Universal Gravitation (Part - 1)

Q. 200. A planet of mass M moves along a circle around the Sun with velocity v =
34.9 km/s (relative to the heliocentric reference frame). Find the period of
revolution of this planet around the Sun.

Ans. We have
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> = 194 % 107 sec = 225 days.

(The answer is incorrectly written in terms of the planetary mass M)

Q. 201. The Jupiter's period of revolution around the Sun is 12 times that of the
Earth. Assuming the planetary orbits to be circular, find:

(a) how many times the distance between the Jupiter and the Sun exceeds that
between the Earth and the Sun;
(b) the velocity and the acceleration of Jupiter in the heliocentric reference frame.

Ans. For any planet
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where T = 12 years. mg - mass of ths Sun.
Putting the values we get Vj = 12.07 km/s
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Q. 202. A planet of mass M moves around the Sun along an ellipse so that its
minimum distance from the Sun is equal to r and the maximum distance to R.
Making use of Kepler's laws, find its period of revolution around the Sun.

Ans. Semi-major axis= (r +/R)/2

It is sufficient to consider the motion be along a circle o f semi-m ajor axis r + R/2 for
T does not depend on eccentricity.
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(again mg is the mass of the Sun)

Q. 203. A small body starts falling onto the Sun from a distance equal to the radius
of the Earth’s orbit. The initial velocity of the body is equal to zero in the
heliocentric reference frame. Making use of Kepler's laws, find how long the body
will be falling.

Ans. We can think of the body as moving in a very elongated orbit of maximum
distance R and minimum distance 0 so semi major axis = R/2. Hence if 1 is the time of
fall then
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1= T/4HT = 365/ #Z = 645 days.

Q. 204. Suppose we have made a model of the Solar system scaled down in the
ratio n but of materials of the same mean density as the actual materials of the
planets and the Sun. How will the orbital periods of revolution of planetary
models change in this case?

Ans. T=2aR*/vym,

If the distances are scaled down, R®? decreases by a factor n*2 and so does m; .
Hence T does not change.

Q. 205. A double star is a system of two stars moving around the centre of
inertia of the system due to gravitation. Find the distance between the
components of the double star, if its total mass equals M and the period of
revolution T.

m,m;

Ans. The double star can be replaced by a single star of mass ™1 *™ moving about the
centre of mass subjected to the force
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Q. 206. Find the potential energy of the gravitational interaction

(a) of two mass points of masses m: and m, located at a distance r from each
other;

(b) of a mass point of mass m and a thin uniform rod of mass M and length I, if
they are located along a straight line at a distance a from each other; also find the
force of their interaction

Ans. (a) The gravitational potential due to m; at the point of location of m; :
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(b) Choose the location of the point mass as the origin. Then the potential erfeigy dU
=1 of the rod in the field of the point mass is
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where X is the distance between the element and the point (Note that the rod and the

point mass are on a straight line.) If then a is the distance of the nearer end of the rod
from the point mass.
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Minus sign means attraction.



Q. 207. A planet of mass m moves along an ellipse around the Sun so that its
maximum and minimum distances from the Sun are equal to r; and

r> respectively. Find the angular momentum M of this planet relative to the centre
of the Sun.

Ans. As the planet is under central force (gravitational interaction), its angular
momentum is conserved about the Sun (which is situated at one of the focii of the
ellipse)

So, My P = MV F, OF, '.%-—r-z— {1)

From the conservation of mechanical energy of the system (Sun + planet),
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Thus, = VZymr,[ry(r,+r) (2)

Hence M=mvyry= mV2ymrr,/(r,+r)

Q. 208. Using the conservation laws, demonstrate that the total mechanical energy
of a planet of mass m moving around the Sun along an ellipse depends only on its
semi-major axis a. Find this energy as a function of a.

Ans. From the previous problem, if r1, r> are the maximum and minimum distances
from the sun to the planet and v1 , v are the corresponding velocities, then, say,
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where 2d = major axis = ry + r.. The same result can also be obtained directly by
writing an equation analogous to Eq (1) of problem 1.191.
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(Here Af is angular momentum of the planet and m is its mass). For extreme
position r=0 and we get the quadratic
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The sum of the two roots of this equation are
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Thus Ea- T:‘ = constant

Q. 209. A planet A moves along an elliptical orbit around the Sun. At the moment
when it was at the distance ro from the Sun its velocity ‘was equal to vo and the
angle between the radius vector ro and the velocity vector vo was equal to a. Find
the maximum and minimum distances that will separate this planet from the Sun
during its orbital motion.

Ans. From the conservtion of angular momentum about the Sun.
myrsino= mv,ry=mv, Fa Of, ViF= W= vﬂriainu [1}

From conservation of mechanical eneigy,
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where n= vﬁ Fo/vm, (m, is the mass of the Sun).



Q. 210. A cosmic body A moves to the Sun with velocity vo(when far from the
Sun) and aiming parameter | the arm of the vector vy elative to the centre of the
Sun (Fig. 1.51). Find the minimum distance by which this body will get to the
Sun.

Uy

Fig. 1.51.

Ans. At the minimum separation with the Sun, the cosmic body’s velocity is
perpendicular to its position vector relative to the Sun. If ryin be the sought minimum
distance, from conservation of angular momentum about the Sun (C).

I
myvg = mvry, or, v= ;i: (1)

From conservation of mechanical energy of the system (sun + cosmic body),
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Q. 211. A particle of mass in is located outside a uniform sphere of mass M at a
distance r from its centre. Find:

(a) the potential energy of gravitational interaction of the particle and the
sphere;
(b) the gravitational force which the sphere exerts on the particle.



Ans. Suppose that the sphere has a radius equal to a. We may imagine that the sphere
Is made up of concentric thin spherical shells (layers) with radii ranging from 0 to a,
and each spherical layer is made up of elementry bands (rings). Let us first calculate
potential due to an elementry band of a spherical layer at the point of location of the

point mass m (say point P) (Fig.). As all the points of the band are located at the
distance | from the point P, so,

d = -Hr"'!- {where mass of the band) {1)
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And [*=a’+r’-2arcos® (3)
Differentiating Eq. (3), we get

Idl = ar sin d0 {4}

Hence using above equations

so- (|4 (5)

Now integrating this Eq. over the whole spherical layer
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Equation (6) demonstrates that the potential produced by a thin uniform spherical
layer outside the layer is such as if the whole mass of the layer were concentrated at
it’s centre; Hence the potential due to the sphere at point P;

o= [dg= -E—IdM--Irﬂ (7)

This expression is similar to that of Eq. (6)

Hence thte sought potential eneigy of gravitational interaction of the particle m and the
sphere,

SO Gum - i FemGa-t"M (8

Q. 212. Demonstrate that the gravitational force acting on a par- ticle A inside a
uniform spherical layer of matter is equal to zero.

Ans. (The problem has already a dear hint in the answer sheet of the problem book).
Here we adopt a different method.

Let m be the mass of the spherical layer, wich is imagined to be made up of rings. At a
point inside the spherical layer at distance r from the centre, the gravitational potential
due to a ring element of radius a equals,

dp= - % dl (see Eq. () of solution of 1.211)

So, @= [dp= -L= Jat=-L% @




Hence g = -%‘E. 0.

Hence gravitational field strength as well as field force becomes zero, inside a thin
sphereical layer.

Q. 213. A particle of mass m was transferred from the centre of the base of a
uniform hemisphere of mass M and radius R into infinity. What work was
performed in the process by the gravitational force exerted on the particle by the
hemisphere?

Ans. One can imagine that the uniform hemisphere is made up of thin hemispherical
layers of radii ranging from 0 to R. Let us consider such a layer (Fig.). Potential at point
O, due to this layer is,

| M M drr 2
dg= . U -—h-rdr, where dm =
r R®

(273)=Rr*| 2

(This is because all points of each hemispherical shell are equidistant from O.)
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Hence, the work done by the gravitational field force on the particle of mass m, to
remove it to infinity is given by the formula

A =mg, since ¢ = 0 at infinity.

Hence the sought work,
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(The work done by the external agent is - A.)



Q. 214. There is a uniform sphere of mass M and radius R. Find the strength G
and the potential ¢ of the gravitational field of this sphere as a function of the
distance r from its centre (with r <R and r > R). Draw the approximate plots of
the functions G (r) and ¢ (r).

Ans. In the solution of problem 1.211, we have obtained ¢ and G due to a uniform
shpere, at a distance r from it’s centre outside it We have from Egs. (7) and (8) of
1.211,

on -1 g Gu 1M ()

Accordance with the Eq. (1) of the solution of 1.212, potential due to a spherical
shell of radius a, at any point, inside it becomes

= %‘”- Const. and G, = -%f- 0 (B)

For a point (say P) which lies inside the uniform solid sphere, the potential ¢ at that
point may be represented as a sum.

Pinsige = P11 %2

where @1 is the potential o f a solid sphere having radius r and @, is the potential of
the layer of radii r and R. In accordance with equation (A)

oM 4 s\ 1M
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The potential @, produced by the layer (thick shell) is the same at all points inside it.
The potential @, is easiest to calculate, for the point positioned at the layer’s centre.

Using Eq. (B)

where dMs= dnridr= [ﬁ]ﬁdr
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is the mass of a thin layer between the radii r and r + dr.
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The plots ¢ (r) and G (r) for a uniform sphere of radius R are shown in figure of answer
sheet.

Alternate : Like Gauss’s theorem of electrostatics, one can derive Gauss’s theorem
for gravitation in the form
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f at a point inside the sphere at a distance r

from its centre, let us consider a Gaussian surface of radius r, Then,
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Integrating and summing up, we get
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Q. 215. Inside a uniform sphere of density p there is a spherical cavity whose
centre is at a distance | from the centre of the sphere. Find the strength G of the
gravitational field inside the cavity.

Ans. Treating the cavity as negative mass of density - p in a uniform sphere density + p
and using the superposition principle, the sought field strength is :

G= G, +G,
- 4 - —
or G= -yRYRr, + -%‘f:‘t{-p} r
(where 7y and 7 gre the position vectors of an orbitrary point P inside the cavity with
respect to centre of sphere and cavity respectively.)

— —
F,=r_

Thus G = -%nw( + )= -gﬂwr

Q. 216. A uniform sphere has a mass M and radius R. Find the pressure p inside
the sphere, caused by gravitational compression, as a function of the distance r
from its centre. Evaluate p at the centre of the Earth, assuming it to be a uniform
sphere.

Ans. We partition the solid sphere into thin spherical layers and consider a layer of
thickness dr lying at a distance r from the centre of the ball. Each spherical layer
presses on the layers within it The considered layer is attracted to the part of the sphere
lying within it (the outer part does not act on the layer). Hence for the considered layer

dpaxri=dF

s 2
) ' E] re (drr-drp)
o, dP4nr’= 3

(where p is the mean density of sphere)

or, dp= g-:t'rpir.r.ir
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(The pressure.must vanish atr = R.)

or, p= %(1 - */R%) yM? xR*, Puting p= M/(4/3)a R’

Putting r = 0, we have the pressure at sphere’s centre, and treating it as the Earth
wheremean density is

equal to p= 55x10°kg/m’® and R = 64x 10’ km
we have , p= 173x10"Pa or 172 x 10° atms.

Q. 217. Find the proper potential energy of gravitational interaction of matter
forming

(a) a thin uniform spherical layer of mass m and radius R;
(b) a uniform sphere of mass m and radius R (make use of the answer to Problem
1.214).

Ans. (a) Since the potential at each point of a spherical surface (shell) is constant and is
- --Iﬂl
equal to TR [as we have in Eq. (1) of solution of problem 1.212]

We obtain in accordance with the equation
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(The factor 1/2 is needed otherwise contribution of different mass elements is counted
twice.]

(b) In this case the potential inside the sphete depends only on r (see Eq. (C) of the
solution of oroblem 1.214)

_ 3ymf  r?
¥ 2R (1 31:2]

Here dm is the mass of an elementry spherical layer confined between the radii r and
r+dr:

dm= [4::rzd‘rp]- [_3."31‘_),.24,

o= oms
R
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After integrating, we get
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Universal Gravitation (Part - 2)

Q. 218. Two Earth's satellites move in a common plane along circular orbits.
The orbital radius of one satellite r = 7000 km while that of the other satellite is
Ar = 70 km less. What time interval separates the periodic approaches of the
satellites to each other over the minimum distance?

Ans. ;.. _ 1/ Tﬂaz _ circular frequency o f the satellite in the outer orbit,
]

wg = V{ Y :)3 = ircular frequency of the satellite in the inner orbit
r=Ar

So, relative angular velocity = @o* @ Where = sigh i< 1 e taken when the satellites are

moving in the same sense and + sign if they are moving in opposite sense.
Hence, time between closest approaches

2 2x 1 { 4-5 days {{66- ﬂ}}
- = 33 = 1 080 hour (6 = 2
= Vo, 77 B

where 6 is 0 in the first case and 2 in the second case.

Q. 219. Calculate the ratios of the following accelerations: the acceleration

w1 due to the gravitational force on the Earth's surface, the acceleration w» due
to the centrifugal force of inertia on the Earth’s equator, and the acceleration
w3 caused by the Sun to the bodies on the Earth.

YM 667 x 107 x 596 x 10

= = = 98 mfﬂz
Ans, o —:'R {53?:10‘}2
in : 2x22 ?
i —_ - —l{ " L z
“’z-mR-(T]R [ijiﬂtx‘?)ﬁs?xmﬁ 0034 m/s

YMs  667x107 " x 197 x 10

- - 59107 m/s*
RZ. (14950 x 10° x 10°)* e

and oy =

Then 6y : o0yt g = 1:0-0034 ; 0-0006



Q. 220. At what height over the Earth's pole the free-fall acceleration decreases by
one per cent; by half?

Ans. Let h be the sought height in the first case, so

9 . _IM
100° (R + )
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or m-(lﬁ'ﬂ]

From the statement of the problem, it is obvious that in this case h<<R
99 2h R__ (6400
Thus 100 = [1 F-ﬁ*] or h= 200 = (-ﬁ)lﬂu- 32km

In the other case if h! be the sought height, than

. =2
%-g(1+%] or %- (1+%
From the language o f the problem, in this case h' is not very small in comparison
with R. Therefore in this case we cannot use the approximation adopted in the
previous case.

2
i3 i

H — = - — -

ere, (I+R] 2 Su,R V2 -1

As - ve sign is not acceptable

W= (V2 -1)R= (V2 -1)6400 km = 2650 km

Q. 221. On the pole of the Earth a body is imparted velocity vo directed vertically
up. Knowing the radius of the Earth and the freefall acceleration on its surface,
find the height to which the body will ascend. The air drag is to be neglected.

Ans. Let the mass of the body be m and let it go upto a height h.

From conservation of mechanical energy of the system

_IMm 1 _—IMm
I +zmtﬁ R+ h) +0



7= & in above equation and on solving we get,

Q. 222. An artificial satellite is launched into a circular orbit around the Earth
with velocity v relative to the reference frame moving translationally and fixed to
the Earth's rotation axis. Find the distance from the satellite to the Earth's
surface. The radius of the Earth and the free-fall acceleration on its surface are
supposed to be known.

Ans. Gravitational pull provides the required centripetal acceleration to the satelite.
Thus if h be the sought distance, we have

mv ymM

R+P ™ Ranp or, (R+h)vV'=yM

so,

Or, RvV'+hv'=gR?, as g-}—ﬂf

2 7
Hence h= E‘H‘EA- R[%-l]

Q. 223. Calculate the radius of the circular orbit of a stationary Earth's satellite,
which remains motionless with respect to its surface. What are its velocity and
acceleration in the inertial reference frame fixed at a given moment to the centre
of the Earth?

Ans. A satellite that hovers above the earth’s equator and corotates with it moving from
the west to east with the diurnal angular velocity of the earth appears stationary to an
observer on the earth. It is called geostationary. For this calculation we may neglect the
annual motion of the earth as well as all other influences. Then, by Newton’s law,

2

]r

where M = mass of the earth, T = 86400 seconds = period of daily rotation of the
earth and r = distance of the satellite from the centre of the earth. Then

e

~E



Substitution of M = 596 x 10** kg gives
rm 4220 % 10* km

The instantaneous velocity with respect to an inertial frame fixed to the centre of the
earth at that moment will be

2n
( T ]r-3'ﬂ7 km./s

and the acceleration will be the centripetal acceleration.

2
(%} r= 0:223 m/s®

Q. 224. A satellite revolving in a circular equatorial orbit of radius R = 2.00-

10* km from west to east appears over a certain point at the equator every T = 11.6
hours. Using these data, calculate the mass of the Earth. The gravitational
constant is supposed to be known.

Ans. We know from the previous problem that a satellite moving west to east at a
distance R = 2-00 x 10* km from the centre of the earth will be revolving round the
earth with an angular velocity faster than the earth’s diurnal angualr velocity. Let
o = angular velocity of the satellite

W, = 2?“ =anuglar velocity of the earth. Then

2
- wy= =

as the relative angular velocity with respect to earth. Now by Newton’s law

Substitution gives

M= 627 x 10* kg



Q. 225. A satellite revolves from east to west in a circular equatorial orbit of
radius R = 1.00.10* km around the Earth. Find the velocity and the acceleration
of the satellite in the reference frame fixed to the Earth.

Ans. The velocity of the satellite in the inertial space fixed frameis ¥ R eastto
west . With respect to the Earth fixed frame, from the i = V=@ x 7 the velocity is

,_2aR .‘fﬂ{ - -
W T-I- R 703 km./s

Here M is the mass of the earth and T is its period of rotation about its own axis.

; 2nR : : ; ; .
It would be - —-%—+'¢3;£_, if the satellite were moving from west to east
To find the acceleration we note the formula

— —
mw =F+2m(v x@)+mw K

Here Fa _i;"ﬁ'md 7 Larand 7 x o 1s directed towards the centre of the Earth.
R

2
Tt 1M 28R -,lfj_-'-f 2z _(2x
s w qu-z T = |7 = R
toward the earth’s rotation axis

2nR -.‘fﬂ
T *2V R

Q. 226. A satellite must move in the equatorial plane of the Earth close to its
surface either in the Earth's rotation direction or against it. Find how many times
the Kinetic energy of the satellite in the latter case exceeds that in the former case
(in the reference frame fixed to the Earth).

LM 2

E'T

= 494 m/s> on substitution.

Ans. From the well known relationship between the velocities of a particle w.r.t a space
fixed fram e (K) rotating frame (&) V=¥ +(Wx7)

el



Thus kinetic energy of the satellite in the earth’s frame

2
1= tmvie in(v-228)

2 T

Obviously when the satellite moves in opposite sense comared to the rotation of the
Earth its velocity relative to the same frame would be

vy = v+[2T“]R

And kinetic energy

2
L= %mv'i- %m(v+2;ﬂ) {2)

From (1) and (2)

(p+2nR

T.._"'_)_ (3)

,_2zRY
T

Now from Newton's second law

M-ﬂ or u-‘\ﬂR—M;\"g_R' (4)
Using (4) and (3).

2aR\

r (7))

")

= 127 nearly (Using Appendices)

Q. 227. An artificial satellite of the Moon revolves in a circular orbit whose radius
exceeds the radius of the Moon n times. In the process of motion the satellite
experiences a slight resistance due to cosmic dust. Assuming the resistance force to
depend on the velocity of the satellite as F = av?, where a is a constant, find how
long the satellite will stay in orbit until it falls onto the Moon's surface.

Ans. For a satellite in a circular orbit about any massive body, the following relation
holds between kinetic, potential & total eneigy :



T=—-E.U=2E (1)

Thus since total mechanical energy must decrease due to resistance of the cosmic
dust, the kintetic energy will increase and the satellite will ‘fair, We see then, by
work eneigy theorm

dl = -dE = - dA,

So, mvdy = avivdt  or, %

Ly
,',2
Now from Netow's law at an arbitray radius r from the moon’s centre.
VoM M
TT AT I;_
(M is the mass of the moon.) Then

where R= moon’s radius. So

Vf T
dv o ot
.,?-mfdt-m
¥y 0

mi{l 1 i m
-—I—_—- Vi =1) = ﬁi—l
. T v, vf] TF n-1) ( )

where g is moon’s gravity. The averaging implied by Eq. (1) (for noncircular orbits)
makes the result approximate.

Q. 228. Calculate the orbital and escape velocities for the Moon. Compare the
results obtained with the corresponding velocities for the Earth.

AnNs. From Newton’s second law
2
%- = ot = Y B - 167kmss (1)

From conservation of mechanical energy



1 2 yMm .‘}zﬂ . 2
ARy 0 or v, = —:I[i- = 2-37 km./s (2)

In Eqg. (1) and (2), M and R are the mass of the moon and its radius. In Eqg. (1) if M
and R represent the mass of the earth and its radius, then, using appendices, we can
easily get

vo= 79 km/s and v = 112 km/s.

Q. 229. A spaceship approaches the Moon along a parabolic trajectory which is
almost tangent to the Moon's surface. At the moment of the maximum approach
the brake rocket was fired for a short time interval, and the spaceship was
transferred into a circular orbit of a Moon satellite. Find how the spaceship
velocity modulus increased in the process of braking.

Ans. In a parabolic orbit, E=0

1 p2_YMm - vz
So Zmv-=e0on v= V2V 5

where M = mass of the Moon, R = its radius. (This is just the escape velocity.) On the
other hand in orbit

mva- tMm or V= Y ™M

R? R
Thus Avs= ll-ﬁlvlf? = =0 70 km./s.

Q. 230. A spaceship is launched into a circular orbit close to the Earth's surface.
What additional velocity has to be imparted to the spaceship to overcome the
gravitational pull?

Ans. From 1.228 for the Earth surface

i-u-\f]rﬂ—de v, = \,-‘ %M—

Thus the sought additional velocity

Avm v, -y, = v % (V2-1)=gR(V2-1)



This ‘kick’ in velocity must be given along the direction of motion of the
satellite in its orbit

Q. 231. At what distance from the centre of the Moon is the point at which the
strength of the resultant of the Earth's and Moon's gravitational fields is equal to
zero? The Earth's mass is assumed to be 1} = 81 times that of the Moon, and the
distance between the centres of these planets n = 60 times greater than the radius
of the Earth R.

Ans. Let r be the sought distance, then

mM M 2
- - ﬂR“‘
nR-r) ';‘!' or = r):

(

+

or Vmre (mR-r) orrm= \—ﬁ;ﬂ—l- 38 % 10° km.

Q. 232. What is the minimum work that has to be performed to bring a spaceship
of mass m = 2.0.10° k g from the surface of the Earth to the Moon?

Ans. Between the earth and the moon, the potential energy of the spaceship will have a
maximum at the point where the attractions of the earth and the moon balance each
other. This maximum RE. is approximately zero. We can also neglect the contribution
of either body to the p.E. of the spaceship sufficiently near the other body. Then the
minimum energy that must be imparted to the spaceship to cross the maximum of the
P.E. is clearly (using E to denote the earth)

YMym
Re

With this energy the spaceship will cross over the hump in the P.E. and coast down
the hill of p.E. towards the moon and crashland on it. What the problem seeks is the
minimum energy reguired for softlanding. That reguies the use of rockets to loving
about the braking of the spaceship and since the kinetic energy of the gases ejected
from the rocket will always be positive, the total energy required for softlanding is
greater than that required for crashlanding. To calculate this energy we assume that
the rockets are used fairly close to the moon when the spaceship has nealy attained its
2uM,
terminal velocity on the moon Ry where My is the mass of the moon and Ry is
its radius. In general dE = vdp and since the speed of the ejected gases is not less
than the speed of the rocket, and momentum transfered to the ejected gases must



equal the momentum of the spaceship the energy E of the gass ejected is not
less than the kinetic energy of spaceship

YMym
R 0

Addding the two we get the minimum work done on the ejected gases to bring about
the softlanding.

A M, M,
ma = M | 2=+ T
R.E Rﬂ'

On substitution we get 13 x 10° kI,

Q. 233. Find approximately the third cosmic velocity vz, i.e. the minimum velocity
that has to be imparted to a body relative to the Earth's surface to drive it out of
the Solar system. The rotation of the Earth about its own axis is to be neglected.

Ans. Assume first that the attraction of the earth can be neglected. Then the minimum
velocity, that must be imparted to the body to escape from the Sun’s pull, is, as in

1*230, equal to (v2-
of the Sun.

2
Vi where Vi= YM:/17= 1adius of the earth’s orbit, Ms - mass

In the actual case near the earth, the pull of the Sun is small and does not change much
over distances, which are several times the radius of the Earth. The velocity vz in
question is that which overcomes the earth’s pull with sufficient velocity to escape the
Sun’s pull.

Thus

1 3 l'I'*MTB: 1 2
Emuj -_Tm im(ﬁ- 1)2131

where R = radius of the earth, Mg = mass of the earth.

Writing  v; = yMg /R, we get

vp= V2u24(VZ-1Fv] = 166 km/s
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