f
1
.

 G = (1 + sT
1
) = (1+ jwT

1
) 

 = 1
2

2 1

+
⎛
⎝⎜

⎞
⎠⎟

j
f

f

π
π

ω π

ω π

=

= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

1 1

21

1

f

T
fc

⇒ G = 1
1

+ j
f

f  

Example 30: The asymptotic Bode magnitude plot of a 
minimum phase transfer function is shown in figure.

–20 dB

– 40 dB/dec

20 dB

w = 1.5

w (rad/sec)

20 dB/dec

0 dB/dec

w = 10

G( jw) Mag in dB

0

This transfer function has
(A) Two poles and one zero
(B) Two poles and two zeros
(C) One pole and two zeros
(D) Three poles and one zero

Solution: Initial slop of the magnitude plot is –40 dB/dec, 
indicates 2 poles of the system are at origin

Reduction is slop by 20 dB/dec at w  = 1.5 indicates a zero.
Reduction in slop by 20 dB/dec at w =10 indicates 

another zero.
\ Total 2 poles and 2 zeros.

Example 31: The asymptotic approximation of the log-
magnitude versus frequency plot of a minimum phase 
system with real poles and one zero is shown in figure. Its 
transfer function is

–40 dB/dec

–20 dB/dec

–40 dB/dec

–20 dB/dec

50

0.1
5 7 25

w (rad/sec)

Mag in dB
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(A) 
10 5 25

72

s s

s s

+( ) +( )
+( )  (B) 

4 4 7 5

252

. s s

s s

+( ) +( )
+( )

(C) 
10 7

5 252

s

s s s

+( )
+( ) +( )  (D) 

4 4 5 25

72

. s s

s s

+( ) +( )
+( )

Solution: Transfer function has corner frequencies 5, 7 
and 25

Zeros are at w = 5 and w = 25
Poles are at w = 7

 T. F = 

K
s s

s s

1
5

1
25

1 72

+⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

+( )/
 = 

7 5

25

5 25

72

× +( ) +( )
+( )

K s s

s s  
Initial magnitude = 20 log K = 10 ⇒ K = 3.16

Transfer function = 
4 4 5 25

72

. s s

s s

+( ) +( )
+( )

Example 32: The asymptotic Bode magnitude plot of a 

transfer function 
1

1+ s a/
is show in figure. The error in dB 

gain at a frequency of w = 0.5a is

–20 dB/dec

0 db a w

in dBG( jw)

(A) 3 dB
(B) 9 dB
(C) 0.97 dB
(D) 5.4 dB

Solution: Actual magnitude of given transfer function = 

− +⎛
⎝⎜

⎞
⎠⎟

20 1log
j

a

ω

At w = 0.5a

⇒ G j j
a

a
ω( ) = − +⎛

⎝⎜
⎞
⎠⎟

20 1
0 5

log
.

 

 = − + ( )20 1 0 5
2

log .
 

 G jω( ) = –0.969 = – 0.97 dB 

Approximated magnitude in given plot at w = 0.5a is 0 dB

 Error = 0 dB – (0.97 dB) = 0.97 dB. 

poLAR pLot
The transfer function G(s) is a complex function and it is 
given by

 G(s) = G(jw) = G jω( ) ∠ ( )G jω  = M∠f 

As the input frequency is varied from 0 to ∞, the magnitude 
M and phase angle ‘f’ change, the locus traced by the tip of 
the phasor G(jw) is known as polar plot.

G(s) G jωω(( )) ∠∠ (( ))G jωω

G j G jωω ωω(( )) ∠∠ (( ))  
value

Polar plotw → 0 w → ∞

1
1+ sT

1

1 2 2+ ω T
–tan–1wT 1∠0 0 ∠ –90°

–180° 1 0°

w increase

–270°

w = 0w = •

1
s

1
ω

–90° ∞ ∠–90° 0 ∠– 90°

w = 0

w = •

–270°

0°
–180°

–90°

(Continued)
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G(s) G jωω(( )) ∠∠ (( ))G jωω

G j G jωω ωω(( )) ∠∠ (( ))  
value

Polar plotw → 0 w → ∞

1 + sT 1 + wT 90°
(1+ 0) 
∠90°

(1+∞)∠ 
90°

–180° w = 0

w = •
–270°/90°

w increase

0°o

s w 90° 0 ∠ 90° ∞ ∠ 90°

–180°

w = 0

w = •
90°

0°o

–270°

1
1s sT+( )

1

1 2 2ω ω+ T
–90° – tan–1 wT ∞ ∠–90°

0 
∠–180°

–180°

w = 0

w = • 0°
o

–90°

1
1 11 2+( ) +( )sT sT

1

1 12
1
2 2

2
2+ +ω ωT T

–tan–1wT1–  
tan–1 wT2

1 ∠ 0°
0 

∠–180°

–180°
w = 0w = •

–270°

1 0°

–90°

1
1 11 2s sT sT+( ) +( )

1

1 12
1
2 2

2
2ω ω ω+ +T T

–90° – tan–1wT1 –  
tan–1

ω
T2

∞∠ –90° 0∠–270°

–180°

w = 0
w = •

–270°

–90°

0°

1
1 1 11 2 3+( ) +( ) +( )sT sT sT

1

1 1 12
1
2 2

2
2 2

3
2+ + +ω ω ωT T T

–tan–1wT1 –  
tan–1wT2 –  
tan–wT3

1∠ 0° 0∠–270°

–180°

w = 0

w = •

–270°

–90°

0°

1
1 12

1 2s sT sT+( ) +( )
1

1 12 2
1
2 2

2
2ω ω ω+ +T T

–180° – tan1wT1 
–  
tan–1wT2

∞∠–180° 0∠–360°

–180°

w = 0

w = •

–270°

–90°

(Continued)
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G(s) G jωω(( )) ∠∠ (( ))G jωω

G j G jωω ωω(( )) ∠∠ (( ))  
value

Polar plotw → 0 w → ∞

s
sT1+

ω
ω1 2 2+ T

90° – tan–1 wT 0∠90° 1∠0°
–180° w = 0 w = •

–270°

–90°
1

1+ sT
s

1 2 2+ ω
ω

T –90° + tan–1 wT ∞∠–90° 1 ∠0°

0°–180°

w = 0

w = •
–270°

–90°

1
1 1

1

2 3

+
+( ) +( )

sT
s sT sT

1

1 1

2
1
2

2 2 2
3

2

+
+ +

ω
ω ω ω

T

T T

tan–1wT1–90° –  
tan–1wT2 –  
tan–1wT3

∞ ∠ –90°
0 ∠ 

–180°

Ing

w = •
–180°

–270°

–90°

Note 1:  Addition of a non-zero pole to a transfer function 
results in further rotation of the polar plot through 
an angle of –90o as w → ∞ (head of the polar plot 
shifts).

Note 2:  Addition of a pole at origin to a transfer function 
results in rotation of the polar plot at zero and infi-
nite frequency (head and tail of polar plot) by fur-
ther angle of –90o.

Note 3:  The effect of addition of a zero to a transfer func-
tion is to rotate the high frequency portion of the 
polar plot by 90o in anti-clockwise direction.

↓ Start of
type-3
system  

Start of
type-1
system

↑

Start of
type-2
system 

→ → Start of
type ’0’
system  

End of
3rd order
system  

End of
2nd order
system  

End of
1st order
system  

End of
4th order
system  

Figure 4  Start point and end point of polar plot for different  
system types and orders

nyquist CRiteRion
The Nyquist criterion relates the stability of a closed-loop-
system to the open-loop frequency response and open-loop 
pole location. This criterion can tell us how many closed-
loop poles are in the right half of S-plane.

The Nyquist criterion used the following concepts for 
the establishment of criterion.

 1. The poles of 1 + G(s)H(s) and the poles of G(s)H(s) 
are same.

 2. The zero of the 1 + G(s)H(s) are the poles of the 
closed loop transfer function T(s) of the system.

 3. Mapping: Consider a complex number on the S-plane 
and substitute it into a function F(s), another complex 
number results. This process is called ‘ mapping’.

  Example: Substituting s = 4 + j3 into function F(s) = 
s2 + 2s + 1, results in 16 + j30. We say that 4 + j3 maps 
into 16 + j30 through the function (s2 + 2s + 1).

 5. Mapping contours:
  Consider the collection of points, called a contour, 

shown in figure as contour A. Also assume that

 F s
s Z s Z s Z

s P s P s P
( )= −( ) −( ) −( )

−( ) −( ) −( )
1 2 3

1 2 3



  

Contour ‘A’ can be mapped through F(s) into contour ‘B’ 
by substituting each point of contour A into the function 
F(s) and plotting the resulting complex numbers. For exam-
ple, point ‘Q’ in S-plane maps into point ‘Q’ through the 
 function F(s).
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Contour A

S-plane

s

Qjw

Contour B
F-plane 

Real

Q1

jw

Let us first assume that F(s) = 1 + G(s)H(s), with the picture 
of the poles and zeros of 1 + G(s)H(s) as shown in figure 
below. As each point Q of the contour ‘A’ is substituted into 
1 + G(s)H(s), a mapped point results on a contour ‘B’. As we 
move round contour ‘A’ in a clockwise direction, each vec-
tor of F(s) that lies inside contour A will appear to undergo 
a complete rotation or a change in angle of 360o. On the 
other hand, each vector drawn from the poles and zeros of 
1 + G(s)H(s) that exist outside contour A will appear to 
oscillate and return to its previous position, undergoing a 
net angular change of 0o.

Contour A

S = plane

s

Q

⇒ F(S) = 1 + G(s)H(s)

Real

1+ GH = plane
Imaginary

Contour ‘B ’

Number of anti-clockwise rotations of contour ‘B’ about 
origin (N) = P – Z

where, P =  Number of poles of 1 + G(s)H(s) inside 
 contour A.

 Z =  Number of zeros of 1 + G(s)H(s) inside 
 contour A.

Note:  Since the poles of 1 + G(s)H(s) are the poles of G(s)
H(s) and zeros of 1 + G(s)H(s) are poles of closed 
loop system,

P = Number of open poles enclosed
Z = Number of closed loop poles enclosed
N = Z – P = Number of closed loop poles inside the contour.

If we extend the contour to include the entire right half of 
S-plane, we can count the number of right-half-plane closed 
loop poles inside contour ‘A’ and determine a system’s 
stability.

Note:  When we map the entire right half of S-plane 
through G(s)H(s) instead of 1 +G(s)H(s), the result-
ing contour is same as mapping through 1 + G(s) 
H(s), except that it is translated one unit to the left. 
So we count rotations about -1 + j0 instead of rota-
tions about the origin.

Statement of the Nyquist Stability 
Criterion
If a contour ‘A’ that encircles the entire right half-plane is 
mapped through G(s)H(s), then the number of the closed 
loop poles (Z) in the right half-plane equals the number of 
open loop poles (P) that are in the right half-plane minus the 
number of contour clockwise revolutions (N) around ‘–1’ 
of the mapping (i.e., Z = P – N). The mapping is called the 
Nyquist diagram/Nyquist plot of G(s)H(s).

jw

A

S-plane 
s

Figure 5  Contour enclosing right half of S-plane of  
determine stability

Note 1:  If the contour ‘A’ of the open loop transfer function 
G(s)H(s) corresponding to the Nyquist contour in 
the S-plane encircles the point (–1 + j0) in the anti-
clockwise direction as many times as the number 
of right half S-plane poles G(s)H(s), the closed 
loop system is stable.

Note 2:  No encirclement of –1 + j0 implies that the sys-
tem is stable if there are no poles of G(s)H(s) in 
the right half of ‘s’ plane; otherwise the system is 
unstable.

Note 3:  Clockwise encirclements in the Nyquist plane 
indicate that the system is unstable.

If G(s)H(s) has any poles on jw axis, the Nyquist contour 
defined earlier cannot be used as such. Also, the S-plane 
contour should not pass through a singularity of 1 + G(s)
H(s). The stability in such cases is studied with modified 
Nyquist contour which bypasses any jw-axis poles. This is 
accomplished by indenting the Nyquist contour around the 
‘jw’ poles along a semicircle of radius ‘e’, where e → 0.
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jw

jw1 + eejq

s

j•

jw1

j 0+

j0–

–j•

jw1

0
×

×

×

Figure 6  Indented Nyquist Contour for jw-axis  
open loop poles

Example 33: Consider a system with an open loop transfer 
function

 G s H s
s

s s s
( ) ( ) = +( )

+( ) +( )
4 1

1 2 12

 
Find the stability of the system using Nyquist plot.

Solution: The given open loop transfer function has a dou-
ble pole at origin. The Nyquist contour is intended to bypass 
the origin. The mapping of Nyquist contour is obtained as 
follows.

jw
j•

j0+

j0–
e ejq

Rejj

R→•

e →0

–j•

s

Imaginary 

–1+j0

w = + •
Real axis

w = – •

R→•

-10.6

at w = 
22

1
w = 0+

w = 0–

Figure 7  Nyquist contour and corresponding  
Nyquist plot

 1. Semicircular indent represented by s = lim
ε→0

eejq (where 

‘q’ varied from –90o through 0o to 90o) is mapped into

  lim
( )( )

lim
ε

θ

θ θ θ ε θ

ε
ε ε ε ε→ →+ +
⎡

⎣
⎢

⎤

⎦
⎥ =

⎛
⎝⎜

⎞
0 2 2 0 2 2

4

1 2 1

1e

e e e e

j

j j j j ⎠⎠⎟
=∞ −e j 2θ

= ∞ (∠180° → 0°→ ∠–180°).

  This part of map is an infinite circle.
 2. Mapping of positive imaginary axis

  
G j H j

j

j j j
ω ω

ω

ω ω ω
( ) ( ) = +( )

( ) +( ) +( )
1 4

1 1 2
2

  For various values of ‘w’, G( jw)H( jw) is calculated 
and plotted using polar plots.

  The G(jw)H(jw) – locus intersects the real axis at a 
point where

  ∠G(jw) H(jw) = –180o

  –180o – tan–1w – tan–1 2w + tan–1 4w = –180o

  \ ω = =1

2 2
0 354. rad/sec

  ∴ ( ) ( ) = =G j H jω ω
ω

1

2 2
10 6.

  Further as w → +j∞
  ⇒ G j H j G j H jω ω ω ω( ) ( ) ∠ ( ) ( )⇒ ∠ − °0 270

  as w → 0+ ⇒ |G(jw) H(jw)| ⇒ ∞∠–180o

 3. The infinite semicircle of the Nyquist contour repre-
sented by s = lim Re

R

j

→∞

ϕ  (f varies from + 90o through 

0o to + 90o) is mapped to

  lim
Re

Re ReR

j

j j j

j

R e
e

→∞

−
+( )

+( ) +( ) =
1 4

1 1 2
0

2 2

3

ϕ

ϕ ϕ ϕ
ϕ

  = 0(∠– 270o → ∠0o → ∠+270o)
  Number of counter clockwise encirclements to origin 

are ‘–2’.
  Number of right half poles of open loop is zero.

  Z = P – N = 0 – (–2) = +2

  \ Number of poles on right half plane for closed loop 
transfer function is ‘2’.

  \ System is unstable.

Example 34: Nyquist plot for the transfer function G(s) = 
(4 + s) for positive frequencies has the form

 (A) jw

4 σ

 (B) jw

s

j4

 (C) jw

s1/4

 (D) jw

s1/4
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Solution: (A)
Given transfer function G(s) = 4 + s = 4 + jw

At w = 0 ⇒ 4 + j.0 

 w = 10 ⇒ 4 + j10 

 w = 100 ⇒ 4 + j100 

 w = ∞ ⇒ 4 + j∞ 

\ Nyquist plot is parallel to imaginary axis

jw

4 Real

Example 35: Which one of the following polar diagram 
corresponds to a lag network?

(A) Img

Real

w = 0 w = •

 (B) Img

Realw = 0 w = •

(C) Img

Realw = 0w = •

 (D) Img

Real

w = 0w = •

Solution: (D)
Lag network offers only negative phase angles and. Let us 
consider a lag network example.

 G(jw) =
+
+

s

s

1

10 2  

 |G(jw)|
ω
ω

ω ω ω
2

2

1 11

100 1 1
10

+
+

∠ ( ) = − −; tan tan .G j  

At w = 0 ⇒ 1∠0 

At w = 5 ⇒ 0.103∠–10.16 

At w = ∞ ⇒ 0.1 ∠0o 

jw

s
0.1 w →• 

w = 0
1∠0

Example 36: The polar plot of a conditionally stable sys-
tem for open loop gain K = 1 is shown in the figure. The 
open loop transfer function of the system is known to be 
stable. The closed loop system is stable for

Imaginary

Real
–5 –2.

0.1

GH-plane

–Ve

(A) 0.5 < K < 10 (B) K <
1

5
(C) Both A and B (D) 0.5 > K > 10

Solution: (C)
System gain ‘K’ should be adjusted such that the point (–1 
+ j0) lies in the 0.1 to 0.2 region, because no. of encircle-
ments in this case is zero which results in stable operation 
of the system.

\ 0.1k < 1 ⇒ K < 10 

 2K > 1 ⇒ K > 0.5 

Range of K is 0.5 < K < 10
System is also stable if 5K < 1 [no. of encirclements will 

be zero in this case]

 K <
1

5  

Real

jw

jw

02k

0.1k
5k

Example 37: The polar plot of an open loop stable system 
as shown below the closed loop system is

Real

imaginary

w = •

w = 0

–1.5

(A) Marginally stable
(B) Always stable
(C) Unstable with one pole on the RH S-plane
(D) Unstable with two poles on the RH S-plane

Solution: (D)
Complete polar plot of the given system is given in the 
 figure No. of encirclements of (–1 + j.0) are ‘–2’

\ No. of open loop poles the right hand side = 0

 N = P – Z ⇒ Z = P – N 

 Z = 0 – (–2) = 2 
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\ RHS-plane poles of closed loop system are ‘2’ ⇒ Unstable

Real

jw

–1
–1.5

Example 38: Consider the following Nyquist plots of loop 
transfer function over positive frequencies. Which of the 
plots represents an unstable system?

 1. 

Real

Img

w = •

w
−1

  2. 

Real

Img

w = •

w

−1

 3. 

w = •

w

−1
Real

Img   4. 

−1 Real

Img

(A) (1), (2) and (3) (B) (2), (3) and (4)
(C) (1), (2) and (4) (D) (3) and (4) only

Solution: Plot (1) Nyquist plot is

Img

Real–1

No. of encirclements (N) = 0
If the open loop poles on RHS = 0
\ System is stable
Plot (2) complete Nyquist plot is

Imaginary

Real–1

w = 0+

w = 0+

w = 0−

w = 0−

No. of anti-clockwise encirclements (N) = 2.
No. of anti-clockwise encirclements (N) = P – Z = 2
No. of open loop poles on RHS side (p) = 0
No. of poles of closed loop system = 2
\ System is unstable.
Plot (3) complete Nyquist plot is

Imaginary

Real p–1
w = 0+

w = 0−

No. of counter clockwise encirclements (N) = –2
No. of poles of closed loop system on RHS = 2
\ Unstable system
Option (4) complete Nyquist plot is

Imaginary

Real–1

w = 0+

w = •+

w = •−

w = 0−

Solution: (B)
No. of counter clockwise encirclements (N) = – 2

No. of RHS poles of closed loop control system (Z) = 
P – N = 2

\ System is unstable.

Example 39: A unity feedback system has the open loop 
transfer function

 G s
s s s

( ) =
−( ) +( ) +( )

1

1 2 3  
The Nyquist plot of ‘G’ encircles the origin
(A) Once
(B) Twice
(C) Thrice
(D) Never

Solution: (A)
No. of encirclements equals the difference  between no. of 
right hand side poles of G(s) and zeros.

 N = P ZOLTF OLTF−  
 P ZOLTF OLTFand = =1 0  
 N = 1. 
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Example 40: Which of the following is the transfer 
 function of a system having the Nyquist plot shown in the 
following figure?

Real

Imaginary

w = + •

w = − •

(A) 
K

s s s2 4 8+( ) +( )  (B) 
K

s s s2 2
4 5+( ) +( )

(C) 
K s

s s s

+( )
+( ) +( )

2

4 82
 (D) 

K s s

s s s

+( ) +( )
+( ) +( )

2 2

4 52

Solution: (A)
Nyquist plot started at –180o angle. It indicates that the open 
loop system has two poles at origin.
Magnitude and phase angle at w → 0

⇒ ∞∠– 180o

Magnitude and phase angle at w → ∞

⇒ 0∠– 360o

Angle at the termination of NP is – 360o

Angle of termination –360o indicated system order is ‘4’.
\ System is type 2 and order ‘4’ system with no zeros.

Example 41: In the GH-plane, the Nyquist plot of the loop 

transfer function G(s)H(s) =
−2 5πe

s

s

pass through the nega-
tive real axis at the, point
(A) (–5, j0) (B) (–2, j0)
(C) (–10, j0) (D) (–20, j0)

Solution: (D)
At the point of intersection of Nyquist plot with real axis 
phase angle ∠G(s) H(s) = –180o = –p

 ∠ = −
−2 5π
ω

π
ωe

j

j

 
 − − = −−5

0
1ω ω πtan

 

 − − = −5
2

ω π π
 

 5
2 10

ω π ω π
= ⇒ =

 

 G s H s x( ) ( ) = = =
=ω

π
ω

π
π10

2 2

10

20

 

\ Nyquist plot passes through (–20, j0)

exeRCises

Practice Problems 1
Directions for questions 1 to 22: Select the correct alterna-
tive from the given choices.

 1. The characteristic equation of a system is given by s6 + 
3s5+ 8s4+ 18s3 + 37s2 + 75s + 50 = 0; the system is

 (A) Stable. (B) Unstable.
 (C) Marginally stable. (D) Conditionally stable.

 2. How many roots of the characteristic equation

 s6 + s5 – 2s4 – 3s3 – 7s2 – 4s – 4 = 0 

  lie in the left half of S-plane?
 (A) 4 (B) 5 (C) 1 (D) 6

 3. A system described by the transfer function

  H(s) = 
1

23 2s s k s+ + +α
is stable. The constraints on a 

and k are
 (A) a > 0, ak > 2 (B) a > 0, ak < 2
 (C) a > 0, ak > 0 (D) a < 0, ak < 0

 4. The characteristic equation of a system is given by 
s(s2 + 2s + 2)+ K(s + 3) = 0. The range of k for which 
the system is stable is

 (A) 0 < k < 30. (B) K > 3.
 (C) 0 < k < 4. (D) 3 < K < 29.

 5. The feedback control system is fig is stable

C(s)
K ≥ o

(s − 2)

(s + 2)2

S – 2 

R(s) +

–

 (A) for all K ≥ 0 (B) only if K ≥ 1
 (C) only if 0 ≤ k < 1 (D) only if 0 ≤ k ≤ 1

 6. Consider the points S
1
 = –3 + j4 and S

2
 = –3–j2 in the 

S–plane. Then for a system with the open-loop transfer 

function G(s) H(s) = 
k

s( )+1 4
is

 (A) S
1
 is on the root locus, but not S

2
.

 (B) Both S
1
 and S

2
 are on the root locus.

 (C) S
2
 is on the root locus, but not S

1
.

 (D) Neither S
1
 nor S

2
 on the root locus.

 7. The gain margin (in dB) of a system having the open 
loop transfer function.

 G(s) H(s) = 
2

1s s+( ) is 

 (A) 0 (B) 3.01 (C) –3.01 (D) ∞



3.1036 | Control Systems

 8. The characteristic equation of a feedback control sys-
tem is given by s3 + 5s2 + (K+ 6)s + K = 0 In the root 
loci diagram the asymptotes of the root loci for large 
‘K’ meet at a point in the s-plane whose coordinates are

 (A) (2, 0) (B) (–1, 0)
 (C) (–2, 0) (D) (–3, 0)

 9. The open-loop transfer function of a system is given by 

G(s) = 
k

s s s+( ) +( )1 2
the value of k which will cause 

sustained oscillations in the closed-loop unity feed 
book system is

 (A) 4 (B) 6 (C) 5 (D) 3

 10. A unity feedback system is given as

  G(s) = 
k s

s s

1

3

−( )
+( ) Indicate the correct root Locus 

diagram.

 (A) jw

O s

 (B) jw

s

 (C) jw

s

 (D) jw

s

 11. Which one of the following polar diagram corresponds 
to a lag network?

 (A) 

w = 0 w = •

Re

Im

 (B) 

Re

Im

w = 0w = •

 (C) 

Re

Im

w = 0

w = •

 (D) 

Re

Im

w = 0 w = •

Common Data for Questions 12 and 13:
The open-loop transfer function of a unity feedback system 

is given by G(S) = 3

2

2e

s s

s−

+( )
 12. The gain and phase cross – over frequencies in rad/s, 

respectively,
 (A) 0.485 and 0.632. (B) 1.26 and 0.632.
 (C) 0.632 and 1.26. (D) 0.632 and 0.485.

 13. Based on the above results, the gain and phase margins 
of the system will be

 (A) –7.09 dB and 87.5°.
 (B) 7.09 dB and 87.5°.
 (C) 7.09 dB and –87.5°.
 (D) –7.09 dB and –87.5°.

 14. The loop transfer function of a closed-loop control 
 system is given as

  G(S)H(S) = 
k s

s s s

+( )
+( ) +( )

1

2 3
. The centroid of the 

asymptotes is
 (A) (–4, 0) (B) (–1, 0)
 (C) (–2, 0) (D) (–3, 0)
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 15. A system has 10 poles and 2 zeroes. The slope of its 
highest frequency asymptote in its magnitude plot is

 (A) –100 dB/dec (B) –120 dB/dec
 (C) –160 dB/dec (D) –240 dB/dec

 16. The polar diagram of a conditionally stable system for 
open loop gain K =1 is shown in figure. The open loop 
transfer function of the system is known to be stable. 
The closed loop system is stable for

–8

–0.2

–2

 (A) K < 5 and 
1

2

1

8
< <K  (B) K < 

1

8

1

2
5 and < <K

 (C) K < 
1

8
and 5 < K (D) K > 

1

8
and K < 5

 17. Pole zero plot of a loop transfer function is shown in 
figure below, the breakaway/ breakin points in the root 
locus diagram is

Imaginary
axis

Real axis

 (A) 1 (B) 2 (C) 0 (D) 3

 18. Loop transfer function G(s)H(s) of the magnitude plot 
shown in the figure

−20 dB/dec

−40 dB/dec

dB
Mag in

60 dB

40 dB

−40 dB

20 dB

0 1 2 3 log w
−20 dB

−1

 (A) 
100 2

1

2( )

( )

S

S S

+
+

 (B) 
10 01 1

1 1

.

.

s

s s

+( )
+( )

 (C) 
100 01 1

1 1

2(. )

(. )

S

S S

+
+  

(D) 
(. )

(. )

01 1

1 1

2S

S S

+
+

 19. Loop transfer function G(s)H(s) of the magnitude plot 
shown in the figure

dB
Mag in

60 dB

40 dB

−40 dB

20 dB

0 1 2 3 log w
−20 dB

 (A) 
100 0 1 1

0 01 1

2

2

.

.

s

s s

+( )
+( )  

(B) 
100 10

100 1

2

2

s

s s

+( )
+( ) +( )

 (C) Both A and B (D) None of the above

 20. closed loop control system with transfer function 

G s

G s H s

( )
+ ( ) ( )1

 is stable when

 (A)  Poles of the transfer function are on the left hand 
side of the S-plane.

 (B)  Zeros of the characteristic equation are on the left 
half of the S-plane.

 (C)  Poles of the characteristic equation are on the left 
half of the S-plane.

 (D) Both A and B.

 21. Polar plot of an open-loop stable system is shown in the 
figure. The system is

Imaginary
axis

Real axis−1

 (A) System is stable.
 (B)  System is unstable with one pole on the right-hand 

side of S-plane.
 (C)  System is unstable with two poles on the right-

hand side of S-plane.
 (D) System is marginally stable.

 22. Which of the flowing are effects of PD controller on 
system?

  1. Reduces peak overshoot.
  2. Reduces raise time.
  3. Improves damping.
  4. Reduces steady-state error.
 (A) 1, 2, 3 (B) 2, 3, 4
 (C) 2, 3, 4 (D) 1, 3, 4
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Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Which of the following statements are ‘true’?
     (i) Root Locus is a frequency response plot.
    (ii)  The roots of characteristic equation are not a 

 function of open Loop gain K.
  (iii)  Root Locus technique is a tool for adjusting 

the location of closed loop poles to achieve the 
desired system performance.

   (iv)  The exact root– locus is sketched by trial-and-
error procedure.

 (A) i and ii
 (B) ii and iii
 (C) iii and iv
 (D) ii, iii, and iv

 2. The following statements refer to the equation P(s) + 
KQ(s) = 0, where P(s) and Q(s) are polynomials of s 
with constant coefficients. Identify the statements 
which are ‘true‘.

     (i)  The intersection of the asymptotes must always be 
on the real axis.

    (ii)  The breakaway points of the root loci must always 
be on the real axis.

  (iii)  Given the equation 1 + KG
1
(s)H

1
(s) = 0, where 

G
1
(s)H

1
(s) is a rational function of s and does not 

contain K, the roots of 
d G s H s

d s
1 1( ) ( )

are all 

break away points on the root loci ( – ∞ < K < ∞)

   (iv)  At the break away points on the root loci the root 
sensitivity is infinite.

 (A) i and iv
 (B) i, ii, and iv
 (C) ii and iii
 (D) ii, iii and iv

 3. Which of the following statements are true?
     (i)  Adding a zero to the function G(s)H(s) tends to 

push the root loci to the left.
    (ii)  Adding a zero to the forward-path transfer func-

tion will generally improve the system damping, 
and thus always reduce the maximum over shoot 
of the system.

  (iii)  Adding a pole to G(s)H(s) has the effect of push-
ing the root loci to the right.

    (iv)  Complementary root locus (CRL) refers to root 
loci with positive ‘k’.

 (A) i, ii, and iii
 (B) i, ii and iv
 (C) ii, iii and iv
 (D) ii and iv

 4. The Nyquist plot for a control system is shown in 
 figure. The bode plot for the same system will be

w = •

w = 0

(–1 + j0)
w

 (A) I G I

–20 dB/dec

–40 dB/dec

w1
ww2

 (B) I G I

–20 dB/dec

–40 dB/dec
w1

w

 (C) 

w1
w

IG I

–60 dB/dec

–40 dB/dec

 (D) 
I G I

–20 dB/dec

–60 dB/dec
w1 w2

w

–40 dB/dec

 5. The Nyquist plot for the open- loop transfer function 
G(s) of a unity negative feedback system is shown 
in the figure, if G(s) has no pole in the right half of 
S-plane, the number of roots of the system characteris-
tic equation in the right-half of S-plane is

Re

Im

−1

 (A) 0 (B) 1 (C) 2 (D) 3
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 6. Which of the following points is NOT on the root locus 
of a system with the open-loop transfer function?

 G s H s
K

s s s
( ) ( ) =

+( ) +( )1 3  
 (A) s = − j 3  (B) s = –1.5
 (C) s = –3 (D) s = –∞
 7. The figure shows the Nyquist plot of the open-loop 

transfer function G(s)H(s) of a system; If G(s)H(s) has 
one right-hand pole, the closed loop system is

Re 

Im 
GH plane

w positive

w = 0 (−1,0) 

 (A) Always stable
 (B) Unstable with one closed loop right-hand pole
 (C) Unstable with two closed loop right-hand poles
 (D) Unstable with three closed-loop right-hand poles

 8. Given G(s)H(s) = 
K

s s s+( ) +( )1 3
, the point of inter-

section of the asymptotes of the root loci with the real 
axis is

 (A) –4 (B) 1.33 (C) –1.33 (D) 4

 9. The polar plot shown in the figure represents the trans-
fer function:

Re(s)

Im(s)

w = 0w = •

1

 (A) G(s) = 
1

s

 (B) G(s) = 
1

1s sT+( )
 (C) G(s) = 

1

1+ sT

 (D) G(s) = 
1

1 11 2+( ) +( )sT sT

 10. The open loop transfer function of a unity gain feed-
back control system is given by

 G s
K

s s
( ) =

+( ) +( )1 3  
  The gain margin of the system is dB is given by
 (A) ∞ (B) 1 (C) 20 (D) 0

 11. If the closed loop transfer function of a control system 

is given by T(s) =
s

s s

−
+( ) +( )

5

2 3
, then it is

 (A) An unstable system
 (B) An uncontrollable system
 (C) A minimum-phase system
 (D) A non-minimum phase system

 12. For the asymptotic Bode magnitude plot shown in the 
following figure, the system transfer function can be

20

0

0.001 0.1 10
w

1000

Magnitude in dB

 (A) 
10 1

0 1 1

s

s

+
+.

 (B) 
100 1

0 1 1

s

s

+
+.

 (C) 
100

10 1

s

s +
 (D) 

0 1 1

10 1

. s

s

+
+

 13. The root locus of the system G(s)H(s) = 
K

s s s+( ) +( )2 3
has the break-away point located at

 (A) (–0.5, 0) (B) (–2.548, 0)
 (C) (–4, 0) (D) (–0.784, 0)

 14. 

140

20

0.1 10

160

dB

100 w

  The approximate Bode-Magnitude plot of a minimum-
phase system is shown in the figure. The transfer func-
tion of the system is

 (A) 10
0 1

10 100

8

3

2

s

s s

+( )
+( ) +( )

.

 (B) 10
0 1

10 100
7

3
s

s s

+( )
+( ) +( )

.

 (C) 10
0 1

10 100

8

2

2

s

s s

+( )
+( ) +( )

.

 (D) 10
0 1

10 100

9

3

2

s

s s

+( )
+( ) +( )

.
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 15. Consider the Bode magnitude plot shown in the figure. 
The transfer function H(s) is

0

−20

1 10 100 w in rad

20logH( jw)

20 dBdecade

 (A) 
s

s s

+( )
+( ) +( )

10

1 100

 (B) 
10 1

10 100

s

s s

+( )
+( ) +( )

 (C) 
10 1

10 100

2 s

s s

+( )
+( ) +( )

 (D) 
10 100

1 10

3 s

s s

+( )
+( ) +( )

pRevious yeARs’ questions

 1. The frequency response of G(s) = 1/[s (s + 1) (s + 2)] 
plotted in the complex G( jw) plane (for 0 < w < ∞) is
 [2010]

 (A) 

Re

−3/4

w = 0

Im

 (B) 

Re−3/4

w = 0
Im

 (C) 

Re

−1/6

w = 0 Im

 (D) 

Re

−1/6

w = 0

Im

 2. The frequency response of a linear system G( jw) is 
provided in the tabular form below

|G(jw)| 1.3 1.2 1.0 0.8 0.5 0.3

∠ G(jw) -130° -140° -150° -160° -180° -200°

  The gain margin and phase margin of the system are
 [2011]

 (A) 6 dB and 30° (B) 6 dB and -30°
 (C) -6 dB and 30° (D) -6 dB and -30°

 3. The open loop transfer function G(s) of a unity feed-

back control system is given as, G(s) = 

k s

s s

+⎛
⎝⎜

⎞
⎠⎟

+

2

3

22 ( )

  From the root locus, it can be inferred that when k 
tends to positive infinity. [2011]

 (A)  Three roots with nearly equal real parts exist on 
the left half of the S-plane.

 (B)  One real root is found on the right half of the 
 S-plane.

 (C)  The root loci cross the jw axis for a finite value of 
k; k ≠ 0.

 (D)  Three real roots are found on the right half of the 
S-plane.

 4. The Bode plot of a transfer function G(s) is shown in 
the below figure. The gain (20 log|G(s)|) is 32 dB and 
–8 dB at 1 rad/s and 10 rad/s, respectively. The phase 
is negative for all w. The G(s) is [2013]
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40

32

20

G
ai

n 
(d

B
)

0
1 10 100

w (rad/s)−8

 (A) 
39 8.

s
 (B) 

39 8
2

.

s
 (C) 

32

s
 (D) 

32
2s

 5. In the formation of Routh–Hurwitz array for a poly-
nomial all the elements of a row have zero values. 
This premature termination of the array indicates the 
presence of [2014]

 (A) Only one root at the origin
 (B) Imaginary roots
 (C) Only positive real roots
 (D) Only negative real roots

 6. The root locus of a unity feedback system is shown in 
the figure [2014]

−2

K = 0 K = 0

−1

jw

s

  The closed loop transfer function of the system is

 (A) 
C s

R s

K

s s

( )
( ) = +( ) +( )1 2

 (B) 
C s

R s

K

s s K

( )
( ) =

−
+( ) +( ) +1 2

 (C) 
C s

R s

K

s s K

( )
( ) = +( ) +( ) −1 2

 (D) 
C s

R s

K

s s K

( )
( ) = +( ) +( ) +1 2

 7. For the given system, it is desired that the system be 
stable. The minimum value of a for this condition is 
________. [2014]

 8. The Bode magnitude plot of the transfer function 

G s
K s as

s
s

bs
s

( ) = +( ) +( )
+⎛

⎝⎜
⎞
⎠⎟

+( ) +⎛
⎝⎜

⎞
⎠⎟

1 0 5 1

1
8

1 1
36

.
is shown below: 

Note that-6 dB/octave = –20 dB/decade. The value of
a

bK
is _________. [2014]

−6 dB/Octave

0.01 2
0

dB

4 8 24 36

6 dB/Octave
−6 dB/Octave

−12 dB/Octave

w (rad/s)

0 dB/Octave

0 dB/Octave

 9. A system with the open loop transfer function 

G s
K

s s s s
( ) =

+( ) + +( )2 2 22

  is connected in a negative feedback configuration with 
a feedback again of unity. For the closed loop system 
to be marginally stable, the value of K is _____

 [2014]

 10. For the transfer function

 G s
s

s s s s
( ) = +( )

+( ) + +( )
5 4

0 25 4 252.
 

  The values of the constant gain term and the highest 
corner frequency of the Bode plot, respectively, are
 [2014]

 (A) 3.2, 5.0 (B) 16.0, 4.0
 (C) 3.2, 4.0 (D) 16.0, 5.0

 11. The magnitude Bode plot of a network is shown in the 
figure [2014]

dB
Slope 20 dB/decade

0
1 log10 w

|G(jw)|

1
3

  The maximum phase angle Φ
m
 and the corresponding 

gain G
m
, respectively, are

 (A) −30o and 1.73 dB
 (B) −30o and 4.77 dB
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 (C) +30o and 4.77 dB
 (D) +30o and 1.73 dB

 12. A Bode magnitude plot for the transfer function G(s) 
of a plant is shown in the figure. Which one of the fol-
lowing transfer functions best describes the plant?

  [2015]

20 log|G(j2pf)|

100 k f (Hz)10 k1 k1001010.1

0

−20

20

 (A) 
1000 10

1000

( )s

s

+
+

 (B) 
10 10

1000

( )

( )

s

s s

+
+

 (C) 
s

s s

+
+

1000

10 10( )

 (D) 
s

s

+
+

1000

10 10( )

 13. The transfer function of a second order real system with 
a perfectly flat magnitude response of unity has a pole at 
(2 - j3). List all the poles and zeroes.  [2015]

 (A) Poles at (2 ± j3), no zeroes.
 (B) Poles at (±2 - j3), one zero at origin.
 (C)  Poles at (2 - j3), (-2 + j3), zeroes at (-2 - j3), (2 + 

j3)
 (D) Poles at (2 ± j3), zeroes at (-2 ± j3)

 14. The open loop poles of a third order unity feedback 
system are at 0, -1, -2. Let the frequency correspond-
ing to the point where the root locus of the system 
transits to unstable region be K. Now suppose we 
introduce a zero in the open loop transfer function 
at -3, while keeping all the earlier open loop poles 
intact. Which one of the following is TRUE about 
the point where the root locus of the modified system 
transits to unstable region?  [2015]

 (A) It corresponds to a frequency greater than K
 (B) It corresponds to a frequency less than K
 (C) It corresponds to a frequency K
 (D)  Root locus of modified system never transits to 

unstable region.

 15. Nyquist plots of two functions G
1
(s) and G

2
(s) are 

shown in figure.  [2015]

Re

Im

G1(s)

0

w

w = ∞

   

Re

Im

G1(s)

∞

ω ω = 0

 (a) 

Re

Im

∞ → w

w = 0

 (b) 

Re1

Im

 (c) 

Re

Im

 (d) 

Re

Im
∞
↑
ω

ω
↓
0

 16. An open loop transfer function G(s) of a system is 

  
G s

K

s s s
( )

( )( )
=

+ +1 2

  For a unity feedback system, the breakaway point of 
the root loci on the real axis occurs at,  [2015]

 (A) -0.42
 (B) -1.58
 (C) -0.42 and -1.58
 (D) none of the above

 17. The transfer function of a system is Y s

R s

( )

( )
 = 

s

S + 2
the 

steady state output y(t) is Acos ( )2t + φ for the  input 
cos(2t)the values of A and φ  respectively are [2016]
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 (A)  1

2
,–45° (B)  

1

2
,+ 45°

 (C)  2  ,–45° (D)  2  ,+45°

18. The phase cross-over frequency of the transfer func-

tion G(S) = 100

1 3( )S +
in rad/s is [2016]

19. Consider the following asymptotic Bode magnitude 
plot (w is in rad/s).

  Which one of the following transfer functions is 
best represented by the above Bode magnitude plot?
 [2016]

 (A)  2

1 0 5 1 0 25 2

S

S S( . )( . )+ +

 (B)  4 1 0 5

1 0 25

( . )

( . )

+
+

S

S S

 (C)  2

1 2 1 4

S

S S( )( )+ +

 (D)  
4

1 2 1 4 2

S

S S( )( )+ +

20. Loop transfer function of a feedback system  is G(s)

H(s) = 
s

s s

+
−
3

33 ( )
 Take the Nyquist contour in the 

clockwise direction. Then, the Nyquist plot of G(s) 
H(s) encircles – 1 + j 0. [2016]

 (A) once in clockwise direction
 (B) twice in clockwise direction
 (C) once in anticlockwise direction
 (D) twice in anticlockwise direction

21. Given the following polynomial equation 

  S3 + 5.5S2 + 8.5S + 3 = 0, the number of roots of the 
polynomial, which have real parts strictly less than –1 
is ______. [2016]

22. Consider a linear time - invariant system with transfer 
function 

H(S) = 
1

1S +( )

   If the input is Cos(t) and the steady state output is 
ACos(t + a), then the value of A is _________.

[2016]

23. The open loop transfer function of a unity feedback 
control system is given by

G(S) = 
K S

S Ts S
K T

+( )
+( ) +( )

> >
1

1 1 2
0 0, ,

  The closed loop system will be stable if,  [2016]

(A) 0
4 1

1
< <

+( )
−

T
K

K

 (B) 0
4 2

2
< <

+( )
−

K
T

T

 (C) 0
2

2
< <

+
−

K
T

T

 (D) 0
8 1

1
< <

+( )
−

T
K

K

24. The gain at the breakaway point of the root locus of a 
unity feedback system with open loop transfer func-

tion G(S) = 
KS

S S−( ) −( )1 4
is  [2016]

 (A) 1 (B) 2

 (C) 5 (D) 9
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 1. B 2. B 3. A 4. C 5. C 6. C 7. D 8. C 9. B 10. C 
11. D 12. B 13. D 14. C 15. C 16. B 17. B 18. C 19. A 20. C 
21. A

Practice Problems 2
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