PRACTICE PAPER

Time allowed: 45 minutes

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

1. If $A = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$ then A^{20} is

(a)
$$\begin{bmatrix} 0 & 0 \\ 2^{20} & 2^{20} \end{bmatrix}$$

$$(b)$$
 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

(c)
$$\begin{bmatrix} 0 & 0 \\ 40 & 40 \end{bmatrix}$$

$$(d)\begin{bmatrix} 40 & 0 \\ 0 & 40 \end{bmatrix}$$

2. The value of the determinant $\begin{vmatrix} x & x+y \\ x+2y & x \end{vmatrix}$

(a)
$$9x^2(x + y)$$

(b)
$$9y^2(x + y)$$

(c)
$$3y^2(x + y)$$

(d)
$$7x^2(x + y)$$

3. If A is a matrix of order 3×3 , then $(A^2)^{-1}$ is

$$(a) (A^{-1})^3$$

(c)
$$(A^{-1})^2$$

(d) None of these

4. If $f(x) = \frac{a}{x}$ then f'(x) is equal to

(a)
$$\frac{-1}{x^3}$$

(b)
$$\frac{a}{x^3}$$

(c)
$$\frac{a}{x^2}$$

(d) $\frac{2a}{\sqrt{3}}$

5. If m be the slope of a tangent to the curve $e^y = 1 + x^2$ then

6. $\int \left(\frac{\log x - 1}{1 + (\log x)^2}\right)^2 dx$ is equal to

(a)
$$\frac{\log x + 1}{1 + (\log x)^2} + C$$
 (b) $\frac{xe^x}{1 + x^3} + C$

$$(b) \quad \frac{xe^x}{1+x^3} + C$$

$$(c) \quad \frac{x}{1 + (\log x)^2} + C$$

(c)
$$\frac{x}{1 + (\log x)^2} + C$$
 (d) $\frac{\log x}{1 + (\log x)^2} + C$

7. If $\int \frac{\sin x \, dx}{\sin (x - \alpha)} = Ax + B \log \sin (x - \alpha) + C$, the value of (A, B) is

(a)
$$(\sin \alpha, \cos \alpha)$$

(b)
$$(\sin \alpha, -\sin \alpha)$$

(d)
$$(\cos \alpha, \sin \alpha)$$

8. If $\int_0^{\pi/2} \log \sin x \, dx = k$, then $\int_0^{\pi} \log (1 + \cos x) \, dx$ is equal to

$$(a) \log 9 + 4k$$

(b)
$$\pi \log 2 + 4k$$

(c)
$$\pi \log 2 + 4 k^2$$

9.	If $f(x) = \int_0^1 \frac{dt}{1 + x }$	then f' (1/2)	is equal to				
	(a) $\frac{1}{2}$	$(b) \frac{5}{2}$		(c) 0		(d) none of th	ese
10.	The area bounded	by the curve y	= 2 cos x and the x-	axis from $x = 0$	o $x = 2\pi$ is		
	(a) 8 sq. units	(b) 18 so		(c) 6 sq. units		(d) 4 sq. units	
11.	The number of ar	bitrary constants	in the particular s	olution of a dif	ferential equ	ation of third	order are
	(a) 3	(b) 2		(c) 1	3	(d) 0	
12.	Which of the follo	owing differenti	al equations has y	= x as one of its	particular so	olution?	
	$(a) \ \frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} + x^2 \frac{dy}{dx} + y$	$xy = x (b) \frac{d^2y}{dx^2}$	$+ x \frac{dy}{dx} + xy = x$	(c) $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx}$	$\frac{y}{x} + xy = 0$	$(d) \ \frac{d^2y}{dx^2} + x\frac{dy}{dx}$	$\frac{y}{x} + xy = 0$
13.	(a) 45 A discrete randon	(b) 40	y for feasible region (0, 40) (30, 20) (40, 40) (40, 40)	(c) 50		(d) 41	
	X P(X)	1	2 3	4	5	6	7
	rus	1 10	$\frac{1}{5}$ $\frac{1}{5}$	3 10	100	50	17 100
	Mean of the distri	ibution is					
	(a) 3.66	(b) 2.66		(c) 1.66		(d) 4.66	
				-			
15.	If X follows the bi	inomial distribu	tion with paramete	$ars n = 5, p = \frac{1}{5}$	then the mea	in of the distr	ibution is
	(a) 2	(b) 1		(c) 5		(d) None of th	ese
16.	Let A = {1, 2, 3}. Th	nen number of e	Section-1	1 1	2) is		
	(a) 1	(b) 2		(c) 3		(d) 4	
17.	Let $f:[0,1] \to [0,1]$] be defined by	$f(x) = \begin{cases} x, & \text{if } x \text{ is ra} \\ 1 - x, & \text{if } x \text{ is} \end{cases}$	ational irrational. The	n (<i>fof</i>) (x) is		

(c) 1 + x

18. Let g(x) = 1 + x - [x] and $f(x) =\begin{cases} -1, & x < 0 \\ 0, & x = 0 \text{ then for all } x. f(g(x)) \text{ i.e., } fog(x) \text{ is } \\ 1, & x > 0 \end{cases}$

(a) 1 - x

(d) constant

19.	Let * be a binary operation on	R (set of reals) as $a * b = a + b - \sqrt{2}$	then the value of $(\sqrt{2} * \sqrt{3}) * \sqrt{11}$ is
-----	--------------------------------	--	--

(a)
$$\sqrt{3} + \sqrt{11}$$

(b)
$$\sqrt{3} + \sqrt{11} - \sqrt{3}$$

(b)
$$\sqrt{3} + \sqrt{11} - \sqrt{2}$$
 (c) $\sqrt{3} + \sqrt{11} + \sqrt{2}$

(d) None of these

Read the following statements.

Statement I : Let $f: R \longrightarrow R$ is defined by f(x) = 3x - 4 then $f^{-1}(x) = \frac{x+4}{3}$.

Statement II : Let f be a function defined by $f(x) = \frac{2x+1}{1-3x}$, then $f^{-1}(x) = \frac{x-1}{3x+2}$.

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these

21. The value of cot
$$\left[\cos^{-1}\left(\frac{7}{25}\right)\right]$$
 is

(a)
$$\frac{25}{24}$$

(b)
$$\frac{25}{7}$$

(c)
$$\frac{24}{25}$$

(d)
$$\frac{7}{24}$$

22. The principal value of cosec⁻¹ (-1) is

(a)
$$\frac{-\pi}{2}$$

(c)
$$\frac{\pi}{2}$$

(d)
$$\frac{3\pi}{2}$$

23. The value of $\tan^{-1}(\sqrt{3}) + \cot^{-1}(-1) + \sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ is

(a)
$$\frac{-\pi}{12}$$

(b)
$$\frac{11\pi}{12}$$

(c)
$$\frac{5\pi}{4}$$

(d)
$$\frac{23\pi}{12}$$

The value of sin[cot⁻¹{tan(cos⁻¹ x)}] is

(a)
$$\sqrt{1-x^2}$$

$$(d) x^2$$

25. If $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$ then the value of x and y such that $A^2 + xI_2 = yA$ is

$$(a)$$
 $(8, 8)$

$$(c)$$
 $(0,0)$

26. If $\begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$ then what is the value of x-y+z?

(d) 2

Let A be a symmetric matrix such the |A| = 5 then |A' | is

(c)
$$\frac{1}{5}$$

(d) none of these

28. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then adj A is

(a)
$$\begin{bmatrix} d & b \\ c & a \end{bmatrix}$$

(b)
$$\begin{bmatrix} d & a \\ b & c \end{bmatrix}$$

(c)
$$\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

(d) $\begin{bmatrix} a & b \\ d & c \end{bmatrix}$

29. Let $f(x) = \begin{cases} \cos[x], & x \ge 0 \\ |x| + a, & x < 0 \end{cases}$ where [x] denotes the greatest integer $\le x$. If $\lim_{x \to 0} f(x)$ exists then a is equal to

30.	If $3 \sin(xy) + 4 \cos(xy) =$	$\frac{dy}{dx}$ is equal to		
	(a) $\frac{3 \sin{(xy)} + 4 \cos{(xy)}}{3 \cos{(xy)} - 4 \sin{(xy)}}$	(b) $-\frac{y}{x}$	(c) $\frac{3\sin(xy)}{4\cos(xy)}$	(d) none of these
31.	The value of c in Rolle's	Theorem for the function f	$f(x) = e^x \sin x$ such that $x \in [0]$), π] is
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{6}$	(c) $\frac{3\pi}{4}$	(d) none of these
32.		dd function such that the ft hand derivative at $x = -a$	left hand derivative at $x = x$ is	a is zero and $f(x) = f(2a - x)$
	(a) 0	(b) a	(c) 1	(d) does not exist.
33.	The least value of the fur	$f(x) = ax + \frac{b}{x}(a > 0, l)$	b > 0, x > 0) is	
	(a) $\frac{a}{b}$	(b) $2\sqrt{ab}$	(c) 0	(d) none of these
34.	Read the following states	nents.		
	Statement I : The anti-o	derivative of $\sqrt{x} + \frac{1}{\sqrt{x}}$ is $\frac{2}{3}x$	$x^{3/2} + 2x^{1/2} + C$	
	Statement II : $\int \sin x dx$	$=\cos x + C$		
	Choose the correct option	:		
	(a) Statement I is correct b	ut statement II is not correc	t.	
	(b) Statement II is correct l	but statement I is not correc	t.	
	(c) Both statements I and I	II are correct.		
	(d) None of these			
35.	The value of $\int \tan (x - \alpha)$	$\tan(x + \alpha)\tan(2x) dx$ is		
	(a) $\log \frac{\sqrt{\sec 2x \sec (x + \alpha)}}{\sec (x - \alpha)}$	+ C	(b) $\log \tan^{-1}(\sec x + \cos x) $	+ C
	(c) $\log \left \frac{\sqrt{\sec 2x} \sec(x - \alpha)}{\sec(x + \alpha)} \right $	+ C	(d) $\log \frac{\sqrt{\sec 2x}}{\sec (x - \alpha) \sec (x + \alpha)}$	$\frac{\alpha}{\alpha}$ + C
36.	$\int \tan^{-1}(\sqrt{x}) dx$ is equal to			
	(a) $(x+1)\tan^{-1}\sqrt{x} - \sqrt{x} +$	С	(b) $x \tan^{-1} \sqrt{x} - \sqrt{x} + C$	
	(c) $\sqrt{x} - x \tan^{-1} \sqrt{x} + C$		(d) $\sqrt{x} - (x+1) \tan^{-1} \sqrt{x} + 0$	
37.	The area of the region bo	bounded by the line $2y = -x$	+ 8, the x –axis and the lines	x = 2 and $x = 4$ is
	(a) 4 sq. units	(b) 2 sq. units	(c) 5 sq. units	(d) 3 sq. units
38.	The general solution of t	he differential equation $\frac{dg}{dt}$	$\frac{y}{x} = e^{x+y}$ is	
			$(c) e^{-x} + e^y = C$	(d) $e^{-x} + e^{-y} = C$
39.	A homogeneous differen	ntial equation of the form	$\frac{dx}{dy} = h\left(\frac{x}{y}\right) \text{ can be solved by}$	making the substitution

(c)
$$x = v_1$$

40. The unit vector in the direction of the sum of the vectors $\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + \hat{j} + 3\hat{k}$ is

(a)
$$\frac{1}{\sqrt{26}}\hat{i} + \frac{5}{\sqrt{26}}\hat{k}$$

(b)
$$\frac{1}{\sqrt{3}}\hat{i} - \frac{5}{\sqrt{26}}\hat{k}$$

(a)
$$\frac{1}{\sqrt{26}}\hat{i} + \frac{5}{\sqrt{26}}\hat{k}$$
 (b) $\frac{1}{\sqrt{3}}\hat{i} - \frac{5}{\sqrt{26}}\hat{k}$ (c) $\frac{1}{\sqrt{10}}\hat{i} + \frac{1}{\sqrt{20}}\hat{k}$ (d) $\frac{1}{\sqrt{32}}\hat{i} - \frac{5}{\sqrt{3}}\hat{k}$

(d)
$$\frac{1}{\sqrt{32}}\hat{i} - \frac{5}{\sqrt{3}}\hat{k}$$

41. The vector \vec{r} of magnitude $3\sqrt{2}$ units which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axis, respectively is

(a)
$$\vec{r} = \pm 4\hat{i} - 5\hat{j}$$

(b)
$$\vec{r} = \pm 3\hat{i} + 3\hat{j}$$

(c)
$$\vec{r} = \pm 5\hat{i} + 5\hat{j}$$

(d)
$$\vec{r} = \pm 4\hat{i} + 5\hat{j}$$

Mathematics

42. The magnitude of vector $6\hat{i} + 2\hat{j} + 3\hat{k}$ is

43. The value of λ for which the two vectors $2\hat{i} - \hat{j} + 2\hat{k}$ and $3\hat{i} + \lambda\hat{j} + \hat{k}$ are perpendicular is

44. If a line makes angles $\frac{\pi}{2}$, $\frac{3\pi}{4}$, and $\frac{\pi}{4}$ with x, y, z axes, respectively, then the direction cosines are

(b)
$$\pm \left(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 (c) $\pm \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

(c)
$$\pm \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

(d)
$$\pm \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$$

45. If the plane 2x - 3y + 6z - 11 = 0 makes an angle $\sin^{-1} \alpha$ with x-axis, then the value of α is

(a)
$$\frac{\sqrt{3}}{2}$$

(b)
$$\frac{\sqrt{2}}{3}$$

(c)
$$\frac{2}{7}$$

(d)
$$\frac{3}{7}$$

46. The angle between the planes $\vec{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{i} - \hat{j}) = 4$ is

(a)
$$\cos^{-1}\left(\frac{5}{2\sqrt{7}}\right)$$

(b)
$$\cos^{-1}\left(\frac{7}{2\sqrt{3}}\right)$$

$$(d) \cos^{-1}\left(\frac{8}{3\sqrt{7}}\right)$$

47. The coordinates of the point where the line through (3, -4, -5) and (2, -3, 1) crosses the plane passing through three points (2, 2, 1), (3, 0, 1) and (4, -1, 0) are

$$(a) (0, -2, 7)$$

(c)
$$(1, -2, -7)$$

$$(d)$$
 $(1, -2, 7)$

48. Read the following statements.

Statement I : If A and B are two events such that $P(B) = \frac{3}{5}$, $P(A/B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$ then $P(B/A') = \frac{3}{5}$.

Statement II : $P(A/B) = \frac{P(A)}{P(B)}$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these

49. If A and B are two independent events with $P(A) = \frac{3}{5}$ and $P(B) = \frac{4}{9}$, then $P(A' \cap B')$ equals to

(a)
$$\frac{14}{15}$$

(b)
$$\frac{18}{45}$$

(c)
$$\frac{11}{3}$$

(d)
$$\frac{2}{9}$$

(c)	11/16	(d) 7/8
		(11) // 0