Class 11

Important Formulas

Binomial Theorem

1. (Binomial theorem) If x and a are real numbers, then for all $n \in N$, we have

$$(x+a)^n = {}^nC_0 x^n a^0 + {}^nC_1 x^{n-1} a^1 + {}^nC_2 x^{n-2} a^2 + \dots + {}^nC_r x^{n-r} a^r + \dots + {}^nC_{n-1} x^1 a^{n-1} + {}^nC_n x^0 a^n$$

i.e.,
$$(x + a)^n = \sum_{r=0}^n {^nC_r} x^{n-r} a^r$$

This expansion has the following properties:

- (i) It has (n + 1) terms.
- (ii) The sum of the indices of x and a in each term is n.
- (iii) The coefficients of terms equidistant from the beginning and the end are equal.
- (vi) General term is given by $T_{r+1} = {}^{n}C_{r} \quad x^{n-r} \quad a^{r}$

(v)
$$(x+a)^n = \sum_{r=0}^n {^nC_r} x^{n-r} a^r$$
 can also be expressed as $(x+a)^n = \sum_{r+s=n} \frac{n!}{r! s!} x^r a^s$

(vi) Replacing a by -a in the expansion of $(x + a)^n$, we get

$$(x-a)^{n} = {}^{n}C_{0} x^{n} a^{0} - {}^{n}C_{1} x^{n-1} a^{1} + {}^{n}C_{2} x^{n-2} a^{2} - {}^{n}C_{3} x^{n-3} a^{3} + \dots + (-1)^{r} {}^{n}C_{r} x^{n-r} a^{r} + \dots + (-1)^{n} {}^{n}C_{n} x^{0} a^{n}$$

The general term in the expansion of $(x-a)^n$ is $T_{r+1} = (-1)^r {^nC_r} x^{n-r} d^r$

(vii) Putting x = 1 and replacing a by x in the expansion of $(x + a)^n$, we get

$$(1+x)^n = {}^{n}C_0 + {}^{n}C_1 x + {}^{n}C_2 x^2 + ... + {}^{n}C_n x^n = \sum_{r=0}^{n} {}^{n}C_r x^r$$

This is expansion of $(1 + x)^n$ is ascending powers of x. In this case, $T_{r+1} = {}^nC_r x^r$

(viii) Putting a = 1 in the expansion of $(x + a)^n$, we get

$$(1+x)^n = {^n}C_0 x^n + {^n}C_1 x^{n-1} + {^n}C_2 x^{n-2} + \dots + {^n}C_n x^0 = \sum_{r=0}^n {^n}C_r x^{n-r}$$

This is the expansion of $(1+x)^n$ in descending powers of x. In this case, $T_{r+1} = {}^nC_r \ x^{n-r}$

(ix)
$$(x+a)^n + (x-a)^n = 2 \left\{ {}^nC_0 x^n a^0 + {}^nC_2 x^{n-2} a^2 + \dots \right\}$$

= 2 (Sum of the odd terms in the expansion of $(x + a)^n$)

$$(x+a)^n - (x-a)^n = 2 \left\{ {}^nC_1 x^{n-1} a^1 + {}^nC_3 x^{n-3} a^3 + \dots \right\}$$

• = 2 {Sum of the even terms in the expansion of $(x + a)^n$ }

If
$$n$$
 is odd, then $\left\{ (x+a)^n + (x-a)^n \right\}$ and $\left\{ (x+a)^n - (x-a)^n \right\}$ both have $\left(\frac{n+1}{2} \right)$ terms.
If n is even, then $\left\{ (x+a)^n + (x-a)^n \right\}$ has $\left(\frac{n}{2} + 1 \right)$ terms whereas $\left\{ (x+a)^n - (x-a)^n \right\}$ has $\left(\frac{n}{2} \right)$ terms.

(x) If O and E denote respectively the sums of odd terms and even terms in the expansion of $(x+a)^n$, then

(a)
$$(x+a)^n = O + E$$
 and $(x-a)^n = O - E$ (b) $(x^2 - a^2)^n = O^2 - E^2$

(b)
$$(x^2 - a^2)^n = O^2 - E^2$$

(c)
$$4OE = (x-a)^{2n} - (n-a)^{2n}$$

(d)
$$(x+a)^{2n} + (x-a)^{2n} = 2(O^2 + E^2)$$

(c) $4OE = (x-a)^{2n} - (n-a)^{2n}$ (d) $(x-a)^{2n}$ (xi) If n is even, then $\left(\frac{n}{2} + 1\right)^{th}$ term is the middle term.

If *n* is odd, then
$$\left(\frac{n+1}{2}\right)$$
 and $\left(\frac{n+3}{2}\right)$ are middle terms.