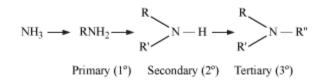

Amines

Amines

- Derivatives of ammonia
- Obtained by the replacement of one, two or all the three H-atoms of ammonia by alkyl and/or aryl groups
- Example:

Structure of Amines

- Nitrogen on amines is *sp*³ hybridised.
- Geometry Pyramidal
- Example: Pyramidal shapes of trimethylamine



• Bond angle C–N–E (E is C or H) is less than 109.5° due to the presence of unshared pair of electrons. It is 108° in the case of trimethylamine.

Classification

- Classified as primary (1°), secondary (2°), and tertiary (3°)
- If one H-atom of NH₃ is replaced by R or Ar, RNH₂ or ArNH₂ is obtained (primary amine, 1°).
- If two H-atoms of NH₃ or one H-atom of RNH₂ are replaced by alkyl or aryl group (R'), R₂NH is obtained (secondary amine, 2°).

- On the replacement of another hydrogen atom by alkyl or aryl group, R_3N is obtained (tertiary amine, 3°).

Nomenclature

Common System

- Aliphatic amine: Named by prefixing alkyl group to amine, i.e., alkylamine.
- Example: Methylamine (CH₃NH₂)
- Secondary and tertiary amines: Prefix di- or tri- is appended before the name of alkyl group when two or more groups are the same.

IUPAC System

- Named as **alkanamines**; derived by replacing the 'e' of alkane with the word amine.
- Example:

CH₃NH₂ – Methanamine

CH₃CH₂NH₂ – Ethanamine

- When more than one amino group is present –
- Suitable prefix such as di-, tri-, etc., is attached to amine.
- 'e' of the suffix of hydrocarbon is retained.
- Positions of -NH₂ group are specified by giving numbers to the parent chain.
- Example:

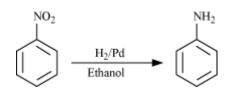
$$H_2N - \overset{2}{C}H_2 - \overset{1}{C}H_2 - NH_2$$

Ethane-1, 2-diamine

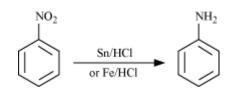
- For aryl amines –
- -NH₂ group is directly attached to the benzene ring

- Simplest arylamine: C₆H₅NH₂ (Common name aniline, IUPAC name benzenamine)
- While naming arylbenzenes by IUPAC system, the suffix 'e' of arene is replaced by 'amine'.
- Common and IUPAC names of some alkylamine and arylamines are given in the table.

Amine	Common name	IUPAC name	
CH3-CH2-NH2	Ethylamine	Ethanamine	
CH ₃ — CH — CH ₃ NH ₂	Isopropylamine	Propan-2-amine	
CH ₃ — N — CH ₂ — CH ₃ H	Ethylmethylamine	N-Methylethanamine	
CH ₃ — N — CH ₃ CH ₃	Trimethylamine	N,N-Dimethylmethanamine	
NH ₂	Aniline	Aniline or Benzenamine	
CH3	o-Toluidine	2-Aminotoluene	


N(CH ₃) ₂	N,N-Dimethylaniline	N,N-Dimethylbenzenamine
----------------------------------	---------------------	-------------------------

Methods of Preparation of Amines


Reduction of Nitro Compounds

• By passing H₂ gas in presence of finely divided Ni, Pd, or Pt

Example:

• By reduction with metals in acidic medium

Ammonolysis of Alkyl Halides

- The carbon–halogen (C–X) bond in alkyl or benzyl halides can be easily cleaved by a nucleophile.
- The process of cleavage of C–X bond by ammonia molecule is called **ammonolysis**.
- The reaction is carried out in a sealed tube at 373 K.
- An alkyl or benzyl halide reacts with an ethanolic solution of NH_3 as follows.

$$..._{NH_3} + R - X \longrightarrow R - NH_3X^-$$

Nucleophile

Substituted ammomium salt

$$R - \overset{+}{N}H_{3}X^{-} + NaOH \longrightarrow R - NH_{2} + NaX + H_{2}O$$

• Primary amine obtained behaves as a nucleophile and further reacts as

$$\begin{array}{ccc} R - NH_{2} & \xrightarrow{RX} & R_{2}NH & \xrightarrow{RX} & R_{3}N & \xrightarrow{RX} & R_{4}NX^{-} \\ (1^{\circ}) & (2^{\circ}) & (3^{\circ}) & Quaternary \\ & ammonium salt \end{array}$$

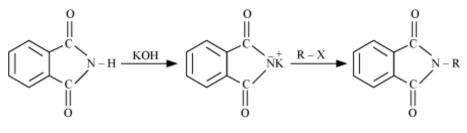
- Order of reactivity of halides with amines RI > RBr > RCl
- Disadvantage Mixture of primary, secondary, tertiary amines and quaternary ammonium salts is produced.

Reduction of Nitrites

• Reduction of nitrites with LiAlH₄

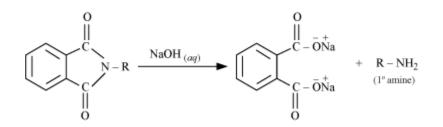
 $R - C \equiv N \xrightarrow{\text{LIAIH}_4} R - CH_2 - NH_2$ Nitrile

• Catalytic hydrogenation of nitriles


$$\begin{split} R-C \equiv N \xrightarrow{H_2/Ni} R-CH_2 - NH_2 \\ \hline Na(Hg)/C_2H_5OH} \rightarrow & \longrightarrow R-CH_2 - NH_2 \\ Nitrile \end{split}$$

Reduction of Amides

$$R - C - NH_2 \xrightarrow{(i) \text{ LiAlH}_4} R - CH_2 - NH_2$$
Amide


Gabriel Pthalimide Synthesis

- Used for the preparation of primary amine
- Reactions involved in the preparation of primary amine from phthalimide are as follows:

Phthalimide

N-Alkylphthalimide

- Aromatic primary amines cannot be prepared by this process.
- Reason Aryl halides do not undergo nucleophilic substitution with the anion formed by phthalimide.

Hoffmann Bromamide Degradation Reaction

- Preparation of primary amines by treating an amide with \mbox{Br}_2 in an aqueous or ethanolic solution of NaOH

 $\bigcup_{\substack{\parallel\\ R-C-NH_2+Br_2+4NaOH}} extreme R-NH_2+Na_2CO_3+2NaBr+H_2O$

• Amine formed contains one carbon less than that present in the amide.

Physical Properties of Amines & Chemical Reaction of Amines - I

- Lower aliphatic amines are gases with fishy odour.
- Primary amines with three or more carbon atoms are liquid.
- Higher ones are solid.
- Aniline and other arylamines are colourless, but get coloured on storage due to atmospheric oxidation.
- Lower aliphatic amines are soluble in water.
- Reason: Form H-bonds with water molecules
- Solubility decreases with increase in molar mass.
- Higher amines are insoluble in water.
- Amines are soluble in organic solvents like alcohol, ether and benzene.
- Order of boiling points of isomeric amines is

Primary > Secondary > Tertiary

Chemical Reactions

• Amines are basic in nature.

$$R - NH_2 + HX \implies R - NH_3\overline{X}$$

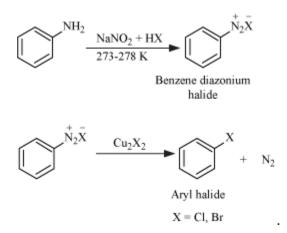
Base Acid Salt

• Order of basicity of amines in the gaseous phase:

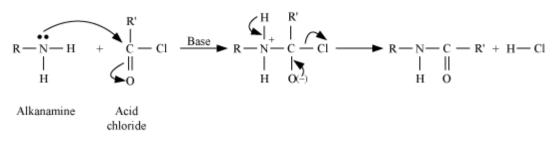
Tertiary amine > Secondary amine > Primary amine > NH₃

• Order of basic strength in the case of methyl-substituted and ethyl-substituted amines is as follows:

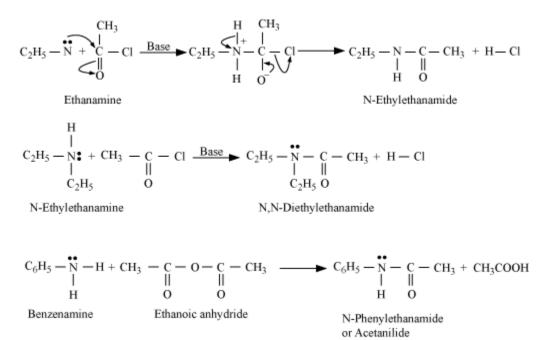
 $(C_2H_5)_2 NH > (C_2H_5)_3 N > C_2H_5 NH_2 > NH_3$ $(CH_3)_2 NH > CH_3 NH_2 > (CH_3)_3 N > NH_3$


- In the case of substituted aniline:
- Electron-releasing groups like –OCH₃, –CH₃ increase basic strength
- Electron-withdrawing groups such as -NO₂, -SO₃, -COOH, -X decrease basic strength.

Let us go through the given video to see the basicity of the simplest aromatic amine, aniline.


• Alkylation

Amines undergo alkylation on reaction with alkyl halides.


- •
- Sandmeyer's reaction

Acylation

• Example:

Benzoylation - Reaction of amines with benzoyl chloride (C₆H₅COCl)

CH ₃ NH ₂ +	$C_6H_5COCI \longrightarrow$	CH ₃ NHCOC ₆ H ₅	+	HCl
Methanamine	Benzoyl chloride	N-methylbenzamide		

Chemical Reactions of Amines - II

Carbylamine Reaction

Aliphatic/Aromatic primary amines + CHCl₃ + KOH → Isocyanides or carbylamines (foul smelling)

 $R - NH_2 + CHCl_3 + 3KOH \xrightarrow{\Lambda} R - NC + 3KCl + 3H_2O$ Alkyl isocyanide

- Known as carbylamine reaction or isocyanide test
- Used as a test for primary amines
- 2° and 3° amines do not show this test

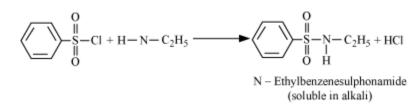
Reaction with Nitrous Acid

HNO₂is prepared *in situ*from a mineral acid (HCl) and sodium nitrite (NaNO₂).

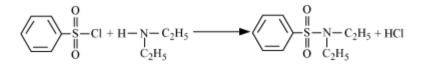
• Primary aliphatic amines

 $R - NH_2 + HNO_2 \xrightarrow{NaNO_2 + HCl} [R - N_2 \vec{Cl}] \xrightarrow{H_2O} R - OH + N_2 + HCl$ Diazonium salt Alcohol

Aromatic amines


 $\begin{array}{ccc} C_{6}H_{5}-NH_{2} & \xrightarrow{NaNO_{2}+2HCI} & C_{6}H_{5}-\overset{+}{N_{2}}\overset{-}{Cl} + NaCl + 2H_{2}O \\ Aniline & Benzenediazonium \\ & chloride \end{array}$

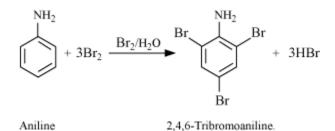
• Secondary and tertiary amines react differently with HNO₂.


Reaction with arylsulphonyl chloride

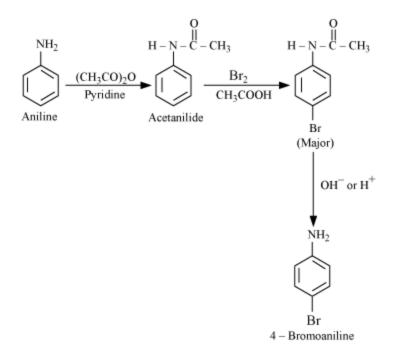
 Benzenesulphonyl chloride (C₆H₅SO₂Cl) (known as Hinsberg's reagent) reacts with 1° and 2° amines to form sulphonamides.

With primary (1°) amine •

With secondary (2°) amine .



N, N - Diethylbenzenesulphonamide (insoluble in alkali)

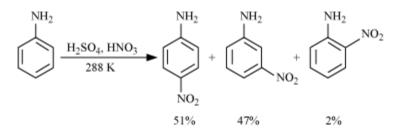

- No reaction with tertiary (3°) amines •
- This reaction is used for the distinction of 1°, 2° and 3° amines. .

Electrophilic Substitution Reactions

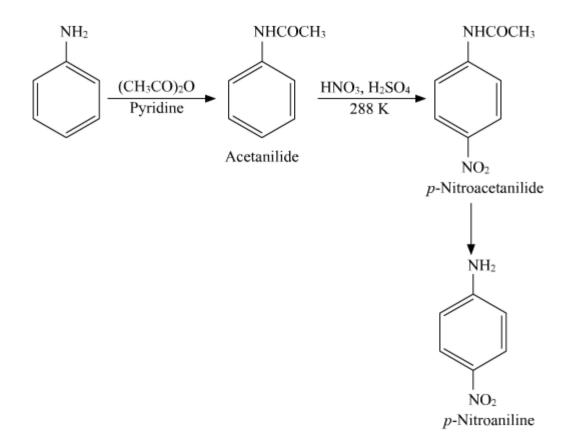
- Aniline is a resonance hybrid of five structures. •
- -NH₂ group is a powerful *ortho* and *para* directing group.
- **Bromination** .

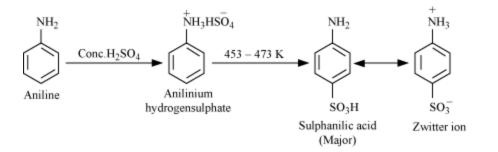


- Electrophilic substitution reaction of aromatic amines is of very high reactivity tends to occur • both at *ortho* and *para* positions. To prepare monosubstituted aniline, -NH₂ group is protected by acetylation with acetic anhydride; then the desired substitution is carried out, followed by hydrolysis.



Activating effect of -NHCOCH₃ is less than that of the amino group.


Reason – Lone pair is less available on nitrogen for donation to the benzene ring by resonance.


• Nitration

- In strong acidic medium, anilinium ion is formed, which is *meta* directing. Hence, significant amount of *meta* derivative is also formed along with *ortho* and *para* isomers.
- By protecting –NH₂ group by acetylation reaction, *para* isomer can be obtained as the major product.

• Sulphonation

Diazonium Salts

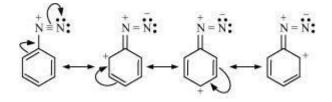
• General formula = $R \overset{+}{N}_2 X^-$

 $R \rightarrow An aryl group$

 X^- ion $\rightarrow C\Gamma^-$, Br^- , HSO_4^- , BF_4^- , etc.

$$\overset{+}{\mathrm{N}_2}$$
group $ightarrow$ Diazonium group

• Examples:


 $C_6H_5 \stackrel{+}{N_2}Cl^- \rightarrow Benzenediazonium chloride$

 $C_6H_5 \xrightarrow{r}{N_2}HSO_4^- \rightarrow Benzenediazonium hydrogen sulphate$

• Primary aliphatic amines form unstable alkyldiazonium salts.

Primary aromatic amines form stable arenediazonium salts, which are stable for a short time in solution (at 273 – 278 K).

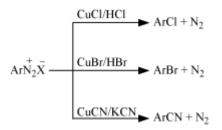
Stability of arenediazonium salts can be explained on the basis of resonance.

Preparation

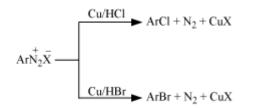
 $C_{6}H_{5}NH_{2} + NaNO_{2} + 2HCl \xrightarrow{273-278 \text{ K}} C_{6}H_{5}N_{2}Cl + NaCl + 2H_{2}O$ Aniline
Benzendiazonium
chloride

- HNO₂ is produced in the reaction by the reaction of NaNO₂ and HCl.
- The conversion of primary aromatic amines into diazonium salts is called diazotisation.

Physical properties


- Colourless crystalline solid
- Readily soluble in water
- Stable in cold, but reacts with water when warmed
- Decomposes easily in dry state

• Benzenediazonium fluoroborate is water insoluble and stable at room temperature.


Chemical Reactions

Reaction Involving Displacement of Nitrogen

- \mathbf{N}_2^* group is a good leaving group and escapes from the reaction mixture as a gas.
- Replacement by halide or cyanide ion
- Sandmeyer reaction

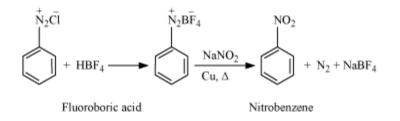
Gatterman reaction

• Replacement by iodide ion

Ar
$$\overset{+}{N_2}$$
 Cl⁻ + KI \longrightarrow ArI + KCl + N₂
C₆H₅ $\overset{+}{N_2}$ Cl⁻ + KI \longrightarrow C₆H₅I + KCl + N₂
Iodobenzene

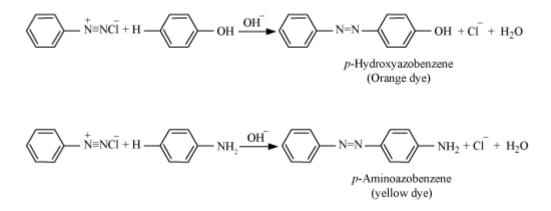
• Replacement by fluoride ion

Ar
$$N_2Cl^-$$
 + HBF₄ \longrightarrow Ar $-N_2BrF_4^-$ Heat \longrightarrow Ar $-F + BF_3 + N_2$
Fluoroboric acid


• Replacement by Hydrogen atom

 $\begin{array}{c} \operatorname{Ar} \overset{+}{N_2}\operatorname{Cl} + \operatorname{CH}_3\operatorname{CH}_2\operatorname{OH} \longrightarrow \operatorname{ArH} + \operatorname{N}_2 + \operatorname{CH}_3\operatorname{CHO} + \operatorname{HCl} \\ \text{Ethanol} & \operatorname{Arene} & \operatorname{Ethanol} \end{array}$

• Replacement by hydroxyl group


 $Ar N_2 Cl + H_2O \xrightarrow{283K} ArOH + N_2 + HCl$

• Replacement by -NO₂ group

Reactions Involving Retention of Diazo Group

- Coupling reactions
- Azo products are obtained, which have an extended conjugated system. Both the aromatic rings are joined through the -N=N- bond.

• It is an example of electrophilic substitution reaction.

Importance of Diazonium Salts in synthesis of aromatic compounds

- Substituted aromatic compounds can easily be prepared by the replacement of diazo group, which cannot be obtained by direct substitution in benzene or substituted benzene.
- – F, –Cl, –Br, –I, –CN, –OH, –ON₂ groups can be introduced into the aromatic ring.