
Chapter 11

MISCELLANEOUS EXAMPLES I

1. A train of mass 300 tonnes is originally at rest upon a level track.
It is acted on by a horizontal force which increases uniformly with
the time in such a way that F = 0 when t = 0, and F = 5 when
t = 15, F being measured in tonnes wt. and t in seconds. When in
motion the train may be assumed to be acted upon by a constant
frictional force equal to 3 tonnes wt. Find the instant of starting,
and show that, when t = 15, the speed of the train is about 0.196
metres per second, whilst the horse-power required at this instant
is about 13 (1 tonne = 103 kg.) and (1 metric horse-power = 75 kg.
f. metres of work per second).

2. In starting a train the pull of the engine on the rails is at first con-
stant and equal to P; and after the speed attains a certain value u
the engine works at a constant rate R (= Pu). When the engine has
attained a speed v greater than u, show that the time t and space x
from the start are given by

t =
M
2R

(v2 +u2) and x =
M
3R

(v3 +
1
2

u2),

where M is the combined mass of the engine and train.
Calculate the time occupied at the space described, in attaining a
speed of 72 km. per hour when the total mass is 300 tonnes, if the
engine has 420 H.P. and can exert a pull equal to 12 tonnes wt.
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3. A unit particle is attracted by two centres of force, A and B, each
of which attracts it with a force

µ
r3 at distance r. show that, if the

particle is initially at rest at a point in AB produced distant
√

3.a
from the middle point of AB, it will arrive at B after a time

a2
√µ

[
1− 1√

6
loge(

√
3+m

√
2)

]
,

where 2a is the distance AB.

4. A heavy particle, of mass m, is fastened at the middle point of an
elastic string, of natural length 2a, and the string is stretched be-
tween two points, 2l apart, in the same vertical line. If the particle
starts from rest at a point midway between the two points, find the
time of oscillation if the modulus of elasticity λ ≮

mga
l−a

. What

happens if λ <
mga
l−a

?
5. A plank, of length 2a and mass m, is placed with one end against

a smooth vertical wall and the other end upon a smooth horizontal
plane, its inclination to the horizontal being α . The plank is ini-
tially at rest and a monkey, of mass m′, runs down it in such a way
that the plank always remains at rest; show that the square of his
velocity when he has gone a distance x is

gx
2sinα

[
2(m+2m′)

m′ − x
a

]
,

and that the time he takes to get to the bottom of the plank is
√

2asinα
a

cos−1 m
m+2m′ .

6. A plank, of mass m, is placed on a rough plane inclined to the
horizon at an angle α. A man of mass M runs down it. If the plank
is not to slip, show that the acceleration of the man must not be
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less than
M +m

M
(sinα−µ cosα)g

nor greater than

M +m
M

(sinα + µ cosα)g.

7. A chain, of length l, is placed along a line of greatest slope of a
smooth plane whose inclination to the horizontal is α. If initially
an end of the chain just hangs over the lower edge of the plane,
prove that the chain will finally leave the plane in time

√
1

g(1− sinα)
. logcot

α
2

.

8. Referred to fixed axes the path of a particle is given by the equa-
tions x = acosωt,y = bsinωt. Show that, relatively to axes rotat-
ing with angular velocity ω , the path of the particle is a circle.

9. The greatest and least velocities of a planet in its orbit round the
sun, which may be regarded as fixed, are 30 and 29.2 kilometres
per second respectively. Show that the eccentricity of the orbit is
1
74

.

10. A particle describes an ellipse with an acceleration which is al-
ways directed towards its centre; show that the average value of its
kinetic energy, taken with regard to the time, is equal to half the
sum of its greatest and least kinetic energies.

11. A particle, of mass m, is held on a smooth table. A string attached
to this particle passes through a hole in the table and supports a
particle of mass 3m. Motion is started by the particle on the table
being projected with velocity V at right angles to the string. If a is
the original length of the string on the table, show that when the
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hanging weight has descended a distance
a
2

(assuming this to be
possible) its velocity will be

√
3

2

√
ga−V 2.

12. A straight smooth tube is at rest in a horizontal position and con-
tains a particle at A. The tube is rigidly attached to a point O verti-
cally above A, and is made to rotate about O with constant angular
velocity ω, so as to move in a vertical plane. If OA = a, show that
the distance of the particle from A at time t is

asinhωt +
g

2ω2(sinhωt− sinωt).

13. A particle is projected vertically upwards with a velocity which
would carry it to a height of 120 metres if there were no resistance;
if the resistance varies as the square of the velocity, and the termi-
nal velocity is 90 metres per sec., show that the height to which
it actually rises is about 107 metres, that its velocity on reaching
the ground again is 43 metres per sec., and that the total time of its
flight is about 9.3 seconds.

14. A chain rests upon a smooth circular cylinder, whose radius is a
and whose axis is horizontal; the length of the chain is equal to the
semi-circumference of the cylinder. If the chain be slightly dis-
placed, show that its acceleration when a length x has slipped off
the cylinder is

g
πa

[
x+asin

x
a

]
.

15. Two particles, of masses m and m′, are joined by an elastic string
of natural length a and of modulus λ ; they are at rest with the
string just tight when a force F begins and continues to act on the
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particle m in the direction away from m′. Show that at time t the
distance between the particles is

a+
2F

mp2 sin2 pt
2

, where p2 = λ
m+m′

amm′ .

Find also the displacement of m at this time.
16. A safety device for lifts consists of an extension of the lift shaft

below ground level; the floor of the lift is made to fit this well
closely so that a pneumatic buffer is thus provided. A lift weighting
1300 kg. falls from a height of 9 metres above ground level into
such a safety pit 3 metres deep, the base of the lift being 2.5 metres
by 1.5 metres. Show that the distance x through which the lift will
descend before it is stopped is given by the equation

89.4loge
3− x

3
+9+30.8x = 0,

and x = 1.215 metres approx. Neglect air leakage, and assume that
the pressure of the air varies inversely as its volume, and that at-
mospheric pressure is 1.033 kg.f. per cm2.

17. A heavy uniform string, of length l and mass 3m, passes over a
smooth horizontal peg and supports at one end a mass m and at
the other end a mass 2m. When there is equilibrium the mass m

is pulled slowly downwards through a space
l
9
, and the system is

then left to itself. Prove that, until the mass 2m reaches the peg, the
space passed over by any point of the system at the end of time t is

l
9

{
cosh

√
g
l
t−1

}

and find the time in which the mass 2m will reach the peg and its
velocity then.
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18. A four-wheeled carriage is propelled by a force acting horizon-
tally at a height h above the centre of gravity; the back and front
axles are respectively at distance d1 behind and d2 in front of the
centre of gravity. Neglecting the inertia of the wheels, show that

the greatest possible acceleration of the carriage is
gd2

h
, and that

the greatest retardation is
gd1

h
; whilst, if the forces act at a depth

h below the centre of gravity, the greatest acceleration is
gd1

h
and

the greatest retardation is
gd2

h
.

19. A hydrometer floats in a liquid with a volume V immersed; if the
area of the cross-section of its stem is A, show that the time of its

oscillation about its position of equilibrium is 2π

√
V
Ag

.

20. A horizontal shelf is given a horizontal simple harmonic motion.
The amplitude of the motion is a and n complete oscillations are
performed per second. A particle of mass m is placed on the shelf
at the instant when it is at extremity of its motion. Show that, if

µ is less than
4π2n2a

g
, slipping between the particle and shelf will

occur for a period t given by the equation

sin2πnt
2πnt

=
µg

4π2n2a
.

Show that, if for a particular case this value of t is
1

6n
, the distance

through which particle moves relative to the shelf in this time is

a
2

(
1− µ

√
3

6

)
.
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21. In sinking a caisson in a muddy river bed, the resistance is found
to increase in direct proportion to the depth in the mud.
A caisson, weighing 6 tonnes, sinks 1.2 metres under its own
weight before coming to rest. Show that if a load of 8 tonnes is
then suddenly added it will sink 40 cm. farther. (1 tonne is 103

kg.)
22. A uniform iron rod, of mass M, length a and specific gravity σ ,

hangs vertically just immersed in water from a light inextensible
string which passes over a smooth peg and carries a counterpoise
that maintains equilibrium.
A mass µM is gently added to the counterpoise; show that, if µ
exceeds a certain value, the rod will emerge from the water after a
time √

4a
g
{(µ +2) σ −1}.sin−1

√
1

2µσ
.

Discuss in general terms the subsequent motion.
[The counterpoise is quite clear of the water and motion of the
water is neglected.]

23. A weightless string AB consists of two positions AC, CB of un-
equal lengths and elasticities. The composite string is stretched
and held in a vertical position with the ends A and B secured. A
particle is attached to C and the steady displacement of C is found
to be δ . Show that a further small vertical displacement of C will
cause the particle to execute a simple harmonic motion, and that
the length of the simple equivalent pendulum is δ .

24. A particle moves under forces whose components parallel to a pair
of fixed rectangular axes OX ,OY are −2k2x + k

.
y and −2k2y + k

.
x

per unit of mass. Interpret the equations giving the motion.
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Show that the path, relative to a second pair of rectangular axes
rotating about the same origin with constant angular velocity k or
−2k, is a circle.

25. A particle moves along a plane curve; v is its velocity when its
distance from the origin is r, and ρ is the corresponding radius
of curvature of its path; show that the velocity of the foot of the
perpendicular drawn from the origin upon the tangent to its path
r
ρ

v.

26. A particle moves under a central attractive force which varies as
the distance, and there is also a resiting fore proportional to the
velocity. Show that the path may be an equiangular spiral.

27. A particle moves with a central acceleration µu2 + vu3; find the
orbit. If v be small, show that the path may approximately be rep-
resented by an ellipse whose axis revolves round the focus with a
small angular velocity.

28. A straight tube, without mass, which moves on a horizontal table
and contains a particle of mass m, is started with an angular veloc-
ity ω; find the position of the particle at the end of time t, and show
that, if θ be the angle turned through in that time, then tanθ = ωt.

29. The angular displacement of a pendulum is given by

θ = θ0e−kt sinnt.

Show that the successive maximum values of θ form a series in
geometrical progression.
If the time of a complete oscillation is one second, and if the ra-
tio of the first and fifth angular displacements on the same side
is 4 : 1, show that the time in swinging out from the position not
equilibrium to an extreme displacement is 0.241 sec.
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30. The horse-power required to propel a steamer of M tonnes dis-
placement at its maximum speed of V metres per second is H. The
resistance is proportional to the square of the speed, and the engine
exerts a constant propeller thrust at all speeds. In time t from rest
the steamer describes s metres and acquires a velocity of v metres
per second. Show that

t =
500
75

MV 2

Hg
loge

V + v
V − v

, s =
500
75

MV 3

Hg
loge

V 2

V 2− v2 , and

s =
1000

75
MV 3

Hg
logcosh

(
75

1000
Hgt
MV 2

)
.

31. A loader motor-car of 50 H.P. weights 2300 kg. and its full speed
is 120 km. per hour; it is driven by a constant force at all speeds
and the air resistance varies as the square of the velocity; show that
it acquires a speed of 72 km. per hour from rest in 48.1 seconds,
and that it has then described a distance of 516.5 metres.

32. The horse-power required to propel a steamer of 10,000 tonnes
displacement at a steady speed of 20 knots is 15,000. If the resis-
tance is proportional to the square of the speed, and the engines
exert a constant propeller thrust at all speeds, find the acceleration
when the speed is 15 knots.
Show that the time taken from rest to acquire a speed of 15 knots is

a little over 1
1
2

minutes, given that loge 7 = 1.946 and that 1 knot
= 30.9 metres per minute.

33. A train of total mass M is drawn by an engine which exerts a con-
stant pull P at all speeds and the total resistances to the motion of
the train are equal to µ× (velocity)2 per unit of its mass.
If M=300 tonnes, if the maximum speed on the level is 90 km.
per hour, and if the horse-power then developed is 1500, show that
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when climbing a slope of 1 in 100 the maximum speed is nearly
52 km. per hour.

34. The constant propelling force of the engines upon a ship of M
tonnes is equal to P tonnes wt; the resistance to the motion varies
as the square of the velocity and the limiting velocity is k. If, when
the ship is going at full speed, the engines are reversed, show that

the ship is brought to rest in time
π
4

Mk
Pg

secs. after describing a

distance
Mk2

2Pg
loge 2.

35. An engine draws a total mass of M tonnes on the level and works
at constant horse-power, overcoming a resistance to motion which
varies as the square of the velocity. When the speed is u km. per
hour, the tractive force is P kg. wt. and the limiting speed is v km.
per hour; show that it reaches a speed of V km. per hour (V < v)
from the speed of u km. per hour in a distance.

0.00262.
Mv2

Pu
loge

v3−u3

v3−V 3 kilometres.

If M = 264 tonnes, P = 9000 kg. u = 24, v = 96, and V = 72 km.
per hours, show that the distance is about 1508 metres.

36. A ship of 1680 tonnes and of 72 metres in length is travelling at
full speed ahead 18 knots; the effective horse-power is then 2500.
Show that, if the engines are reversed, the ship can be stopped
in about 7 lengths, assuming that the resistance is proportional to
the square of the speed, and that the effective propeller thrust de-
veloped by the engines reversed is one-third of that at full speed
ahead. (1 knot = 1852 metres per hours; loge 4 = 1.386.)



LONEY’S DYNAMICS OF A PARTICLE WITH SOLUTION MANUAL (Kindle edition) 277

37. The resistance to the motion of a train for speeds between 20 and

30 km. per hour may be taken to be
V 2

800
+4.5 in kg. wt. per tonne,

where V is the velocity in km. per hour. Steam is shut off when the
speed is 30 km. per hour, and the train slows down under the given
resistance. In what time will the speed fall to 20 km. per hour and
what distance will the train have described in that time?

38. The effective horse-power required to drive a ship of 15,000 tonnes
at a steady speed of 20 knots is 25,000. Assuming the resistance
to consist of two parts, one constant and one proportional to the
square of the speed, these parts being equal at 20 knots, and that
the propeller thrust is the same at all speeds, find the initial accel-
eration when starting from rest, and the acceleration when a speed
of 10 knots is obtained.
Show that this speed is attained from rest in about 90 seconds, and
the distance traversed is about 235 metres. (One knot = 0.5 metres
per second, approximately.)

39. A spherical rain-drop falls through a cloud consisting of minute
drops of water floating in air and occupying

a
n

th of the whole vol-
ume of the cloud; it is assumed that the rain-drop starts from rest,
its radius being c, and that as it falls it picks up all the drops of wa-
ter with which it comes into contact, its shape remaining spherical
throughout. If, when it has fallen through a distance x, its radius is
a and its velocity is v, show that

x = 4n(a− c) and v2 =
8
7

ng
(

a− c7

a6

)
.

40. A uniform chain lies in a coil upon a smooth table, and a force
equal to the weight of a length a of the chain is applied to one end.
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Show that the length uncoiled in time t is t
√

ga. Show also that the
kinetic energy of the moving part of the chain at any time is equal
to half the work done by the force.

41. A particle is projected horizontally with velocity
√

2ga along the
smooth surface of a sphere, of radius a, at the level of the centre;
prove that the motion is confined between two horizontal planes at

a distance
1
2
(
√

5−1)a apart.
42. A particle moves under gravity on the surface of a smooth sphere

of radius one metre; if the horizontal circles between which its
motion is confined are at depths 40 and 50 centimetres below the
centre of the sphere, show that the velocity of the particle ranges
between 404 and 428 centimetres per second.

43. A particle is projected horizontally under gravity with velocity V
from a point on the inner surface of a smooth sphere at an angular
distance α from the lowest point. Show that, whatever be the value
of V , this angular distance of the particle will not exceed π −α
in the subsequent motion, and that the particle will not leave the
surface if 3 sinα > 1.

Prove that in the subsequent motion the particle will leave the sur-

face if 3sinα < 1 and
2V 2

ag
−7cosα lies between±3

√
1−9sin2 α.

44. The bob of a simple pendulum of length a is projected in a hor-
izontal direction at right angles to the string with velocity 2

√
ga

when the string is inclined at an angle α to the downward vertical.
Show that, if 4sin2 α

2
+ 6sin

α
2
− 1 is positive, the string will not

become slack during the ensuing motion.
45. A particle is free to move within a smooth circular tube whose

radius is a, which is compelled to rotate with constant angular ve-
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locity ω about a vertical axis in it own plane, whose distance is
b(> a) from its centre. Show that the period of a small oscillation
about the position of relative equilibrium is

2π
ω

√
asinα

b+asin3 α
,

where α is the angle between the vertical and the radius to the
particle when it is in equilibrium.

46. A simple pendulum, of length b, is initially at rest when the point
of support is suddenly made to describe a vertical circle, of radius
a, with uniform angular velocity ω , starting at the lowest point of
the circle. Form the differential equation to give the inclination of
the string to the vertical. Integrate it in the case when

a
b

is small,
and show that in this case the inclination of the string will never
exceed

aω
b(n∼ ω)

, where n2b = g.

47. A railway carriage, of mass M, impinges with velocity v on a car-
riage of mass M′ at rest. The force necessary to compress a buffer
through the full extent l is equal to the weight of a mass m. Assum-
ing that the compression is proportional to the force, show that the
buffers will not be completely compressed if

v2 < 2mgl
(

1
M

+
1

M′

)
.

If v exceeds this limits, and the backing against which the buffers
are driven is inelastic, the ratio of the final velocities of the car-
riages is
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Mv−
{

2mM′gl
(

1+
M′

M

)}1/2

: MV +
{

2mMgl
(

1+
M
M′

)}1/2

.

48. A motor car is driven and braked by the back wheels. The centre
of gravity is at a height h above the ground and the back and front
axles are respectively at horizontal distance d1 behind and d2 in
front of the centre of gravity. Show that, however great the horse-
power, the maximum possible acceleration is

µgd2

d1 +d2−µh
,

and the maximum retardation that can be produced by the brake is

µgd2

d1 +d2 + µh
,

where µ is the coefficient of friction.
If the car is driven and braked by the front wheels, show that these
quantities are respectively

µgd1

d1 +d2 + µh
and

µgd1

d1 +d2−µh
.

[The inertia of the wheels and driving gear is neglected.]
49. Two particles, of masses M and 2M, are connected by an inextensi-

ble string passing over a smooth peg. From the particle of mass M
another equal particle hangs by an elastic string, of natural length
a and modulus λ equal to Mg. The system is released from rest
in this position. Show that, provided the first string be sufficiently

long, the motion will be simple harmonic with period π

√
3a
g

.

Show also that the extension of the second string after time t is
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a
[

1− cos
(

2t
√

g
3a

.

)]
.

[Treat the strings as weightless.]
50. Two particles, of masses m1 and m2, are connected by a fine elastic

string whose modulus of elasticity is λ and whose natural length
is l. They are placed on a smooth table at a distance l apart, and
equal impulses I in opposite directions in the line of the string act
simultaneously on them, so that the string extends. Show that in
the ensuing motion the greatest extension is

I

√
(m1 +m2)l

m1m2λ
,

and that this value is attained in time

π
2

√
m1m2l

(m1 +m2)λ
.

51. A circular disc, of mass M, lies on a smooth horizontal table; if a
particle, of mass m, resting on the disc is attached to the centre by
a spring which exerts a force µx when extended a length x, prove
that the period of oscillations when the spring is extended and then
set free is

2π

√
Mm

(M +m)µ
.

52. The component accelerations of a particle referred to axes, revolv-
ing with constant angular velocity ω, are−4ωv and 4ωu, where u
and v are the component velocities parallel to these axes. Initially
the particle is at the point (0,−4b), and is at rest relative to the
moving axes is a four-cusped hypocycloid and that is path in space
is a circle.
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53. A particle is moving in a circle of radius a under the action of a
force to the centre varying inversely as the fourth power of the dis-
tance; prove that, if slightly disturbed, it will ultimately be found
on one of the curves

r
a

=
coshθ +1
coshθ −2

or
r
a

=
coshθ −1
coshθ +2

.

If the force vary as the fifth power of the distance, show that the
corresponding curves are

r
a

= coth
θ√
2

and
r
a

= tanh
θ√
2
.

54. A particle is projected towards the origin from infinity with any
velocity and is acted upon by a force µu3 at right angles to the
radius vector; show that it will describe a curve of the family

u = aθ 1/4J1/4(θ),

where Jn(x) is the Bessel’s function of the nth order, and find the
velocity of projection in order that a particular curve may be de-
scribed.

55. A particle is attached to a fixed point by a slightly elastic string
and is projected at right angles to the string; show that the polar
equation of the path is approximately

r = c+ c′ sin2
[

θ
√

c
2c′

]
,

where c is the natural length of the string which is supposed to
be unstretched when the motion begins, and c + c′ is the greatest
length it attains during the motion.

56. A fine straight true, of length l, whose inner surface is smooth, is
made to rotate in a vertical plane with uniform angular velocity
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ω about its middle point. At an instant when the tube is vertical a
particle is dropped into it with negligible vertical velocity; prove
that the particle will leave the tube by the end at which it enters, or
the opposite end, according at l is greater, or less than

g
ω2 .

Discuss the motion of the particle when l is equal to
g

ω2 .

57. One end of a light string, of length πa + b, is tied to a point of
the circumference of a circle which is fixed to a horizontal table.
The string is wrapped round the semi-circumference of the circle,
and a length b of the string is straight and tangential to the circle.
At the end of the straight portion is attached particle of mass m
which is projected with velocity V in a direction perpendicular to
the straight portion. Show that the string is completely unwound at

the end of time
π2a+2πb

2V
, and that the tension of the string during

the unwinding at time t from the commencement of the motion is

mV 2
√

b2 +2Vat
.

58. A smooth circular wire, of radius a, is constrained to rotate about
a vertical diameter with constant angular velocity ω , and a small
bead rests on the wire at the lowest point. Show that, if aω2 > g,

the relative equilibrium is unstable and that, if the bead is slightly
displaced, it will rise to a point whose vertical depth below the
highest point of the wire is

g
ω2 . Show further that the work done

by the constraining couple during the time occupied by the rise is
twice the work done against gravity.

59. In the case of a nearly flat trajectory, with initial velocity V and a
resistance equal to µ(velocity)2, show that the path of the projec-
tile is approximately
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y = x
(

tanα +
g

2µV 2

)
+

g
4µ2V 2(1− e2µx)

= x tanα− gx2

2V 2 −
µg
3V 2x3−·· · ,

where α is the (small) inclination to the horizontal of the path
initially.

60. A golf ball owing to undercut is acted on at each point of its path
by a force producing an acceleration µvgsinα along the upward
drawn normal and a retardation µvgcosα along the tangent, where
v is the velocity at the point. Show that, at time t, the horizontal
and vertical components of the velocity are
V cosβ −µg(xcosα + ysinα), and

V sinβ −gt + µg(xsinα− ycosα),

where x and y are the horizontal and vertical coordinates, the mo-
tion, being in two dimensions; and express these coordinates in
terms of the time.

61. A particle is moving in a straight line under the action of a force
towards a fixed point C in the line and proportional to the distance
from C, in a medium whose resistance is proportional to the veloc-
ity. It makes damped oscillations with three consecutive positions
of rest at distances, a,b,c from a given point O on the line; show
that the distances from O of C and of the next position of rest are
respectively

ac−b2

a−2b+ c
and

ac+bc−b2− c2

a−b
.
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62. A particle moving in a straight line is subject to a resistance which
produces a retardation kv3, where v is the velocity and k is a con-
stant. Show that v and the time t are given in terms of s, the distance
described by the equations

v =
u

1+ ksu
, and t =

s
u

+
1
2

ks2,

where u is the initial velocity.
A bullet left the rifle with a velocity 740 metres per sec., and had its
velocity reduced to 720 metres per second when it had described a
distance of 100 metres.
Assuming that the air resistance varied as v3, find the time taken in
traversing 1000 metres, gravity being neglected.

63. An insect, of mass m, alights perpendicularly on one end of a flexi-
ble string, of mass M and length l, which is laid in a straight line on
a smooth horizontal table, and proceeds to crawl with uniform ve-
locity along the string. When it reaches the other end of the string,
show that end will have moved through a distance

ml
M

log
(

1+
M
m

)
.

64. A weightless string, passing over a smooth peg, connects a weight
P with a uniform string of weight 2P hanging vertically with its
lower end just in contact with a horizontal table. When motion is
allowed to take place, prove that weight P ascends with uniform
acceleration

g
3
, until the whole chain is coiled up on the table.

65. A driving belt, which weights m per units length, is moving at a
uniform speed. Show that the form assumed by the belt is a cate-
nary whose shape does not depend on the particular speed of the
belt. If the speed is altered from v1 to v2, show that the tension of
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the belt is everywhere increased by an amount equal to

m.
v2

2− v2
1

g
.

66. Show that a uniform chain, of density m per unit of length, which
is subject to no external forces, can run with constant velocity v
in the form of any given curve provided that its tension is equal to
mv2.

67. A smooth surface has the form of a prolate spheroid of major axis
(which is vertical) 2a and eccentricity e. A particle is describing
on the inside of the spheroid a horizontal circle, whose plane is at
a distance acosα below the centre of the spheroid; prove that the
time of a small oscillation about the steady motion is

2π

√
acosα(1− e2 cos2 α)

g(1+3cos2 α)
.

68. Two particles are connected by an elastic spring. If they vibrate

freely in a straight line their period is
2π
n

. If they are set to rotate
about one another with angular velocity ω , show that the period of
a small oscillation is

2π√
n2 +3ω2

.

69. The motion of a system depends on a single coordinate x; its en-

ergy at any instant is
1
2

m
.
x2 +

1
2

ex2, and the time-rate of frictional

damping of its energy is
1
2

m
.
x2. Show that the period of τ of its

free oscillation is

2π
(

e
m
− 1

16
k2

m2

)−1/2

.
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Show that the forced oscillation sustained by a force of type

Acos pt is at its maximum when p2 =
e
m
− k2

8m2 , that the ampli-

tude of this oscillation is then
Aτ
πk

, and that its phase lags behind

that of the force by the amount tan−1 4mp
k

.

70. A particle, of mass m′, is attached by a light inextensible string
of length l to a ring of mass m which is free to slide on a smooth
horizontal rod. Initially the masses are held with the string taut
along the rod, and they are then set free. Prove that the great-
est angular velocity of the string is {2g(m + m′)/lm}1/2. Also
show that the time of a small oscillation about the vertical is
2π{lm/g(m+m′)}1/2.

71. A mass of m attached to a fixed point by a light spring and its time

of oscillation vertically is
2π
p1

. If a mass m′ is suspended from m

by a second spring and the period of m′ when m is held fixed is
2π
p2

, show that, when both masses are free, the periods
2π
n

of the

normal modes of vertical vibrations of the system are given by the
equation

n4−
{

p2
1 +

(
1+

m′

m

)
p2

2

}
n2 + p2

1p2
2 = 0.

72. A particle, of mass m, moves in a resisting medium under a central
attraction m.P; show that the equation to the orbit is

d2u
dθ 2 +u =

P
h2u2 ,

where h = h0e
−

∫ R
v

dt
, and R is the resistance of the medium per

unit of mass.
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73. In a long railway journey performed with average velocity V , if
the actual velocity v = V +U sinnt and if the resistances vary as
the square of the velocity, show that the average H.P. required is

increased by
3
2

U2

V 2 of what is required for uniform velocity V .
74. A particle moves from rest at the distance a towards a centre of

force whose acceleration is µ times the distance; if the resistance
to the motion is equal to kv4, where v is the velocity, show that
if squares of k are neglected, the time of falling to the centre of

force is greater by
k
√µa3

5
than it would be if there were no resist-

ing medium, and that the amplitude of the swing is diminished by
16kµa4

5
.

75. A particle moves in a straight line under a retardation kvm+1, where
v is the velocity at time t. Show that, if u be the starting velocity,
then

kt =
1
m

(
1

vm −
1

um

)
and ks =

1
m−1

(
1

vm−1 −
1

um−1

)
.

A bullet fired with a horizontal velocity 729 metres per second is
travelling with a velocity of 484 metres per second at the end of

one second. Assuming that m =
1
2
, find the value of k, and show

that the space described in one second is 594 metres, neglecting
the effect of gravity.

76. A particle moves on the surface of a rough circular cone under the
action of no forces. It is projected with velocity V at right angles
to a generator at a distance d from the vertex. Show that, when its
has moved through a distance s, its velocity v is given by

log
V
v

=
µscotα√

s2 +d2
,
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where µ is the coefficient of friction and α is the half angle of the
cone.

77. A particle moves on the surface of a sphere being acted upon by
attractive forces to the ends of the polar axis each equal at distance
r to

µm
r3 ; if it be projected with moment of momentum about that

axis equal to m
√µ, its latitude increases uniformly with the time.

78. A smooth cup is formed by the revolution of the parabola z2 = 4ax
about the axis of z, which is vertical. A particle is projected hori-
zontally on the inner surface at a height z0 with velocity

√
2kgz0.

Prove that, if k =
1
4
, the particle will describe a horizontal circle;

but if k =
1

30
, its path will lie between the two planes z = z0 and

z =
1
2

z0.

79. A train in the Northern hemisphere is travelling southward along a
meridian of the Earth with velocity V ; show that, in latitude λ , it

presses on the western rail with a force equal to
2V ω

g
sinλ times

its own weight, were ω is the angular velocity of the Earth about
its axis.

80. A smooth cone, of vertical angle 2α , has its axis vertical and vertex
upwards. A heavy particle moving on the outer surface is projected
horizontally from a point at a distance R from the vertex with ve-
locity

√
2gh. Show that the particle goes to infinity, and that, for

contact to be preserved, h≯
1
2

Rsinα tanα.

81. A particle is projected along the surface of a smooth right circular
cone, whose axis is vertical vertex upwards, with a velocity due to
the depth below the vertex. Show that the equation to the path on
the cone, when developed into a plane, is of the form
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r3/2 cos
3θ
2

= a3/2.

82. In latitude 45o N gun is fired due north at an object distant 20
kilometres, this being the maximum range of the gun. Show that
if the Earth’s rotation has not been allowed for in aiming, the shell
should fall about 44 metres east of the mark. Show also that, if the
shell is fired due south under similar conditions, the deviation will
be twice as great and towards the west.
[Air resistance is neglected.]

ANSWERS WITH HINTS

MISCELLANEOUS EXAMPLES I

1. 300
..
x =

( t
3
−3

)
g;

2. About 201 secs.;
27. The path is very nearly that of a conic, focus the origin, whose
apse line revolves around the origin with small angular velocity

v
2h2

.
θ ;

28. tan−1 ωt;
32. 99/640;
38. about 97 secs., 1.08 km.

54. u =

√
2
µ

V.θ
1
4 J1

4
(θ).

62. 1.4 secs.

75. v
dv
ds

=
dv
dt

= kvm+1. ∴ kt = −
∫ dv

vm+1 =
1
m

[
1

vm −
1

um

]
, and

ks =−
∫ dv

vm =
1

m−1

[
1

vm−1 −
1

um−1

]
. If m =

1
2

, u = 729, v = 484,

and t = 1 then find k and s.



Appendix A

ON THE SOLUTION OF SOME OF
THE MORE COMMON FORMS OF
DIFFERENTIAL EQUATIONS

I.
dy
dx

+Py = Q, where P and Q are functions of x.
[Linear equation of the first order.]
Multiply the equation by e

∫
pdx, and it becomes

d
dx

[ye
∫

pdx] = Qe
∫

pdx.

Hence ye
∫

pdx =
∫

Qe
∫

pdxdx+a constant.

Ex.
dy
dx

+ y tanx = secx.

Here e
∫

pdx = e
∫

tanxdx = e− logcosx =
1

cosx
.

Hence the equation becomes
1

cosx
dy
dx

+ y
sinx
cosx = sec2 x.

∴ y
cosx

= tanx+C.

II.
d2y
dx2 +P

(
dy
dx

)2

= Q, where P and Q are functions of y.

On putting
(

dy
dx

)2

= T, we have dy
dx

d2y
dx2 = dT

dx ,

291
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so that d2y
dx2 = 1

2
dT
dy .

The equation then becomes
dT
dy

+2P.T = 2Q,

a linear equation between T and y, and is thus reduced to the form
I.

III.
d2y
dx2 = n2y. Multiplying by

dy
dx

and integrating, we have
(

dy
dx

)2

=−n2y2 + const. = n2(C2− y2)

∴ nx =
∫ dy√

C2− y2
= sin−1 y

C
+ const.

∴ y = C sin(nx+D) = Lsinnx+M cosnx,

where C,D,L and M are arbitrary constants.

IV.
d2y
dx2 = n2y.

We obtain, as in III,(
dy
dx

)2

= n2y2 + a const. = n2(y2−C2)

∴ nx =
∫ dy√

y2−C2
= cosh−1 y

C
+ const.

∴ y = C cosh(nx+D) = Lenx +Menx,

where C,D,L and M are arbitrary constants.

V.
d2y
dx2 = f (y).

Similarly, we have in this case
(

dy
dx

)2

= 2
∫

f (y)
dy
dx

dx = 2 f (y)dy.

VI. Linear equation with constant coefficients, such as
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d3y
dx3 +a

d2y
dx2 +b

dy
dx

+ cy = (x).

[The methods which follow are the same, whatever be the order of
the equation.]
Let η be any solution of this equation, so that

(D3 +aD2 +bD+ c)η = f (x) ...(1).

On putting y = Y +η , we then have

(D3 +aD2 +bD+ c)Y = 0 ...(2).

To solve (2), put Y = epx, and we have

p3 +ap2 +bp+ c = 0 ...(3).

an equation whose roots are p1, p2 and p3.

Hence Aep1x,Bep2x,Cep3x (where A,B and C are arbitrary con-
stants) are solutions of (2), and hence Aep1x +Bep2x +Cep3x is so-
lution also.
This solution, since it contains three arbitrary and independent
constants, is the most general solution that an equation of the third
order, such as (2), can have.
Hence

Y = Aep1x +Bep2x +Cep3x ...(4).

This part of the solution is called the Complementary Function.
If some of the roots of equation (3) are imaginary, the equation (4)
takes another form.
For let α +β

√−1, α−β
√−1, and p3 be the roots. Then
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y = Ae(α+β
√−1)x +Be(α−β

√−1)xCep3x

= Aeax[cosβx+ isinβx]+Beax[cosβx− isinβx]+Cep3x

= eax[A1 cosβx+B1 sinβx]+Cep3x

where A1 and B1 are new arbitrary constants.
In some cases two of the quantities p1, p2, p3 are equal, and then
the form (4) for the Complementary Function must be modified.
Let p2 = p1 + γ , where γ is ultimately to be zero.
Then the form (4)

= Aep1x +Be(p1+γ)x +Cep2x

= Aep1x +Bep1x
[

1+ γx+
γ2x2

2!
+ · · ·

]
+Cep3x

= A1ep1x +B1ep1x
[

x+
γx2

2!
+ · · ·

]
+Cep3x

where A1,B1 are fresh arbitrary constants.
If γ be now made equal to zero, this becomes

(A1 +B1x)ep1x +Cep3x.

If three roots p1, p2, p3 are all equal, we have, similarly,

(A1 +B1x+C1x2)ep1x

as the form of the Complementary Function.
The value of η given by (1) is called the Particular Integral.
The method of obtaining η depends on the form of f (x). The only
forms we need consider are

xn,eλx

(
sin
cos

)
λx and eµx

(
sin
cos

)
λx.
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(i) f (x) = xn.

Here, by the principles of operators,

η =
1

D3 +aD2 +bD+ c
.xn

= [A0 +A1D+A2D2 + · · ·+AnDn + · · ·].xn,

on expanding the operator in powers of D.

Every term is now known, and hence

η = A0xn +A1.nxn−1 +A2.n(n−1)xn−2 + · · ·+An1.2 . . .n.

(ii) f (x) = eλx.

We easily see that Dreλx = λ reλx.

∴ η =
1

D3 +aD2 +bD+ c
.eλx

= (A0 +A1D+A2D2 + · · ·+ · · ·)eλx

= (A0 +A1λ +A2λ 2 + · · ·+ · · ·)eλx

=
1

λ 3 +aλ 2 +bλ + c
eλx,

so that in this case η is obtained by substituting λ for D.

(iii) f (x) = sinλx
We know that D2 sinλx =−λ 2 sinλx, and that

D2r sinλx = (−λ 2)r sinλx,

and in general that F(D2)sinλx = f (−λ 2)sinλx.
Hence
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η = 1
D3 +aD2 +bD+ c

sinλx

= (D3−aD2 +bD− c). 1
D2(D2 +b)2− (aD2 + c)2 sinλx

= (D3−aD2 +bD− c). 1
−λ 2(b−λ 2)2− (−aλ 2 + c)2 sinλx

=− 1
λ 2(λ 2−b)2 +(aλ 2− c)2 .

(−λ 3 cosλx+aλ 2 sinλx+bλ cosλx− csinλx)

= (λ 3−bλ )cosλx− (aλ 2− c)sinλx
λ 2(λ 2−b)2 +(aλ 2− c)2 .

(iv) f (x) = eµx sinλx
We easily obtain

D(eµx sinλx) = eµx(D+ µ)sinλx,

D2(eµx sinλx) = eµx(D+ µ)2 sinλx,

........................................................

Dr(eµx sinλx) = eµx(D+ µ)r sinλx,

and generally, F(D)(eµx sinλx) = eµxF(D+ µ)sinλx

Hence

η = 1
D3 +aD2 +bD+ c

eµx sinλx

= eµx 1
(D+ µ)3 +a(D+ µ)2 +b(D+ µ)+ c

sinλx

the value of which is obtained as in (iii).
In some cases we have to adjust the form of the Particular Integral.
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Thus, in the equation (D−1)(D−2)(D−3)y = e2x,

the particular integral obtained as above becomes infinite; to get
the corrected form we may proceed as follows:

η =
1

(D−1)(D−2)(D−3)
e2x

= 1
D−2. 1

(D−1)(D−3)e2x

= 1
D−2. 1

1.(−1)e2x, by the result of (ii),

=− lim
γ=0

1
D−2

e(2+γ)x

=− lim
γ=0

1
γ

e2x.eγx

=−e2x lim
γ=0

1
γ

[
1+ γx+

γ2x2

1.2
+ · · ·

]

= something infinite which may be included in the

Complementary Function − xe2x.

Hence the complete solution is

y = Aex +Bex +Cex− xe2x.

As another example take the equation

(D2 +4)(D−3)y = cos2x.

The Complementary Function = Acos2x+Bsin2x+Ce3x.

The Particular Integral as found by the rule of (iii) becomes infi-
nite.
But we may write
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η = 1
D2 +4

. D+3
D2 +9

cos2x

=− 1
13

1
D2 +4

[3cos2x−2sin2x]

=− 1
13 lim

γ=0

1
D2 +4

[3cos(2+ γ)x−2sin(2+ γ)x]

=− 1
13 lim

γ=0

1
4− (2+ γ)2 [(3cos2x−2sin2x)cosγx

− (3sin2x+2cos2x)sinγx]

=− 1
13 lim

γ=0

1
−4γ− γ2

[
(3cos2x−2sin2x)

(
1− γ2x2

2!
+ · · ·

)

−(3sin2x+2cos2x)
(

γx− γ3x3

3! + · · ·
)]

= something infinite included in the

Complementary Function − 1
52(3sin2x+2cos2x).x.

VII. Linear equations with two independent variables, e.g.

f1(D)y+ f2(D)z = 0 ...(1),

F1(D)y+F2(D)z = 0 ...(2),

where D≡ d
dx

Perform the operation F2(D) on (1) and f2(D) on (2) and subtract;
we thus have

{ f1(D).F2(D)− f2(D)F1(D)}y = 0,

a linear equation which is soluble as in VI.
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Substitute the solution for y thus obtained in (1), and we have a
linear equation for z.
Ex.

d2y
dx2 + y+6

dz
dx

= 0 ...(1),

and
dy
dx

+
d2z
dx2 +2

dz
dx

= 0 ...(2),

i.e. (D2 +1)y+6Dz = 0, and Dy+(D2 +2)z = 0.

∴ [(D2 +2)(D2 +1)−D.6D]y = 0, i.e. (D2−1)(D2−2)y = 0.

∴ y = Aex +Be−x +Ce
√

2x +De−
√

2x.

Hence (1) gives

6
dz
dx

+2Aex +2Be−x +3Ce
√

2x +3De−
√

2x = 0,

and hence we have the value of z, viz.

z =−A
3

ex +
B
3

e−x− C
2
√

2
e
√

2x +
D

2
√

2
e−
√

2x +E.

On substituting in (2), we find that E = 0.
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absolute acceleration, 131

absolute velocity, 4

Acceleration, 2

acceleration is proportional to the distance, 22

Accelerations Parallel to Fixed Axes, 45

airless tunnel, 22

Amplitude, 16

amplitudes of the component vibration, 50

angle of the helix, 248

angular velocity, 57, 153, 253

Aphelion, 125

apse-distance, 84

apse-line, 84

Apses, 84

apsidal angle, 85, 90, 99

apsidal distance, 90, 98

arcual distance, 138, 182

Areal velocity, 5

Argument, 17

asymptote, 181

axis of revolution, 241

Beats, 20

binormal, 236

boat, 72

C.G.S. System, 107

cardioid, 81

catenary, 164, 165

central acceleration, 87, 99, 110

Central Force, 63

central orbit, 78, 246

centre of attraction, 33

centre of force, 20, 33, 78, 98, 246

centre of mass, 55

chain, 189, 263

Change of Velocity, 2

circular cone, 232

circular hoop, 165

circular path, 99

circular ring, 206

circular table, 200

circumstances of projection, 53

clock, 157

coefficient of elasticity, 75

coefficient of friction, 158

coil, 157

complete oscillation, 16, 17, 152, 220

component motions, 19

component velocity, 1

Compounding of two simple harmonic motions, 18

compounding simple harmonic motion, 51

cone, 229

Conic Section, 127

conical pendulum, 228

conical surface, 232

conjugate axe, 108

conjugate diameter, 48

Conservative Force, 144, 145

Conservative Forces, 143

Conservative System, 144

constant of gravitation, 107

convolution, 86

corrected formula, 114

Curvilinear area, 127

cusp, 163

cycloid, 141, 154

Cylindrical coordinate, 225

damped oscillation, 209

damped vibration, 212

damping, 209

density, 7
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density of the medium, 171

Descartes’ Rule, 86

direction cosine, 237

direction of projection, 110

disturbing force, 130

Dynamics, 6

dynes, 107

Eccentric Anomaly, 126

eccentricity, 70, 119

elastic string, 21, 146

Elementary Dynamics, 14

ellipse, 48, 49, 55, 79, 108, 247

Elliptic Function, 152

elliptic function, 152

elliptic orbit, 119

epicycloid, 162

Epoch, 17

equations of motion, 45

equiangular spiral, 72, 83, 140, 247

equilibrium, 56, 198

evolute, 156

flat spring, 157

Force, 6

forced vibration, 215

four-cusped hypocycloid, 161

free vibration, 209, 215

freely falling particle, 57

Frequency, 17

frictional resistance, 209, 211, 215

frictionless, 22

generating circle, 141, 154

generator, 236

heavy particle, 204

helix, 248

Hodograph, 245

hodograph, 83

horizontal wheel, 75

horse-power, 11

hyperbola, 52, 55, 108

hyperbolic orbit, 121

impressed force, 240

impulse, 214

Impulse of a Force, 9

Impulsive tension, 259

Impulsive tensions of chains, 259

Impulsive Tensions of Strings, 245

insect crawls, 72

intrinsic equation, 141, 182

inverse square, 107

inversely as the square of its distance , 24

isochronous, 157, 162

Jupiter, 119

Kepler’s Law, 112

Kinetic Energy, 8, 143

kinetic energy, 239

law of force, 79, 81, 229

law of resistance, 172

law of the force, 52

lemniscate, 248

lemniscate of Bernouilli, 82, 162

light string, 205

limiting equilibrium, 141

limiting velocity, 141, 172, 181

Lissajous’ figures, 51

M.K.S. System, 107

major axis, 109

Mars, 113, 118

Mass, 6

mass moving varies, 186

maximum range, 124, 125

mean angular velocity, 126

Mean Anomaly, 126

Mean Motion, 126

modulus, 152

modulus of elasticity, 146

modulus of elasticity, 21

moment, 131

moment of the momentum, 242

Momentum, 8

momentum of the centre of mass, 56

Motion in a Resisting Medium, 171

Motion in a straight line, 13

Motion in a straight line with constant acceleration, 13

Motion in Three Dimensions, 223

Motion of Particles of Varying Mass, 171

Motion on a Revolving Curve, 248

Motion on any surface, 240

Motion on Revolving Curves, 245

Newton’s Law of Gravitation, 113

Newton’s Laws of Motion, 8

Newton’s Third Law, 56

Newtonian Law of Attraction, 107
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newtown, 107

Normal Acceleration, 137

normal acceleration, 252

normal reaction, 240

Normal Resolution, 260

On the Harmonies of the World, 113

one-valued function, 144

orbit, 110, 129, 131

oscillation, 16

Oscillations, 149

Oscillatory Motion, 197

parabola, 46, 55, 108, 247

Parabolic motion under gravity, 45

parabolic orbit, 123

parabolic tube , 169

paraboloid, 242

Parallelepiped of Velocities, 2

Parallelogram of Velocities, 1

pendulum, 51, 153, 157

pendulum ordinary, 171

pendulum swings, 150

Perihelion, 125

perihelion, 128

periodic force, 209, 214, 215

Periodic Time, 16

Periodic time, 80

periodic time, 109, 116, 119

Phase, 17

Physics, 51

plane curve, 137

planet, 112

point of projection, 110

Polar Coordinate, 63

polar coordinate, 223

pole, 63, 81

Potential Energy, 11, 143

Potential Function, 143

Power, 11

principal axes, 49

principal normal, 236

Principia, 8, 113

Principle of Conservation of Energy, 172

Principle of Energy, 151, 155, 241

Principle of the Conservation of Linear Momentum, 57

projectile, 124

pulley, 189, 200

radius of curvature, 137, 156, 237, 239

radius vector, 63, 78

raindrop, 187, 190

rate of work, 11

rectangular board, 204

rectangular hyperbola, 82

rectilinear motion, 218

relative equilibrium, 228

relative motion, 250

Relative Velocity, 3

repulsive force, 203

resistance, 124, 171, 207

resistance , 45

resistance of the air, 45

Resisting Medium, 171

resisting medium, 172

resultant velocity, 1

Revolving Curve, 248

rhumb-line, 233

rocket, 192

rough curve, 157

rough cycloid, 163

rough wire, 30

satellite, 114, 116

Scalar quantity, 8

Sectorial area, 127

sectorial area, 78

semi-conjugate diameter, 48

semi-diameter, 49

semi-latus-rectum, 243

simple harmonic, 150

Simple Harmonic Motion, 16

simple harmonic motion, 49

Simple Pendulum, 149

simple pendulum, 214, 216

single-valued function, 84

small bead, 30

Small oscillation, 197

Small Oscillations, 197

small resistance, 207

Solar System, 113

spherical raindrop, 187

spiral curve, 99

square of the velocity, 173

squares of the periodic time, 112

stable motion, 97

state of steady motion, 202

straight rod, 206

string, 225

Sun, 112

surface of revolution, 241
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Swing, 157

Tangential Acceleration, 137

tangential acceleration, 252

Tangential disturbing force, 129

Tangential Resolution, 260

Tautochronous, 18

terminal velocity, 172, 173

theory of Sound, 20

time of the oscillation, 26

trajectory, 181

transverse axe, 108

transverse axis, 111

Triangle of Velocities, 2

trochoid, 58

True Anomaly, 126

two simple harmonic motions, 203, 213

Tycho Brahé, 113

uncoil, 157

uniform angular velocity, 57

uniform chain, 189

uniform rod, 198

Uniplanar Constrained Motion, 137

Uniplanar Motion, 63, 107

uniplanar motion, 45

unresisted motion, 181

unstable, 99, 198

unstretched length, 21

varies inversely as the cube of the distance, 53

Varying Mass, 171

Vector quantity, 1

Velocity, 1

velocity from infinity, 89

velocity of projection, 110

vertically upward, 45

vessel steams, 71

weightless rod, 204

Work, 10, 143

work done, 143

Work-Function, 143

zero position, 11
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