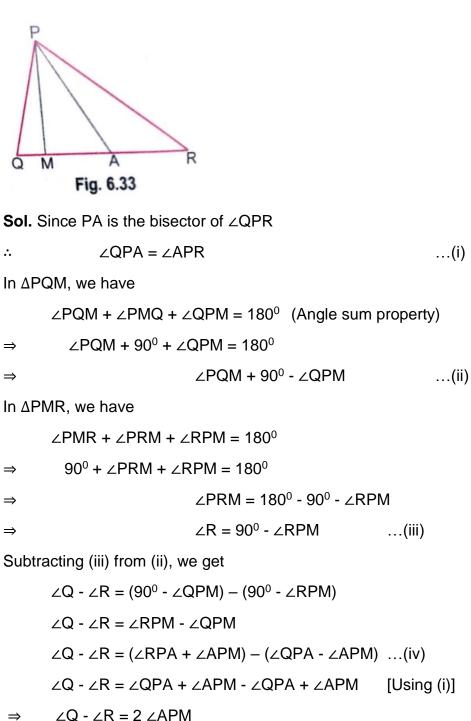
HOTS (Higher Order Thinking Skills)

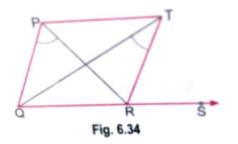
Que 1. If Fig. 6.33, $\angle Q > \angle R$, PA is the bisector Of \angle QPR and PM \perp QR. Prove that \angle APM = $\frac{1}{2}$ (\angle Q - \angle R).



⇒

Hence, $\angle APM = \frac{1}{2} (\angle Q - \angle R)$.

Que 2. In Fig. 6.34, the side QR of \triangle PQR is produced to point S. If the bisector of \angle PQR and \angle PRS meet at point T. then prove that \angle QTR = $\frac{1}{2} \angle$ QPR.



Sol. Given: A \triangle PQR, whose side QR is produced to S. The bisectors of \angle PQR and \angle PRS meet at point T.

To prove: $\angle PRS = \frac{1}{2} \angle QPR$

Proof: Side QR of \triangle PQR is produced to S.

$$\therefore \qquad \angle PRS = \angle P + \angle Q \qquad \Rightarrow \frac{1}{2} \angle PRS = \frac{1}{2} \angle P + \frac{1}{2} \angle Q$$
$$\Rightarrow \qquad \angle TRS = \frac{1}{2} \angle P + \frac{1}{2} \angle Q \qquad \dots (i)$$

Again, side QR of Δ TQR is produced to S

$$\therefore \quad \angle TRS = \angle QTR + \angle RQT$$

$$\Rightarrow \quad \angle TRS = \angle T + \frac{1}{2} \angle Q \qquad \dots (ii)$$

From (i) and (ii), we get

$$\frac{1}{2} \angle P + \frac{1}{2} \angle Q = \angle T + \frac{1}{2} \angle Q$$
$$\Rightarrow \quad \angle T = \frac{1}{2} \angle P \text{ or } \angle QTR = \frac{1}{2} \angle QPR$$

Que 3. Prove that a triangle must have atleast two acute angles.

Sol. Let us assume a triangle ABC which has only one acute angle (say $\angle A$)

Then we have the following three cases:

(i) The other two angles ($\angle B$ and $\angle C$) are right angle.

Then $\angle A + \angle B + \angle C = \angle A + 90^{\circ} + 90^{\circ} = \angle A + 180^{\circ} > 180^{\circ}$ which is not possible.

(ii) The other two angles ($\angle B$ and $\angle C$) are obtuse angles.

Then $\angle A + \angle B + \angle C > 180^{\circ}$ which is not possible.

(iii) One angle (say $\angle B$) is right and the other angle ($\angle C$) is obtuse.

Then $\angle A + \angle B + \angle C > 180^{\circ}$ which is not possible as we know that sum of the three angles of a triangle is 180° by angle sum property of a triangle.

Thus, a triangle must have atleast two acute angles.