Chapter 11

MISCELLANEOUS EXAMPLES I

1. A train of mass 300 tonnes is originally at rest upon a level track.
It is acted on by a horizontal force which increases uniformly with
the time in such a way that F = 0 when t = 0, and FF = 5 when
t = 15, F being measured in tonnes wt. and ¢ in seconds. When in
motion the train may be assumed to be acted upon by a constant
frictional force equal to 3 tonnes wt. Find the instant of starting,
and show that, when r = 15, the speed of the train is about 0.196
metres per second, whilst the horse-power required at this instant
is about 13 (1 tonne = 10° kg.) and (1 metric horse-power = 75 kg.
f. metres of work per second).

2. In starting a train the pull of the engine on the rails is at first con-
stant and equal to P; and after the speed attains a certain value u
the engine works at a constant rate R (= Pu). When the engine has
attained a speed v greater than u, show that the time ¢ and space x

from the start are given by

M M 1,

t= ﬁ( +u?) and x= 3—R(v3+§u )
where M is the combined mass of the engine and train.
Calculate the time occupied at the space described, in attaining a
speed of 72 km. per hour when the total mass is 300 tonnes, if the

engine has 420 H.P. and can exert a pull equal to 12 tonnes wt.

267
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3. A unit particle is attracted by two centres of force, A and B, each
of which attracts it with a force % at distance r. show that, if the

r
particle is initially at rest at a point in AB produced distant v/3.a

from the middle point of AB, it will arrive at B after a time

V34+mv2)|,

2

% 11— % log,(
where 2a 1s the distance AB.

4. A heavy particle, of mass m, is fastened at the middle point of an
elastic string, of natural length 2a, and the string is stretched be-
tween two points, 2/ apart, in the same vertical line. If the particle
starts from rest at a point midway between the two points, find the

time of oscillation if the modulus of elasticity A £ ;nﬂ. What
—a

happens if A < ;nﬂ?

5. A plank, of lengtﬂ ga and mass m, 1s placed with one end against
a smooth vertical wall and the other end upon a smooth horizontal
plane, its inclination to the horizontal being . The plank is ini-
tially at rest and a monkey, of mass m’, runs down it in such a way
that the plank always remains at rest; show that the square of his
velocity when he has gone a distance x is

gx [2(m+2m') «x
2sino [ o _] ’

m a

and that the time he takes to get to the bottom of the plank is

2aSiIlOC -1 m
CcoS .
a m-+2m

6. A plank, of mass m, is placed on a rough plane inclined to the
horizon at an angle &. A man of mass M runs down it. If the plank

is not to slip, show that the acceleration of the man must not be
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10.

11.

less than
M+m

(sin@ — pcos)g

nor greater than
M4+m

(sina+ pcosa)g.

. A chain, of length [, is placed along a line of greatest slope of a

smooth plane whose inclination to the horizontal is ¢. If initially
an end of the chain just hangs over the lower edge of the plane,

prove that the chain will finally leave the plane in time

! lo cota
o(1—sina) 02

. Referred to fixed axes the path of a particle is given by the equa-

tions x = acos Wt,y = bsin wt. Show that, relatively to axes rotat-

ing with angular velocity @, the path of the particle is a circle.

. The greatest and least velocities of a planet in its orbit round the

sun, which may be regarded as fixed, are 30 and 29.2 kilometres

per second respectively. Show that the eccentricity of the orbit is
1

A particle describes an ellipse with an acceleration which is al-
ways directed towards its centre; show that the average value of its
kinetic energy, taken with regard to the time, is equal to half the
sum of its greatest and least kinetic energies.

A particle, of mass m, is held on a smooth table. A string attached
to this particle passes through a hole in the table and supports a
particle of mass 3m. Motion is started by the particle on the table
being projected with velocity V at right angles to the string. If a is
the original length of the string on the table, show that when the
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12.

13.

14.

15.

hanging weight has descended a distance g (assuming this to be

possible) its velocity will be

?\/ga—Vz.

A straight smooth tube is at rest in a horizontal position and con-
tains a particle at A. The tube is rigidly attached to a point O verti-
cally above A, and is made to rotate about O with constant angular
velocity m, so as to move in a vertical plane. If OA = a, show that
the distance of the particle from A at time ¢ is
asinh ot + 2ia)2(sinh ot — sin @t ).

A particle is projected vertically upwards with a velocity which
would carry it to a height of 120 metres if there were no resistance;
if the resistance varies as the square of the velocity, and the termi-
nal velocity is 90 metres per sec., show that the height to which
it actually rises is about 107 metres, that its velocity on reaching
the ground again is 43 metres per sec., and that the total time of its
flight is about 9.3 seconds.
A chain rests upon a smooth circular cylinder, whose radius is a
and whose axis is horizontal; the length of the chain is equal to the
semi-circumference of the cylinder. If the chain be slightly dis-
placed, show that its acceleration when a length x has slipped off
the cylinder is

& [x + asin E] :

Ta a
Two particles, of masses m and m’, are joined by an elastic string
of natural length ¢ and of modulus A; they are at rest with the

string just tight when a force F begins and continues to act on the
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16.

17.

particle m in the direction away from m’. Show that at time 7 the

distance between the particles is

2F t
a-+ —zsinzp—, where p> = A
mp 2

Find also the displacement of m at this time.

m—+m'

amm'

A safety device for lifts consists of an extension of the lift shaft
below ground level; the floor of the lift is made to fit this well
closely so that a pneumatic buffer is thus provided. A lift weighting
1300 kg. falls from a height of 9 metres above ground level into
such a safety pit 3 metres deep, the base of the lift being 2.5 metres
by 1.5 metres. Show that the distance x through which the lift will

descend before it is stopped is given by the equation

3_
89.41log, Tx +9+30.8x =0,

and x = 1.215 metres approx. Neglect air leakage, and assume that
the pressure of the air varies inversely as its volume, and that at-
mospheric pressure is 1.033 kg.f. per cm?.

A heavy uniform string, of length [/ and mass 3m, passes over a
smooth horizontal peg and supports at one end a mass m and at

the other end a mass 2m. When there is equilibrium the mass m

[
is pulled slowly downwards through a space —, and the system is
then left to itself. Prove that, until the mass 2m reaches the peg, the

space passed over by any point of the system at the end of time ¢ is

[
§{cosh\/%t 1}

and find the time in which the mass 2m will reach the peg and its

velocity then.
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18.

19.

20.

A four-wheeled carriage is propelled by a force acting horizon-
tally at a height 4 above the centre of gravity; the back and front
axles are respectively at distance d; behind and d; in front of the

centre of gravity. Neglecting the inertia of the wheels, show that

: : : . gd
the greatest possible acceleration of the carriage is gTZ, and that
.. gd o
the greatest retardation is g71; whilst, if the forces act at a depth
: .. gd
h below the centre of gravity, the greatest acceleration is g71 and

.. gd
the greatest retardation is ey
A hydrometer floats in a liquid with a volume V immersed; if the
area of the cross-section of its stem i1s A, show that the time of its

oscillation about its position of equilibrium is 27 v
8

A horizontal shelf is given a horizontal simple harmonic motion.
The amplitude of the motion is @ and n complete oscillations are
performed per second. A particle of mass m is placed on the shelf

at the instant when it is at extremity of its motion. Show that, if
4m’n’a

U is less than , slipping between the particle and shelf will
occur for a period ¢ given by the equation

sin2zwnt  uUg
2nnt 4mn2nla

: : : .1 :
Show that, if for a particular case this value of  is —, the distance
n
through which particle moves relative to the shelf in this time is

a uy/3
5( _T)
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21.

22.

23.

24.

In sinking a caisson in a muddy river bed, the resistance is found
to increase in direct proportion to the depth in the mud.

A caisson, weighing 6 tonnes, sinks 1.2 metres under its own
weight before coming to rest. Show that if a load of 8 tonnes is
then suddenly added it will sink 40 cm. farther. (1 tonne is 10°
kg.)

A uniform iron rod, of mass M, length a and specific gravity o,
hangs vertically just immersed in water from a light inextensible
string which passes over a smooth peg and carries a counterpoise
that maintains equilibrium.

A mass uM is gently added to the counterpoise; show that, if u

exceeds a certain value, the rod will emerge from the water after a

4 |1
Ea{(u+2) G—l}.Sin_l 2'u—6

Discuss in general terms the subsequent motion.

time

[The counterpoise is quite clear of the water and motion of the
water is neglected. ]

A weightless string AB consists of two positions AC, CB of un-
equal lengths and elasticities. The composite string is stretched
and held in a vertical position with the ends A and B secured. A
particle is attached to C and the steady displacement of C is found
to be 6. Show that a further small vertical displacement of C will
cause the particle to execute a simple harmonic motion, and that
the length of the simple equivalent pendulum is &.

A particle moves under forces whose components parallel to a pair
of fixed rectangular axes OX,0Y are —2k’x+ kY and —2k*y + kx

per unit of mass. Interpret the equations giving the motion.
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25.

26.

27.

28.

29.

Show that the path, relative to a second pair of rectangular axes
rotating about the same origin with constant angular velocity k or
—2k, is a circle.

A particle moves along a plane curve; v is its velocity when its
distance from the origin is r, and p is the corresponding radius
of curvature of its path; show that the velocity of the foot of the
perpendicular drawn from the origin upon the tangent to its path
Ly,

p . . .

A particle moves under a central attractive force which varies as
the distance, and there is also a resiting fore proportional to the
velocity. Show that the path may be an equiangular spiral.

A particle moves with a central acceleration pu® + vu?; find the
orbit. If v be small, show that the path may approximately be rep-
resented by an ellipse whose axis revolves round the focus with a
small angular velocity.

A straight tube, without mass, which moves on a horizontal table
and contains a particle of mass m, is started with an angular veloc-
ity ®; find the position of the particle at the end of time ¢, and show
that, if 0 be the angle turned through in that time, then tan 0 = wt.

The angular displacement of a pendulum is given by
0 = Ope M sinnt.

Show that the successive maximum values of 6 form a series in
geometrical progression.

If the time of a complete oscillation is one second, and if the ra-
tio of the first and fifth angular displacements on the same side
i1s 4 : 1, show that the time in swinging out from the position not

equilibrium to an extreme displacement is 0.241 sec.
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30. The horse-power required to propel a steamer of M tonnes dis-

31.

32.

33.

placement at its maximum speed of V metres per second is H. The
resistance is proportional to the square of the speed, and the engine
exerts a constant propeller thrust at all speeds. In time ¢ from rest
the steamer describes s metres and acquires a velocity of v metres

per second. Show that
_500MV* V4+v  500MV? &

“ o o . and
T 75 Hg By _ v T 75 Hg Ctey2_ 2
1000 MV3 loscosh 75 Hgt

§=——
75 Hg ¢ 1000 MV2

A loader motor-car of 50 H.P. weights 2300 kg. and its full speed
i1s 120 km. per hour; it is driven by a constant force at all speeds
and the air resistance varies as the square of the velocity; show that
it acquires a speed of 72 km. per hour from rest in 48.1 seconds,
and that it has then described a distance of 516.5 metres.

The horse-power required to propel a steamer of 10,000 tonnes
displacement at a steady speed of 20 knots is 15,000. If the resis-
tance is proportional to the square of the speed, and the engines
exert a constant propeller thrust at all speeds, find the acceleration
when the speed is 15 knots.

Show that the time taken from rest to acquire a speed of 15 knots is

a little over 1% minutes, given that log, 7 = 1.946 and that 1 knot
= 30.9 metres per minute.

A train of total mass M is drawn by an engine which exerts a con-
stant pull P at all speeds and the total resistances to the motion of
the train are equal to u x (velocity)? per unit of its mass.

If M=300 tonnes, if the maximum speed on the level is 90 km.

per hour, and if the horse-power then developed is 1500, show that
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34.

35.

36.

when climbing a slope of 1 in 100 the maximum speed is nearly
52 km. per hour.

The constant propelling force of the engines upon a ship of M
tonnes is equal to P tonnes wt; the resistance to the motion varies
as the square of the velocity and the limiting velocity is k. If, when
the ship is going at full speed, the engines are reversed, show that

the ship is brought to rest in time 1 Po secs. after describing a

Pg
2

distance FlogeZ.

An engine draws a total mass of M tonnes on the level and works
at constant horse-power, overcoming a resistance to motion which
varies as the square of the velocity. When the speed is # km. per
hour, the tractive force is P kg. wt. and the limiting speed is v km.
per hour; show that it reaches a speed of V km. per hour (V < v)
from the speed of u km. per hour in a distance.

M? v —ul

0.00262.P—u log, V3 kilometres.

If M = 264 tonnes, P = 9000 kg. u =24, v =96, and V = 72 km.
per hours, show that the distance is about 1508 metres.

A ship of 1680 tonnes and of 72 metres in length is travelling at
full speed ahead 18 knots; the effective horse-power is then 2500.
Show that, if the engines are reversed, the ship can be stopped
in about 7 lengths, assuming that the resistance is proportional to
the square of the speed, and that the effective propeller thrust de-
veloped by the engines reversed is one-third of that at full speed
ahead. (1 knot = 1852 metres per hours; log,4 = 1.386.)
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37.

38.

39.

40.

The resistance to the motion of a train for speeds between 20 and
2

30 km. per hour may be taken to be ;m +4.5 in kg. wt. per tonne,
where V is the velocity in km. per hour. Steam is shut off when the
speed is 30 km. per hour, and the train slows down under the given
resistance. In what time will the speed fall to 20 km. per hour and
what distance will the train have described in that time?
The effective horse-power required to drive a ship of 15,000 tonnes
at a steady speed of 20 knots is 25,000. Assuming the resistance
to consist of two parts, one constant and one proportional to the
square of the speed, these parts being equal at 20 knots, and that
the propeller thrust is the same at all speeds, find the initial accel-
eration when starting from rest, and the acceleration when a speed
of 10 knots is obtained.
Show that this speed is attained from rest in about 90 seconds, and
the distance traversed is about 235 metres. (One knot = 0.5 metres
per second, approximately.)
A spherical rain-drop falls through a cloud consisting of minute
drops of water floating in air and occupying th of the whole vol-
ume of the cloud; it is assumed that the rain—lglrop starts from rest,
its radius being ¢, and that as it falls it picks up all the drops of wa-
ter with which it comes into contact, its shape remaining spherical
throughout. If, when it has fallen through a distance x, its radius is
a and its velocity is v, show that
7

x=4n(a—c) and V= gng (a%) :

A uniform chain lies in a coil upon a smooth table, and a force

equal to the weight of a length a of the chain is applied to one end.
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41].

42.

43.

44,

45.

Show that the length uncoiled in time ¢ is ¢, /ga. Show also that the
kinetic energy of the moving part of the chain at any time is equal
to half the work done by the force.

A particle is projected horizontally with velocity y/2ga along the
smooth surface of a sphere, of radius a, at the level of the centre;
prove that the motion is confined between two horizontal planes at
a distance %(\/5 — 1)a apart.

A particle moves under gravity on the surface of a smooth sphere
of radius one metre; if the horizontal circles between which its
motion is confined are at depths 40 and 50 centimetres below the
centre of the sphere, show that the velocity of the particle ranges
between 404 and 428 centimetres per second.

A particle is projected horizontally under gravity with velocity V
from a point on the inner surface of a smooth sphere at an angular
distance o from the lowest point. Show that, whatever be the value
of V, this angular distance of the particle will not exceed T — o
in the subsequent motion, and that the particle will not leave the
surface if 3 sino > 1.

Prove that in the subsequent motion the particle will leave the sur-
2

2V

faceif 3sinox < 1 and — — 7 cos & lies between £-3 \/1 —9sin’ at.
ag

The bob of a simple pendulum of length a is projected in a hor-

izontal direction at right angles to the string with velocity 2,/ga
when the string is inclined at an angle o to the downward vertical.
Show that, if 4sin2 % + 6sin% _ 1 is positive, the string will not
become slack during the ensuing motion.

A particle is free to move within a smooth circular tube whose

radius is a, which is compelled to rotate with constant angular ve-
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locity w about a vertical axis in it own plane, whose distance is
b(> a) from its centre. Show that the period of a small oscillation

about the position of relative equilibrium is

27 asin o
(0] b+asin3oc’

where o is the angle between the vertical and the radius to the

particle when it is in equilibrium.

46. A simple pendulum, of length b, is initially at rest when the point
of support is suddenly made to describe a vertical circle, of radius
a, with uniform angular velocity ®, starting at the lowest point of
the circle. Form the differential equation to give the inclination of
the string to the vertical. Integrate it in the case when % is small,
and show that in this case the inclination of the string will never

exceed
aq

b(n~ )’
47. A railway carriage, of mass M, impinges with velocity v on a car-

where n’b = g.

riage of mass M’ at rest. The force necessary to compress a buffer
through the full extent / is equal to the weight of a mass m. Assum-
ing that the compression is proportional to the force, show that the
buffers will not be completely compressed if
) 1 1

v° < 2mgl (1\_4—’_1\7) :
If v exceeds this limits, and the backing against which the buffers
are driven is inelastic, the ratio of the final velocities of the car-

riages 1s
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48.

49.

M/ 1/2 M 1/2
Mv—{ZmM’gl (l—i—ﬁ)} :MV—|—{2mMgl (l—l—ﬁ)} :

A motor car is driven and braked by the back wheels. The centre
of gravity is at a height /4 above the ground and the back and front
axles are respectively at horizontal distance d; behind and d> in
front of the centre of gravity. Show that, however great the horse-
power, the maximum possible acceleration is
pgds
dy+dy— uh’
and the maximum retardation that can be produced by the brake is
pgds
dy +d)+ [,Lh’

where U 1s the coefficient of friction.

If the car is driven and braked by the front wheels, show that these

quantities are respectively

pgdi 4 Hedi
di+dy+ uh d1+d2—uh'

[The inertia of the wheels and driving gear is neglected. ]

Two particles, of masses M and 2M, are connected by an inextensi-

ble string passing over a smooth peg. From the particle of mass M

another equal particle hangs by an elastic string, of natural length

a and modulus A equal to Mg. The system is released from rest

in this position. Show that, provided the first string be sufficiently
3a

long, the motion will be simple harmonic with period 7 | —.
8

Show also that the extension of the second string after time ¢ is
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50.

51.

52.

oon()]

[Treat the strings as weightless. ]

Two particles, of masses m| and m», are connected by a fine elastic
string whose modulus of elasticity is A and whose natural length
is [. They are placed on a smooth table at a distance [ apart, and
equal impulses 7 in opposite directions in the line of the string act
simultaneously on them, so that the string extends. Show that in

the ensuing motion the greatest extension is

\/(m1 +my)l
I\ ———,
minA

and that this value is attained in time

E mlle
2 (m1 —|—m2)7L°

A circular disc, of mass M, lies on a smooth horizontal table; if a

particle, of mass m, resting on the disc is attached to the centre by
a spring which exerts a force tx when extended a length x, prove
that the period of oscillations when the spring is extended and then

set free is

The component accelerations of a particle referred to axes, revolv-
ing with constant angular velocity @, are —4®v and 4@u, where u
and v are the component velocities parallel to these axes. Initially
the particle is at the point (0,—4b), and is at rest relative to the
moving axes is a four-cusped hypocycloid and that is path in space

1s a circle.
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53.

54.

55.

56.

A particle 1s moving in a circle of radius a under the action of a
force to the centre varying inversely as the fourth power of the dis-
tance; prove that, if slightly disturbed, it will ultimately be found
on one of the curves

r coshf+1 r coshf —1

a cosh®—2 a4 coshBt2
If the force vary as the fifth power of the distance, show that the
corresponding curves are

0
r:coth— and E:tanh—.

a V2 a V2
A particle is projected towards the origin from infinity with any

velocity and is acted upon by a force pu’ at right angles to the

radius vector; show that it will describe a curve of the family
u= a91/4J1/4(6)7

where J,(x) is the Bessel’s function of the nth order, and find the
velocity of projection in order that a particular curve may be de-
scribed.

A particle is attached to a fixed point by a slightly elastic string
and is projected at right angles to the string; show that the polar
equation of the path is approximately

/ . 2 C
6
r=c+c sin [ ”20’]’

where c 1s the natural length of the string which is supposed to
be unstretched when the motion begins, and ¢ + ¢’ is the greatest
length it attains during the motion.

A fine straight true, of length /, whose inner surface is smooth, is

made to rotate in a vertical plane with uniform angular velocity
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57.

58.

59.

@ about its middle point. At an instant when the tube is vertical a
particle is dropped into it with negligible vertical velocity; prove
that the particle will leave the tube by the end at which it enters, or
the opposite end, according at [ is greater, or less than %
Discuss the motion of the particle when [ is equal to %

One end of a light string, of length wa + b, is tied to a point of
the circumference of a circle which is fixed to a horizontal table.
The string is wrapped round the semi-circumference of the circle,
and a length b of the string is straight and tangential to the circle.
At the end of the straight portion is attached particle of mass m
which is projected with velocity V in a direction perpendicular to

the straight portion. Show that the string is completely unwound at

2
T 27h
the end of time %, and that the tension of the string during

the unwinding at time ¢ from the commencement of the motion is
mv?
Vb2 +2Vat

A smooth circular wire, of radius a, 1s constrained to rotate about

a vertical diameter with constant angular velocity @, and a small
bead rests on the wire at the lowest point. Show that, if aw® > g,
the relative equilibrium is unstable and that, if the bead 1s slightly
displaced, it will rise to a point whose vertical depth below the
highest point of the wire is % Show further that the work done
by the constraining couple during the time occupied by the rise is
twice the work done against gravity.

In the case of a nearly flat trajectory, with initial velocity V and a
resistance equal to p(velocity)?, show that the path of the projec-
tile is approximately
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y=x (tana—l— 8 ) 81—

2uV? /) 4u2v?
2
o 8x HE 3
TNy TRyt T

where o is the (small) inclination to the horizontal of the path
initially.

60. A golf ball owing to undercut is acted on at each point of its path
by a force producing an acceleration yvgsino along the upward
drawn normal and a retardation pvg cos & along the tangent, where
v is the velocity at the point. Show that, at time ¢, the horizontal
and vertical components of the velocity are
VcosP — ug(xcosa+ysina), and

Vsinf3 — gt + pug(xsina —ycos ),

where x and y are the horizontal and vertical coordinates, the mo-
tion, being in two dimensions; and express these coordinates in
terms of the time.

61. A particle is moving in a straight line under the action of a force
towards a fixed point C in the line and proportional to the distance
from C, in a medium whose resistance is proportional to the veloc-
ity. It makes damped oscillations with three consecutive positions
of rest at distances, a,b,c from a given point O on the line; show
that the distances from O of C and of the next position of rest are

respectively

ac — b? un ac+bc — b* — 2
a—2b+c a—>b '
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62.

63.

64.

65.

A particle moving in a straight line is subject to a resistance which
produces a retardation kv3, where v is the velocity and k is a con-
stant. Show that v and the time ¢ are given in terms of s, the distance
described by the equations
u
V= T oon’
where u is the initial velocity.

1
and t = E+—ks2,
u 2

A bullet left the rifle with a velocity 740 metres per sec., and had its
velocity reduced to 720 metres per second when it had described a
distance of 100 metres.

Assuming that the air resistance varied as V3, find the time taken in
traversing 1000 metres, gravity being neglected.

An insect, of mass m, alights perpendicularly on one end of a flexi-
ble string, of mass M and length /, which is laid in a straight line on
a smooth horizontal table, and proceeds to crawl with uniform ve-
locity along the string. When it reaches the other end of the string,

show that end will have moved through a distance

ﬂllo l—l—A—l
M OE m)’

A weightless string, passing over a smooth peg, connects a weight
P with a uniform string of weight 2P hanging vertically with its
lower end just in contact with a horizontal table. When motion is
allowed to take place, prove that weight P ascends with uniform
acceleration %, until the whole chain is coiled up on the table.

A driving belt, which weights m per units length, is moving at a
uniform speed. Show that the form assumed by the belt is a cate-
nary whose shape does not depend on the particular speed of the

belt. If the speed is altered from v; to v,, show that the tension of
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66.

67.

68.

69.

the belt is everywhere increased by an amount equal to

2 _ .2
V5 —V
m.—2—1
4

Show that a uniform chain, of density m per unit of length, which

is subject to no external forces, can run with constant velocity v
in the form of any given curve provided that its tension is equal to
mv?.

A smooth surface has the form of a prolate spheroid of major axis
(which is vertical) 2a and eccentricity e. A particle is describing
on the inside of the spheroid a horizontal circle, whose plane is at
a distance acos o below the centre of the spheroid; prove that the

time of a small oscillation about the steady motion is

o, [4C0S a(l —e?cos? o)
g(1+3cos?ar)

Two particles are connected by an elastic spring. If they vibrate

freely in a straight line their period is —. If they are set to rotate
n
about one another with angular velocity w, show that the period of

a small oscillation is
27

V2 +3w?
The motion of a system depends on a single coordinate x; its en-

: N
ergy at any instant is mez -+ Eex2

|
damping of its energy is mez. Show that the period of 7 of its

e 1 &2\ V2
wm(E-— 2 ) .
n(m 16m2)

, and the time-rate of frictional

free oscillation is
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70.

71.

72.

Show that the forced oscillation sustained by a force of type
2

Acos pt is at its maximum when p? = £ <5, that the ampli-
Ar m 8m

tude of this oscillation is then et and that its phase lags behind

4
that of the force by the amount tan ™! iy

A particle, of mass m/, is attached by a light inextensible string
of length / to a ring of mass m which is free to slide on a smooth
horizontal rod. Initially the masses are held with the string taut
along the rod, and they are then set free. Prove that the great-
est angular velocity of the string is {2g(m + m')/Im}'/2. Also
show that the time of a small oscillation about the vertical is
2 {lm/g(m+m')}1/2.

A mass of m attached to a fixed point by a light spring and its time

T

of oscillation vertically is —. If a mass m' is suspended from m
P1

by a second spring and the period of m’ when m is held fixed is

T . 2n
—, show that, when both masses are free, the periods — of the
P2 n
normal modes of vertical vibrations of the system are given by the

equation
4 2 m’ 2.2 2.2
n’— {Pl + (1 +;> Pz}” +pip2 = 0.

A particle, of mass m, moves in a resisting medium under a central
attraction m.P; show that the equation to the orbit is

d*u P

202 1T e

R

where h = hge vV, and R is the resistance of the medium per

unit of mass.
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73.

74.

75.

76.

In a long railway journey performed with average velocity V, if
the actual velocity v =V + U sinnt and if the resistances vary as

the square of the velocity, show that the average H.P. required is
2

increased by V2 of what is required for uniform velocity V.

A particle moves from rest at the distance a towards a centre of
force whose acceleration is ¢ times the distance; if the resistance
to the motion is equal to kv*, where v is the velocity, show that

if squares of k are neglected, the time of falling to the centre of

ky/Ha’

ing medium, and that the amplitude of the swing is diminished by
16kua*

5
A particle moves in a straight line under a retardation kv

than it would be if there were no resist-

force is greater by

m+l where

v is the velocity at time ¢. Show that, if u be the starting velocity,
then

1 1 1 1 1 1
kt=—| ———| and ks = — :
m\v" um m—1\yn-1 pym-1

A bullet fired with a horizontal velocity 729 metres per second is

travelling with a velocity of 484 metres per second at the end of

one second. Assuming that m = X find the value of &, and show
that the space described in one second is 594 metres, neglecting
the effect of gravity.

A particle moves on the surface of a rough circular cone under the
action of no forces. It is projected with velocity V' at right angles
to a generator at a distance d from the vertex. Show that, when its
has moved through a distance s, its velocity v is given by

log K _ M coto

Vv ’/S2+d2’
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7.

78.

79.

80.

81.

where U is the coefficient of friction and ¢ 1s the half angle of the
cone.

A particle moves on the surface of a sphere being acted upon by
attractive forces to the ends of the polar axis each equal at distance
r to ‘lj—;n; if it be projected with moment of momentum about that
axis equal to m,/l, its latitude increases uniformly with the time.
A smooth cup is formed by the revolution of the parabola 7> = 4ax
about the axis of z, which is vertical. A particle is projected hori-

zontally on the inner surface at a height zo with velocity /2kgzo.

Prove that, if k = 7 the particle will describe a horizontal circle;

but if k = 30’ its path will lie between the two planes z = z9 and

1
Z—ZZO-

A train in the Northern hemisphere is travelling southward along a

meridian of the Earth with velocity V; show that, in latitude A, it

sinA times

presses on the western rail with a force equal to

its own weight, were @ is the angular velocity of tlélje Earth about
its axis.

A smooth cone, of vertical angle 2, has its axis vertical and vertex
upwards. A heavy particle moving on the outer surface is projected
horizontally from a point at a distance R from the vertex with ve-
locity +/2gh. Show that the particle goes to infinity, and that, for

contact to be preserved, h % %R sin o tan o.

A particle is projected along the surface of a smooth right circular
cone, whose axis is vertical vertex upwards, with a velocity due to
the depth below the vertex. Show that the equation to the path on

the cone, when developed into a plane, is of the form
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36
P2 cos— = a’/?.

2

82. In latitude 45° N gun is fired due north at an object distant 20

kilometres, this being the maximum range of the gun. Show that

if the Earth’s rotation has not been allowed for in aiming, the shell
should fall about 44 metres east of the mark. Show also that, if the

shell is fired due south under similar conditions, the deviation will

be twice as great and towards the west.

[Air resistance is neglected. ]

ANSWERS WITH HINTS

MISCELLANEOUS EXAMPLES 1

.. 1
1. 300% = (g _ 3) g
2. About 201 secs.;

27.

The path is very nearly that of a conic, focus the origin, whose

apse line revolves around the origin with small angular velocity

v

252
28.

32.
38.

54.

62.
75.

ks = —

0;

tan~! ot;
99/640;
about 97 secs., 1.08 km.
2
u=|=V.04J,(0).
u 4
1.21 secs.d ) . 1
V_ &V _ _ v
vd—s—a—kv kt——/vm+1 %[V_m—u—],and
v_m = e R —umll. If m= 5, M=729,v:484,

and ¢t = 1 then find k and s.



Appendix A

ON THE SOLUTION OF SOME OF
THE MORE COMMON FORMS OF

DIFFERENTIAL EQUATIONS

d
I d_y + Py = Q, where P and Q are functions of x.
X
[Linear equation of the first order. ]

Multiply the equation by e/ 7%, and it becomes

L3 [yel P4] = Qe PIx,

dx
Hence ye! P4 = [ Qel P%dx + a constant.

d
Ex. s + ytanx = secx.
dx

Here ¢/ Pdx — pJtanxdx _ ,—logcosx _

, COSX
Hence the equation becomes
1 dy Sinx secz
—_— = X.
cosx dx ycosx
DA tanx+C
COSX
d? dy\ > .
II. —)2; + P (_y) = (@, where P and Q are functions of y.
dx dx

dy\’ 2
On putting (d_y> =T, we have % ZZZ_)Z} = Ccll_g’
x X

291
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d’y 14T
SO thata 2dy

dT
The equation then becomes o +2P.T =20,

a linear equation between 7 and y, and is thus reduced to the form

I
d*y dy
II1. d_ =n y Multiplying by T and integrating, we have
X

d
(ﬁ) — —n’y? + const. =n?(C*—y?)

d
. nx = /—y = sin_1X+ const.
/C2_y2
. y=Csin(nx+ D) = Lsinnx + M cos nx,

where C,D, L and M are arbitrary constants.
d’ y

IV. 5 =n
12 %y,

We obtaln as in III,

d
(é) = n’y* + aconst. =n?(y*—C?)

d
.= /—y — cosh™' 2 + const.
Vy:—C? C
Y= CCOSh(l’LX—{—D) — Lenx+Menx’
where C,D, L and M are arbitrary constants.

d2
V. d—:f(}’)-

Similarly, we have in this case

(%) =2 / f(y)%dx =2f(y)dy

VI. Linear equation with constant coefficients, such as
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3 2

d’y d7y dy
b=> +cy = (x).
dx3 + adx2 + dx tey=()

[The methods which follow are the same, whatever be the order of

the equation. ]

Let n be any solution of this equation, so that
(D* +aD* 4 bD +c)n = f(x) (1.
On putting y =Y + 1, we then have
(D* +aD*4+bD+c)Y =0 ..(2).
To solve (2), put Y = e”*, and we have
pP+ap’+bp+c=0 ..(3).

an equation whose roots are p1, p» and ps.
Hence AeP'" BeP?* CeP3* (where A,B and C are arbitrary con-
stants) are solutions of (2), and hence AeP™* + BeP?* + CeP3* is so-
lution also.
This solution, since it contains three arbitrary and independent
constants, is the most general solution that an equation of the third
order, such as (2), can have.
Hence

Y = AeP'™ + BeP? + CeP* ..(4).

This part of the solution is called the Complementary Function.
If some of the roots of equation (3) are imaginary, the equation (4)

takes another form.
Forlet aa+ B+v/—1, a — B+/—1, and p3 be the roots. Then
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y — Ae(OH-B\/—_l)X _|_Be<a_ﬁ\/__l)xCep3x
= Ae™[cos Bx + isin Bx] + Be™[cos Bx — isin Bx] + CeP3*
= ¢™[A| cos Bx+ B sin fx] + CeP™*

where A; and B are new arbitrary constants.

In some cases two of the quantities pq, p2, p3 are equal, and then
the form (4) for the Complementary Function must be modified.
Let p» = p1 + 7, where 7 is ultimately to be zero.

Then the form (4)

— AeP1* 4 Be(P1HY1)X | CoP2x

,},2x2
= AeP1* + BeP1* [1+}/x—|—7—|—...] 4+ CeP3*
o ;
— AeP* + Biel1* x_{_T_F... + CeP3

where A, By are fresh arbitrary constants.

If ¥ be now made equal to zero, this becomes
(A1 + Bx)eP* 4 CeP3 .
If three roots p1, p2, p3 are all equal, we have, similarly,
(A; +le+C1x2)ep1x

as the form of the Complementary Function.
The value of 1 given by (1) is called the Particular Integral.
The method of obtaining 17 depends on the form of f(x). The only

forms we need consider are

X, M ( sin) Ax and e"* ( sin) Ax.
cos oS
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(i) f(x) = x".
Here, by the principles of operators,
— 1 n
L S Y

= [AO+A1D+A2D2‘|’"‘—|—AnD”—|—---]_x”’

on expanding the operator in powers of D.

Every term is now known, and hence

N =Ap"+A;.nx""! +Ay.n(n— l)xn_2 +.--+A,1.2...0.
(i) f(x) = €.
We easily see that D"e? = A"e**.

= 1 .elx
D+ aD?+bD+c
= <A0+A1D+A2D2—|-..._|_...)elx

o

= (Ap+A1A —|—A2),2_|_..._|_..,)e/1x

— 1 e/lx
T 13 2
A +al”+bA +c
so that in this case 7 is obtained by substituting A for D.
(iii) f(x) =sinAx
We know that D?sinAx = —A2sinAx, and that

D*"sinAx = (—A?)"sin Ax,

and in general that F(D?)sinAx = f(—A?)sinAx.

Hence
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1 .
= sin Ax
n D>+ aD?* +bD + ¢
— (D3 —aD?+bD —¢). 1 sinAx
( ) D*(D’ +b)* — (aD* +c)?
= (D3 —aD?*+bD —c). 1 5 sinAx

AP(b—=2A2)? = (—al?+¢)
1
A*(A* —b)* + (ar* —c)*

(—A3cos Ax +aA?sin Ax + bA cos Ax — csinAx)

(A% —bA)cosAx — (aA? —¢)sinAx
A2 (A% —b)* + (aA* —¢)? '

(iv) f(x) = e"*sinAx

We easily obtain

D(e**sinAx) = e**(D+ ) sinAx,

D?(e**sinAx) = eM*(D 4+ u)?sin Ax,

D’ (et sinAx) = e"*(D+ )" sinAx,
and generally, F(D)(e"*sinAx) =e"*F(D+ u)sinAx

Hence

_ 1
D> 4+ aD? 4+ bD +c

_ Hx 1
(D+u)* +a(D+p)*+b(D+p)+c

eMrsin Ax

n

sin Ax

the value of which is obtained as in (ii1).

In some cases we have to adjust the form of the Particular Integral.
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Thus, in the equation (D—1)(D—2)(D—3)y=
the particular integral obtained as above becomes infinite; to get

the corrected form we may proceed as follows:

n= 1 er
(D—1)(D—2)(D—3)
_ 1 1 e2x
D—-2"(D-1)(D-3)
_ 1 1 2x i
_D_2.1.(_1)e , by the result of (i1),
= —Ilim ! (2+7)
y=0D — 2
1
— —lim —e*.e"”
y=0Y
)/2 2
= 2"hm 1+}/x+—+
Y=0

= something infinite which may be included in the

Complementary Function — xe?*.

Hence the complete solution is

y = Ae* + Be* + Ce* — xe™.

As another example take the equation
(D*+4)(D—3)y = cos2x.

The Complementary Function = A cos 2x + Bsin2x + Ce**
The Particular Integral as found by the rule of (ii1) becomes infi-
nite.

But we may write
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n—_ 1 _D+3
D*+4'D*49

COS 2x

1357 +4[3 cos 2x — 2 sin 2x]

— Ljim—— : [3cos(2+ y)x —2sin(2+ 7)x]

B3y 21y [(3cos2x —2sin2x) cos yx

— (3sin2x + 2 cos 2x) sin yx|

= —Llim; (3cos2x—2sin2x) [ 1 — yz—
13350 Zay— P 2!
—(3sin2x+2cos2x) (yx )]

= something infinite included in the

Complementary Function — 5L2 (3sin2x+2cos2x).x

VII. Linear equations with two independent variables, e.g.

fi(D)y+ f2(D)z
Fi(D)y+F>(D)z

0
0 - (2),

d
where D= —

X
Perform the operation F>(D) on (1) and f,(D) on (2) and subtract;
we thus have

{fi(D).F2(D) — fo(D)Fi(D)}y = 0,

a linear equation which is soluble as in VI.
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Substitute the solution for y thus obtained in (1), and we have a

linear equation for z.

Ex. )
d-y dz
622 =0 (1
2Ty (1),
and )
dy d°z _dz
2— =0 (2
dx+dx * dx ),
i.e. (D*>+1)y+6Dz =0, and  Dy+(D*>+2)z=0.

(D?+2)(D?>+1)—D.6D]y =0, ie. (D*>—1)(D*—2)y=0.

. y=Ae'+Be +CeV¥ 4 De V2

Hence (1) gives
d
6d—Z £ 2A¢ 4 2Be 4 3CeVP £ 3De VE =0,
X

and hence we have the value of z, viz.

A B C D
= e T ——eVP iy VR

3 3 272 242

On substituting in (2), we find that £ = 0.






Index

absolute acceleration, 131
absolute velocity, 4

Acceleration, 2

acceleration is proportional to the distance, 22

Accelerations Parallel to Fixed Axes, 45
airless tunnel, 22

Amplitude, 16

amplitudes of the component vibration, 50
angle of the helix, 248

angular velocity, 57, 153, 253
Aphelion, 125

apse-distance, 84

apse-line, 84

Apses, 84

apsidal angle, 85, 90, 99

apsidal distance, 90, 98

arcual distance, 138, 182

Areal velocity, 5

Argument, 17

asymptote, 181

axis of revolution, 241

Beats, 20
binormal, 236
boat, 72

C.G.S. System, 107

cardioid, 81

catenary, 164, 165

central acceleration, 87, 99, 110
Central Force, 63

central orbit, 78, 246

centre of attraction, 33

centre of force, 20, 33, 78, 98, 246
centre of mass, 55

chain, 189, 263

Change of Velocity, 2

circular cone, 232

circular hoop, 165

circular path, 99

circular ring, 206

circular table, 200
circumstances of projection, 53
clock, 157

coefficient of elasticity, 75
coefficient of friction, 158

coil, 157

complete oscillation, 16, 17, 152, 220
component motions, 19

component velocity, 1

Compounding of two simple harmonic motions, 18

compounding simple harmonic motion, 51
cone, 229

Conic Section, 127

conical pendulum, 228
conical surface, 232
conjugate axe, 108
conjugate diameter, 48
Conservative Force, 144, 145
Conservative Forces, 143
Conservative System, 144
constant of gravitation, 107
convolution, 86

corrected formula, 114
Curvilinear area, 127

cusp, 163

cycloid, 141, 154
Cylindrical coordinate, 225

damped oscillation, 209
damped vibration, 212
damping, 209

density, 7
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INDEX

density of the medium, 171
Descartes’ Rule, 86
direction cosine, 237
direction of projection, 110
disturbing force, 130
Dynamics, 6

dynes, 107

Eccentric Anomaly, 126
eccentricity, 70, 119

elastic string, 21, 146
Elementary Dynamics, 14
ellipse, 48, 49, 55, 79, 108, 247
Elliptic Function, 152

elliptic function, 152

elliptic orbit, 119

epicycloid, 162

Epoch, 17

equations of motion, 45
equiangular spiral, 72, 83, 140, 247
equilibrium, 56, 198

evolute, 156

flat spring, 157

Force, 6

forced vibration, 215

four-cusped hypocycloid, 161

free vibration, 209, 215

freely falling particle, 57
Frequency, 17

frictional resistance, 209, 211, 215

frictionless, 22

generating circle, 141, 154

generator, 236

heavy particle, 204
helix, 248
Hodograph, 245
hodograph, 83
horizontal wheel, 75
horse-power, 11
hyperbola, 52, 55, 108
hyperbolic orbit, 121

impressed force, 240

impulse, 214

Impulse of a Force, 9

Impulsive tension, 259

Impulsive tensions of chains, 259

Impulsive Tensions of Strings, 245

insect crawls, 72
intrinsic equation, 141, 182

inverse square, 107

inversely as the square of its distance , 24

isochronous, 157, 162

Jupiter, 119

Kepler’s Law, 112
Kinetic Energy, 8, 143
kinetic energy, 239

law of force, 79, 81, 229

law of resistance, 172

law of the force, 52

lemniscate, 248

lemniscate of Bernouilli, 82, 162
light string, 205

limiting equilibrium, 141
limiting velocity, 141, 172, 181

Lissajous’ figures, 51

M.K.S. System, 107

major axis, 109

Mars, 113, 118

Mass, 6

mass moving varies, 186
maximum range, 124, 125

mean angular velocity, 126

Mean Anomaly, 126

Mean Motion, 126

modulus, 152

modulus of elasticity, 146

modulus of elasticity, 21

moment, 131

moment of the momentum, 242
Momentum, 8

momentum of the centre of mass, 56
Motion in a Resisting Medium, 171

Motion in a straight line, 13

Motion in a straight line with constant acceleration, 13

Motion in Three Dimensions, 223

Motion of Particles of Varying Mass, 171

Motion on a Revolving Curve, 248
Motion on any surface, 240

Motion on Revolving Curves, 245

Newton’s Law of Gravitation, 113
Newton’s Laws of Motion, 8
Newton’s Third Law, 56

Newtonian Law of Attraction, 107
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newtown, 107

Normal Acceleration, 137

normal acceleration, 252
normal reaction, 240

Normal Resolution, 260

On the Harmonies of the World, 113

one-valued function, 144
orbit, 110, 129, 131
oscillation, 16
Oscillations, 149
Oscillatory Motion, 197

parabola, 46, 55, 108, 247

Parabolic motion under gravity, 45

parabolic orbit, 123
parabolic tube , 169
paraboloid, 242

Parallelepiped of Velocities, 2

Parallelogram of Velocities, 1

pendulum, 51, 153, 157
pendulum ordinary, 171
pendulum swings, 150
Perihelion, 125
perihelion, 128

periodic force, 209, 214, 215

Periodic Time, 16

Periodic time, 80

periodic time, 109, 116, 119

Phase, 17

Physics, 51

plane curve, 137
planet, 112

point of projection, 110
Polar Coordinate, 63
polar coordinate, 223
pole, 63, 81

Potential Energy, 11, 143
Potential Function, 143
Power, 11

principal axes, 49
principal normal, 236

Principia, 8, 113

Principle of Conservation of Energy, 172
Principle of Energy, 151, 155, 241
Principle of the Conservation of Linear Momentum, 57

projectile, 124
pulley, 189, 200

radius of curvature, 137, 156, 237, 239

radius vector, 63, 78

raindrop, 187, 190

rate of work, 11
rectangular board, 204
rectangular hyperbola, 82
rectilinear motion, 218
relative equilibrium, 228
relative motion, 250
Relative Velocity, 3
repulsive force, 203
resistance, 124, 171, 207
resistance , 45
resistance of the air, 45
Resisting Medium, 171
resisting medium, 172
resultant velocity, 1
Revolving Curve, 248
rhumb-line, 233

rocket, 192

rough curve, 157

rough cycloid, 163

rough wire, 30

satellite, 114, 116
Scalar quantity, 8
Sectorial area, 127

sectorial area, 78

semi-conjugate diameter, 48

semi-diameter, 49
semi-latus-rectum, 243

simple harmonic, 150

Simple Harmonic Motion, 16

simple harmonic motion, 49

Simple Pendulum, 149

simple pendulum, 214, 216

single-valued function, 84

small bead, 30

Small oscillation, 197
Small Oscillations, 197
small resistance, 207
Solar System, 113
spherical raindrop, 187

spiral curve, 99

square of the velocity, 173

squares of the periodic time, 112

stable motion, 97

state of steady motion, 202

straight rod, 206
string, 225
Sun, 112

surface of revolution, 241
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Swing, 157 Uniplanar Constrained Motion, 137
Uniplanar Motion, 63, 107

Tangential Acceleration, 137 uniplanar motion, 45

tangential acceleration, 252 . .
unresisted motion, 181

unstable, 99, 198
unstretched length, 21

Tangential disturbing force, 129
Tangential Resolution, 260
Tautochronous, 18

terminal velocity, 172, 173

varies inversely as the cube of the distance, 53
theory of Sound, 20 .
. o Varying Mass, 171
time of the oscillation, 26 .

. Vector quantity, 1
trajectory, 181 .

Velocity, 1
transverse axe, 108 . e
. velocity from infinity, 89

transverse axis, 111 . L

. . velocity of projection, 110
Triangle of Velocities, 2

trochoid, 58
True Anomaly, 126

vertically upward, 45

vessel steams, 71

two simple harmonic motions, 203, 213

Tycho Brahé, 113 weightless rod, 204

Work, 10, 143
uncoil, 157 work done, 143
uniform angular velocity, 57 Work-Function, 143

uniform chain, 189

uniform rod, 198 zero position, 11
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then -:i=—— ErE-I.- gt ] |_3~{'+ LJ,,\'l ]-a‘mut 201 Eees.,
il 3—331}'}& b-.., Cm :| lﬂ |:Exl}'3 + (3—123—A|:ahm_1t- B722 fect,
3. i —Hi‘u}é— i_‘;-i;-'fa_}’” ao that i'g".-mﬂs_fﬂ" %

— } ﬁ .t\'a 3".'”2 _...-rJ-,
sinoe Fol when r=aFa .. 8= {

@ [ad—at?

g T G| ; i O
i 3 fi—f: - {f; —%ﬂ—_sdx TPub #=4/%a sin d]
X A A Ay I

2
]

@ gin &
n&!afﬂln-l- L‘g%mﬂ_ _) dg:l_‘ |—={th E+]Qg'| +m£.ﬂ n—ll-

w'E

CaE]

?( “ﬁ+log_‘m_iﬁ) [1-—- lngff..*awﬂ:']

4. When tha partinle has {]ﬂscezlded a distunes @, wo have

{—g=5 3+z Zx ey
I

dt =2 + ag——T{w s whare-:;=--ﬁ.

2

LR . , ; ;
it=— £ [[2—ayt= c‘-’], and hence & vanizhes again when x=32c
5
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~ The lower string is then gtill s‘txat‘.chﬁi i l—2e=o,

M nai
A and the tmm of uamllatmu =ir N @

: -:]1" 1 I .E_" the lower string is just unstretched when s={-d and

(e i g A

}__3. then a*a—_[e“ (I—@—i]2 The eguation of mobion now becomes
L = 1L — ?x'!—-l_%---- , Bic,

5. P9 iz the vertical fores at the lowér end of the plank, and & and &
43 t'he forces between the plank and monkey along and perpendicular to the
:."'pl.anla:, Wi hs,-.ra, bﬂ;r regolving vertically and taling moments about the
; .'.u[:rp&r endd, |
i 8= Reosa—Psinatmy and §.2come=R. m+mgr:cas::
) fg_H“g Hpeoslg—
D3 008 8 2
(2 m) o — i
Basing Y
e m—__i‘?— [b] whare X =20 2%,

.F'E.luu:— +R(cuﬂa—
HE".II'DB ’\ﬁ—dngalnm+ﬁ—

-2a sm o i

= {h‘*{l‘*]

e I _ ‘?a S
S fis ]\-—:L
. e T i
it .m:d henee ¢ ,\/ i sm . f: 'ﬂ.‘ _{_'\ ﬂz [mq

W :-. E.:c_= g

L ‘Lot Rl nmi ;;R be t]je nm‘ﬂ::a,l pmasu‘m anil: thﬁ ﬂ*mtmn bietwean l;ha':'-
- uplank aid the plans, ‘and # the friction batween ‘the ‘man’ s fE:E-t. and the_»'
: 1-plan!c Them if fhe: plank be ol *t]m Bornt-of shding down, i
; mgmsu+ﬁfgmau? And F+“E]l-mgslﬂa ,‘- !

f

'I'he mﬁelemtmr.‘. c-‘f thn n:.an - .—-—F+ J}E Snd _ ’H+ g (51; e F’ s n}
ST the plank isom t-he pmnt of slidivg upwarﬂa, e chan:g& the mgn“'.'
: := {af p, a;nﬂ the mwaspon-:lmg limiting acceloration of. the faa AT

s -_ i)
% WE m_{_,jm,

: [ﬂf+m}g{&m u+;m::us r.r}
AR ra
S -f.#;-a & '-‘:‘.‘iﬁ' M sine é-u st ;.-1 (1 i 63 {.r+?l.'3,
"',w'ham I'-u 11 Hg::& ;cf"‘— (1—#in a} [{Js R —1‘2] a.uu:l hemce .

_:,\/ If']-cmua‘:};j wm_l_w-h'—log[ﬁlﬂfmﬁ‘ﬂ

i-'+h+v’ TFAE N 'h“ 2 glih‘m“ :

. ST.E."u__ lﬂg Ell.'.li.'r E.

'..'T.]: B
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8. If £ n are the enordinates referred to the revelving axes,
el ol =£ 008 ot — 5 8in el and bain wlesfsin of+poos wd
; @l -
Cobmacoat i+ haint al= i =38 b

bh—
5 —g—mimf and = Tmnzme.‘
Henee (§ugﬁ +qﬂ-(a—ﬂ_-§> « el
P 2 1 _]u.l-l-e
o o -7 |=A T
- 3 1 .1~
Al Egk}%)"=p[m—a:|=§ J.+rJ'

Lol o
_1—1;,] a EH) ?ts,)
10, Asdn Avb 40, v=s/p. €D, (.Duy"uﬂﬁm‘ﬁ-q-b“ mzﬁ,

dr=4/ot sind 885 cos? 8, A=pe, and AT=8xab
Hence the averaga kinetic energy

f g m. ifﬂ-' e
e ‘1#*:&; ab (a* cos? 841 sin® §) 46

2
_r.ﬂ_p 4. |: i Er-*] ﬂh)=a$gi*mn. 2

it |:9—.-'1,‘J'="l - T ,._-,;gf (fﬂﬂj—ﬂ and Bm{ —#=3mg~ T\

I [l — 3y, and 5'95—muat.ua_V,
i at 2 Gl Ere 1 ra
Pl g 3y, so thet 27 -]--2 o= —3@?'-{-5 P24 By,

]
Henee, when :-=‘§, = ,j.;m_ 2 ote;

12, A P=w af time ¢, when €4 has votated through the angle me
. F=wt. OFsin AOF - gein of=obr— g 8in wt

o o= cosh wf 4 Duinb i+ -2 sinwe
D

whera Oem (7 andd —a-¢1=[.§.'_-|f=.n=i)m+£

oL e —J:{n ainls e 4-%(3&::}1 ol — &1 w.s‘}],
13, F=+/2y.400=160, and ¢=300. Henee, by Art. 107,
gy, 160 E00R )\ oaaye
00t~ OB TpgE T B (Eﬁ) '
93‘} [1-22378 — 109861 | =252 #. approx.

#h 60 _ed 421 )
A]ﬁnm—mn 30 tan—? (E338= TR g T ¥ that ¢, =4-503.

© o=
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Also, by Avt, 104, i
— 7
=1.1I:RJ‘3[1 - A ]-3002[1 —:—{f], po that -:J=3m a2 L 141176,

a4
- Also oonh £2 ¢ w_t AT 1338 =cosh (-5108).

B a0

Eg—ga',iﬂx S108=4787, and the tote] tirme =935 ascs.

14, At time ¢, let #=ad and f be the acceleration. Then, for the
verhizal i:ls.ri-,, we have maf=wmay— T, and for the part on the cylinder

S Tt dT —madd g cos g=F.madp.
s i [g s1u¢+f¢:L i [_ym a"‘-f<*’ _Ff.,)'|1
- Henco f35 as given. .
15, At time # let @' have moved thmngh & istance @ and let £ be the
length 01' the string; so that

i R T-=}|Ea ,n_.ud m[g-.|_§x_ _1%”_,_;{
: :Iiémé_: §='_ﬂ|:,g_-n'_wig:|.
| B S %-dcusiﬂd—-m_-—%msw o
_Usn”‘._— mia, ﬂgg [1—caaptj aud hnnoem—:%i F+Fmpt-£§]

J,{;'r ‘W'hen ﬂle ll.ﬂz ]ms Danﬁtrabﬁ! a . si;a.na:e w mtr.- i:rha v.ell thé inaaaur&
0 B .

{Ifﬂ]E air in 1t- L5 II i--u—_m- L

H.enc:a BI'ﬁJD.x' 30009'-}-[ _H]D x]xﬂ-%ﬂ imd Hﬂlﬁxlf.ldg
= g[“g_ 235] soth tsﬂﬂg[m +ﬂas]‘?'5'-:-m "’r]wg.:m i

The veluﬂty vamshes WhEu 31}+ 1% ;1-_355 ]g.gc _EQ ~=

-‘.}u reﬁ'emnee to t‘.he ts.bles 11:. i Eﬂ-ﬂ:llv séen t.hat ’a_d 1 ne.n.rlj

. T ::-'Tllere-m ﬁthimum when A len,gth %Of thé strmg 1y @ th& mme
: mr:]:a a8 . Heno&, Whe:ll t]ns ]augiih is. p1n| ' S

Hmr::m.-;.f-a amy ﬂm-;r T Smy, e .#—E
: .:zr——-—'—ﬁnsh(d ) b‘lnl}ﬂ 1mtm]],}' o= l},zmd a,—:;, at.a

i,

.:..."il"‘:-ﬂ' ;' e :r=£when Etrﬂ-h (ﬁi} =3,
‘anl:l. tl:uan thu- valomtv __j}r s:ujh (J_ ) ﬁ n,-"ﬁg!'
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18. Let £ and & be the vertical forces on the back ond front wheels.
The frictiomal resctions of the ground must be zero ; for otherwise the
angnlir accelerabions of the wheels would bo infinite, since their inertia is
naglectod.

Resolving vertically and taling moments, we have, if & in the force
applied,

B (dy+ i) =Hgds— Fhy, and S (dy +ds)= Wygdy + Fh.

Now R0+ for otherwiae the back wheel would leave the ground ; henes
the msximum value of F s %{E@ and the corresponding acu-«aIamtitm=gng.

Fuor a retardation, change the sign of £; then sinee S=0, we have the

mazitam value of F—-‘Eﬁi:i]' » snd the maximum retardation _&:;ﬁ'
L]

1 the fores sets bolow the cenfre of gravity, we change the sign of &, and
for an socelsration have
I I:ﬂri +£q}=.:1n!r5f£g+}'ﬂ, nand J\H{dl +¢£;:I=M_1;I‘(f1— Fh,
Henee the maxivaam valne of £is Ei’ql, Bl
Himilaaly for the vetardation se before,

19, The rass of the hydrometer= 7, 5 When it has been digplaced
vertieally through a distanes 2 we have _ -
Vo, #= Voo ={ V& Azl pr= = dapy, ate,

20. Tha displacetrent of the shelf being £ at time ¢, wo have

£ 4 405 S e,

Also, if the distance of the particle from the origin st this time is #, then
= = gy, amd D — g,
Hlipping ceases when &=§ Lo when
sioZwwi opg
Sornd dminto
dariufe

Binee sin 8 2 always < f) we st have -

Tu the partisular case given, we bave .u.'ru"—; = %-4}!:553&-5’
fh =t Ernta, and . d= — 64/ dnrntan
i : | Vi
R T L P o + 1y, 20 that, when t—@ y iy — & =T;E .

Alro wher f=f’;¢’ éng. Henco the distance slipped throwgh

={x3—£)— (m— a) mebe,

21. When the depth of immersion is & let the resistance be 1. 23404,
Hunce B 22405 =6 22407~ A 22400,

.f:ifmﬂg;x—}%’gﬂ, Siuee #=0 when r—4, , A=3,
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Apain 14 5 3240 _a}.r'— 14 % "ﬂ&!ﬂg = A 22400y,
a0 that Jeg- dugr_y, and henées o= Em.-' = g‘yr— [9-5' A E-i if - 42].

. @iz zero whon 2|;_g,.--1]=i__L iE— 4,3‘1 £z when w=5%fect, Henee, ste.

2%, The connterpoise P:}H'—-‘E, When a length @ is out of the water

Hgle—a (w @}

(M P i=(pH 4 Plg+" — My

g
’ i+ 2 a— 1}
—r.'l:p.,l:l:rv=zi coz M4+ B)=— apr cos Af, since #=00nd &m0 when fe={.
The rod will emerge. When @=aur = — Fur 608 A,

— A — gpe), whers WE=

_. i.e, when Fio D ain—! — '-.-"r_J provided that then & 20,

X
ot ' alyn-snn}!.hathen =0 e if s N,
':-ti,e.if- 0 < gin~1 __' ,Tuﬁ,]f;.t}i
: o "|F"'I Fﬂ' o ar

: Du ﬂmergﬂme thia waght o o mrla_rP+pﬂf; g (ﬂf——J—pﬁf)J,
“and that on the other is My, -~ :
It p-:-:l t.he AR A will be hmug]m o rest., and then fall back mm thc:
wa‘h:sr. : : CEO Haeh ; :
! CEF pf.‘-"l the mm M wﬂl u:r:unum&tu ns:n, aﬂd ﬁns,ll;;r be pullecl o‘trm_
._'thepeg . ERRh 2 ; i '
: 0 et ¥ b& t.h& l:rnn'u:w.l s?tMt‘-c]:l-eﬂ lengthﬁ uf:iﬂ' {3’3 m:d
: uuah*etched lerigtlia, 20 that

b P .E : 3 B !
3'1.'1'—3 ?I.’H {f ﬂd 'ﬁ.x+& ?-.I'? g-l-m;;r, imd t.huﬂ}-i—i, mé—'qu';_

!

: a'? tﬁei'r'

il 4t B
"L’F.’hé.fn t.ha furtht:r djsplmemaut of e lmn‘:cle ia f then

mé‘_mg -h"'t-"'&""f E+w.y & f '! E ;.‘ }'_‘;:|—...j£, &tﬂa

24. The f::smea mﬁmg on the bnd} ave s ongy aqual Ho THxX dmtaneeri
';'.a-:;t.mg towards the' origin, and the ‘othet, equal ta’ Lkvalﬂmty mtmg inw
d]:rﬁrt.luﬂ pe‘r’pendmul&r fo ﬂm dnwectmn of mntm:-n. ST L ; 0
: The' eqm,tmns of raotion ave . ”
I:ﬂ'”—t—.‘zﬁﬂ},v EDy =, and {Bg+ﬂb‘}y+bﬂ£-rﬂ
DR D F I (kg =

Pur.t.mg .f;-|-;:-,r:.=eﬂ" we thmnpch of —2hi om0 that 7
L) .?"+'_'i:ﬂ f.i 4 BiY{coa i sin B+ (04 Dx) {doa Oy g am _..E{], :
Candlo ot elw—d cos ki — Bsin ki 0 dos 2kt + D gin 2k, Gl

S e y-z-i #in .{¢+B mah F"smﬂf-t-ﬂma 9t S,
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If £, 5 are the coordinates of the point referred 4o the frst pair of
pevolving axes then
E=ao0n il +ysin b= + (oo 24 D ain B
and w=geea it — pein b= B — Csin 3kt 4 Doos 342,
and hetice =P+ (g— Bi=(2a IR,
o, for the second pair of revolving axes,
£=ucoe 88— y win 2t = 4 cos B - L gin 3kt + ¢,
w=y cox Bkt + & sin 2t =4 slu 8¢ + B cos 3k 1,
and hones (E— 0 (= IhA=4 %4 B2
23, The polar cotrdinates of the foot of tha perpendicular are p and

7 8 £ b T &
Ao that Fe= (?Efj,] +pd ({g) . and hence %2 =l r-E:I"E’B_EJ‘—'::ITP'F-—H.

s
- N g VAP 2
Now LWJ‘)I =FT?=¢t—p% o that == -—Pﬂ.
i ey ot .
2, L —Ff'ﬁ—.lr, and ;-p:.-- sl i,
[# the curve is the equiangular spiral r=qae *0 thon =g,

i © A= gl .d?"_ -
A, i L B P

and the firat Efluat.inn i zafigfied if coag= — i
2-\;}1

e B po, w "
27. EEE'I"H-—AE—I ao that dTF-}-H-(].—EI) mﬂ.

Pat 1 —l%:mg. Henee

i ) i . .
‘”-:;ﬂﬁg{u}i (Ed=] -['i‘i‘lﬁr-l'.ﬂ} =-mTfﬁ+'A (=] [ﬁ'-—{-{ll —m] E—B}].

Sinea » ix amall, m is nearly unity, so that (1 =) d s swall, Hence the
path 32 very nearly that of 4 conic, foens the arigin, whose apse. line
revolves round the svigin with a small angular velacity, which

d ¥ b 1
= AL —m)yd =r§[1 = (l - 3_&3)]: eV & approx,
28, Leb o be the initial distance of the particle from the point about
which the tube started to turn, Then #—pffed, and i% (r28) =0, eince

the veaction of the tube is zevo ; for otherwise the tube would Lhave an
infinite sngular acceleration, sinee its mase iz zero.

. otg? at
S rtd=const. =%, Henep §= -~ Peale®——

: e o

Pl ey

aid Cotmiem = it gl

=
s i @
= — o and fstan—Yten

=i
e

L4 s
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29, f is soro, when — bginnitn cosni="0, Lo when tanm_%_hn &,

Ao when ad=g, =+, 25 +a-and 2hen the values of 4 form & G P. with con-
—k¥

atant ratio o © \
2 — Rl
b i
L ;_:_a n o=, then .E=El,-loguﬂ=‘34ﬁﬁ.
8 i
= =T8T =tan 86° 50
] AR50 W ]. 5217

st J=E-_:ﬂ‘ %u .-3' -;l: ﬁ =-341 seo,

o ban Bad="

LT V= w580, where u P? iz the resistance per ton,
ik Also E“Mt{u%—ﬂﬂiﬂﬁ dg_c—#m = B (VR
i " ;.:5 _' iy e 1 Vo
ST 21’” Toa!
i T 112!@'1?“ Ve s
S e Wy i an)
S onean o pdw e P
Nlua B | oy llﬂﬂxﬁmyglﬁg{lr'—ii’zj+non$h ;
COLgHTE BT
T Hg “g_r' T
55 E - s P =17
A.lsn:f?._ ,thﬁn fvag -r:? :
e _EHW_' k}g e a +]

'_—-.j:: "h ]dg Cﬂ&hi = etae,, :19.. gwen

L T bl igi gy e
119 1;55 E_yt:g {ﬂg ::3-}32 f-glla.gs 4':=EE x'I 296202 477 & secs, ‘

151; lrf@ﬁ 5;163391‘:’3“ 1‘1‘1_%1?6@ T-?%:ii:—.,]%fﬁ 103"1.,;'9;5 o

”’f‘ x'ﬂﬂ&lémlﬁﬁ"% foot. e les .

o aiit] fiten

20100 lﬂD 15 ® lﬂﬂ .
M 1 Fl: = e ——— E e [#]
; 3‘2 mm}un w0 a_’z-’_ : 25, n.ndfr 151]0
Henne, ag'in EL :-‘H] We.']mva i :

. 1no' il
z 10 10000 5 10000 s ’“% I4EIDD 2 ? m
5 lwmmgw_u = _’i o8, 7=

L EMEy
e
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de a0y Ty
2 9540 '!::' |4
&0 that o this case the acceloration, when =325,
_ baly 1HOGAD A2, 27 "'J.{l"
) G

Also, by the same example,

TR 10t
33, P=yu 88 and p. 887 x 85=1500x b0y, Also P=prt4 l‘:’g
:m?—f*ﬂgm (aet— 1'~J=%&¢ % 1500 x 550,
Henee
;:‘ = E:%J , 30 that ‘3-‘—:? SITT T per sec. = % 177 miles per hour
%x 13- 3=52 miles ey hoor noavly,

ad, wlF= PL2ddlg, Alse

i g ot sty
22400 2 23 it LN faw — P 3
0 = 0 ; 22400 — Mo - 2240 . T

Pg L
= fz.#-t—.&" Ften 1] 4,£=

P ¢ [ vl 4
o CHETT ) R [ log ( +f{’l] lﬂgv
30, Take a mile and an hour as the units of space s_ﬂd titne, go that
= &
§=32 % (B0%) 2+ FUED~= 5&&“.‘?‘. .

We then have pdwt g =rate of wnrking=§g% -

Tl ¥ R Pug ot — V4
efs ‘:’.'-2{1:! | - gV T
g a ffr' TagF 1 P

and

C s, AP algeﬂ T’
T = 1:1-
= MOl ¥ —ss stated,

Fu m 3x32x2Tx]1F gt F
With the numbers given, this

TP BB BB L TIXTOANITO o e
=00 S0 %IE — oz, — 5 1 le&——-mjﬂ— (184056 = 1-30833) feet

wr g ot HOMC feet,

36, V=Ml spend= lﬂ%ﬁ:.ﬂ}_ 12—2 =nearly 30 and the propeller thrust
themm 1 w173
azan, . “:-;— —%y Ve i,
e r' wely 4

a0 that 1135 Teras =i, - VEran
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Heance, when v =i, _
_H20xyye 7 1180 x 1680 2 80
= 5500 % 50 < OB d= '5mxﬁwﬂ % (1-385) nearly

= 1601 ft. =shout 7 lengtha,

37, Tale a mile and an honr az the units of space and time, o thae
32 x 27 x 100

§= 3 % (60F)P 0280 ="

Then 2940 % o 920 ”P o[ 2 1o
i s ! 4m+
‘Henea ‘
'L-’;._'F‘ dp  1[F. 4 ‘_( il 11 il
ST i i | R Eﬁ =l Ty P
_W B8 flr 1
IR0° R0 1340760

S i1 E’E*lﬁ #11  6lw
g -—u—-——-aﬂ TR T Ffmmmut.as =ahiout 87 secs,
Also ﬁ% - - : -ﬁ%;’ﬁs-- [1:.~.cr.d rvM:aﬁm:iE:log,'g.
B 42‘;%1 [2 19?22-%?944] miles=aboiit 1180 _w.rda. £ :
: 35 I‘he I‘B.EIS’(.EL[‘IGE‘Iﬂ.‘I -I-B«ua whrxm A Bx (]20 .a.lno gt
d+B(%g—D)J .”mu ;_%_:.27 i au} I:Imt E 5;1;:-:110

_:Pmﬂ the pmyeller 'I;tl:f'mt =J +B (%

'EED{M‘}'X'E:SG )

T]'m 1111t| a'l a‘l.ime]emtmu

o= BExlﬂ"—'ExMKllﬂ 15%022“'40 ——ft-,u‘eeu.g

'T]lc Bﬁceleratmn 10 l-mntﬁ RESL L R A SRRERT:
10008 £50 S
: [mxmé {(ﬂ _-I_—(a)}xﬁelxllﬂl {1150%?:2240}.—@,_ i
“The geum'a] nquy,t._{:u of miotion s ! 3 J i
mmi:rxam:.c[g 1mox234axﬁ—?’=mxwﬁ M::-c'.l]{)[—-—ﬂr’
o & R *uda foad
ﬁmﬂ* j 09—t 18 I:l‘:'g':m'i o j] a.g@"j i
6% 100 B L
3: TExIT [EB '?] El'}:fﬁ.m lyds ﬂ,ppmx._ - :
AL (5 :'dﬁ' lDD+B1v
i Elt-:
‘Hm Iy ﬂkll}“‘ Jo 167 9-»3 ﬁuﬂ[l % 1003 mlu "&3* -
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d fde v o _mid
39, o (T I ',I e frolieme]= i that o= da ol

The equation of mobion is

dlid o de| 4o : d ,du i
& gwﬂpa =§'u Bl EE 4:1'¢ﬂ1— 0 i = by,
o, 3 len
Hanar D (-:'-r*?I E) i 4= { iF =g,
s (r’sﬁ-) Hﬂg( )
Alsn 2=Adna+tooust, =4n (0 —e),

40, I:Ti{-'mfr-' Frmmga, so that of dagarl . w=ygat

Aldso the Eingtic enorey of the moving park
=g mr. #H=)nge. x=4% work done by the force.

B 2y
41, By Art. 127, frp- ¥ —-"—'qmsﬂ+:l=?fcnﬁﬂ+7‘:,

dEmn?d T n
Wiir=1

8 18 zero again when oos® 8 boos 8=1, 7.6 when cos f= g

The reguired distanve = cos 8,
42, 'With the notation of Art. 127,

P ﬂ _2 ;. oo 1 %
S 171 i Ty R
s 19 e
, | il W 1 S EY
andd ¢ fe [1 25 gin? E.'f:| [ B E:[

Also 8 ia given to vanish again when d= ,5', g0 that

[ -——I:] Jgf[-_—:l 1.8 T*’=,,~"/‘r}m:| =10t 1636 = 4043

[
'iﬂli}q 60;*’#%1) giving I =427-9 cms. perses .

Also Fi8= T2y 2y, 10=

43, With the notation of Art. 127,
&= m= i cos fy <oos(m—g)< —onea,
and then 41 =2 cos atnt < ¥~ ok g, and henco cos® a1,
whioh is 1mpossible.
A1 (I _ . ! i dnt
WWTQ =4t + Joozd — 2 eod 8, and Hvanishes when cos Eg=§oos a5
The particle will leave the surtace it £ vanishea before the velocity
vanizhes, fe if da<fly, 1 if cos docos 8y,
B o0s g ﬁﬂ f e

Lo, if — g &1— 2uf cos g+ nt, e if Ot — 4wt cos a=d cosla— g,
e 7 ! Aleoefa-T1  8(l-—Bsinta)

2. L Ll
r.e if (ﬂ Bﬁﬂﬁﬁ) £ a1 = i 7

a'[,.‘?

ge il T 7 oo o liss between + 34/ 1—9sinda,
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IF 3 ain a>>1, thiz gives imaginary values of V, so that in this case the
particle never laaves the anrfioa,
Af B min g1, we gat real valwes foo

44, Hers #=1, sud cos = — 14 V2" Zoona=—1 +2 sin §,
Thus, when 8=4,, %=4+3m@ #—Zooma

L8 oo g4+ sin %:4 sin*%-l*ﬁ sin %Hl =positive, Hence the result.

45, For the relative mobion we give an movsleration me® (D4 sin d) to
thp pmt.in‘le away from the vertiosl axis, and have
af= —gsin B o (b +asin d) cos 8, where = =g sin a+e?(b+a in o) cosa.
For & E.mall oseillation, put d= g+, where 4 is smoall
Then ttrfrem =g coR . 1;.- +a[ =fsina+aioostqa—snta) ]y

= ——.-—t{b-lnmﬂma ul, ote,
- 46, —”Tsiﬁ'ﬁ-'——g; [a'sin &'-f-i-'bsin a] = —aa?sinwt-+b (Gos 08— sin 462,

' and g~ T@-a;f [0t +b e 8] = s ccs ot =B i 00005 048,

E]m‘nmung {." e have Bl G sl (=t =y sin = - 0? B gm By
o, mnce f 18 small, Er&+m*£ 405 et — aw*mnwe_-m-a. i --._.-_-f;y

The ]ir'&.t ﬂ.pprnx.lmatmﬁ‘ on nﬁg]wtmga Ja i ;" L i
R t? A s:n (m: "—_—%mn m‘, sume H ﬂaud Mi— —mm 1111ha]1}r
Efenm ﬂm fgec-:md. a.‘ppmx;mah{m is gwen b}' fa

; r : A Ei’a-q-rz**ﬂ]l-mm*[mﬂmg-j-—mnﬂtensmﬂ_aa*mnme i

L2l

'». 0= ﬂ'ﬂm[ﬂd-iu}]:l b(? &mm.ﬂ

T } [{n sfit w& ‘nEn ﬂ.z], fmm f—l‘lﬂ 1n1tw,1 mndltmns, o

et -
: Whatww va.luaa it nnd w ha#a it fﬂ]iﬂwa thau ﬂ m‘nnﬂt exc&ed
b (i m“]

i
[l‘.i.'l +ﬂ-]. Lﬂ m

4‘? ]I .f i f.he le'ngt]l ‘of ok blrﬁ‘ar-ﬂprmg a-f:. tlme éaftﬂr e mﬂlamn, :
and & the distante mavad ‘ﬁhmugh by the ﬁmt cmnage in ’t-hm t.1ma1

H:r:- -—.'-I; u?—f = ‘Fmg T ; where Eﬂ 1& t.h& m‘:lgllml Ieun‘th 0[‘ f.he ﬂpnng,, f
s (ﬂﬂr H) te - —ﬂe o
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I ={:’{:M[p?+ﬂ]— —-E sim pd, smee =4, and é: — ¢ when fo=(),

= —wooa pf, and vanishes when s=%aud then .!T.]—.E=E. The buffar
z I
i then not whelly eompressed if E:‘:E, foe el gt
Sines tho total momentum is unaltered, the veloeity of each carriage at
.:T{"F

the wonient of final st pression oS T
+ &
Let Fand F* be the final velocitica, Then V43 M=y, ...... (1
and Loyl grye gy gy 3P Lo done by #ha sprivg |
g 3 a (er_'_rhr.-)g K PrIng
axpandiny
i T ¢ TFI g I T I )
o % % + % Bmgl, go that F— 1= _ e\/ﬂarf.ﬁ ‘%;; el

Hence the given result, on solving (1) aud {2).

48, Let £ and & be the wormal reactinns on the hack and front
wheels, and F the friction on the back wheel on which the engine acts,
[Thera can beno frietion oo the front wheel ; for, 1if thers wers, ite secelora-
fiom wonld be inknite, sines ite mass 18 sero, |

Resolving vertivally and taldng moments shout the tentre of pravity,

Wi R 8=3g and du8—d, B4+ Fh=0,
Henes feby +oly) = Mod, + Fh. Now FZul,
o (dlyh i) 52 [ Mo 4 FR].

I

- . _ F —= Mi‘fg
Henee the accaleration (_ 3 = 4231_+ng'—';:¢.& ;

Fur a retardation, change the sign of F| and we have

0 () dooly) = Mpely = Fl, ond F{d, +dp+plt) Z pifads,

and honos the masimmun retardation,

If the car iz braked from the frout wheels lof & Lo the friction on the
frout whecls, Then as befors

R-+8S=Mg, daS—dy R+ FA=0, so that (d;+d) 5= Wgd, - FI.

bt 2 uf, so that (o, 4dat wl) FZ pMod;,
and bence the maxirnam arcaleration.

Similarly, for 4 rotardatioy, changivg the sign of F, we have

[dly el ) = Mooy + TR
i fd: +ﬁ.'-g—'p..'a:| j’i P:-e:lfgtﬁ-lj and henos the masiomm retardation,

49, At time ¢, lot & be the length of the elastic string, and y the depth
of the upper particle M. Then

(A2 jim Mg — 23y 1S

ol 4

3 Bda

—a A =
o and M (E4g) =My~ 2220,

i 4 .
(T —gy= - ﬁ[z— 2a), sinee ko=,
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e, VE '}'—. P @
== d ooa 2 0 +.ﬁﬁ]ﬂHJMf @ coR 2 \/3&
s

SII‘IDB =t And &= 0 nitally, o o
= =g i w \/3_“-
" Also the periodic time=327 =2 =y 5

50, At time t, Iet my have moved throogh o distance £ and let the
lenq‘th of the atring be then .f, =0 that

pe=l
mIg :'n. T and 'f.rtg[:.;f-l"{l’,‘n— -_lT
Henee ' A tiig o+ g o — 1 (13
; ey T R
- Now, tmtmzll:,', ='—'£ S B et g L
il it Hiey

i gk, =R ( m.l+-:-?ag)
Hanoe rn nes :r*.- R Sl v -—-r— f—me!

. #o that & 12 zeve when's =1 is as g:ven :
Alsn, hy (1), t‘.he reqmmdtmje -1 permdm time=ax stated.

o At time- 7, let the serites of the dmre Hara moved through a distines
£ and Iat. & ba the 'El'tr&[]-ﬂ]ﬂ'll of the spring, ' Then
: 5 ME"T—N:--”'““'I m (£ )= — pa.
It jf' 4 '
: = -p T n,‘hpnd the time zi:m.fﬂla.ha‘n i da’ gwe:u..
Wé eam]y aﬂ:-tmn P ct-s M aurl,g 3T 1{1 ms:&:], whem

=2 nEI o n. t.he lmtnl Ekf-éllﬁltrll l:rf'[]JE spnng

5‘3 Byﬁrt.ﬁlwe}jave T e e S ey R
'r m’a. Emv—_.—i}m q_g.r+.m'w}, a‘nd = mg.r+2m.r_4m("—ywj,
(ﬂﬂq-smzj &4 2alym 0, and (DF 4367y~ Lo, D =B,
A [ﬂ*—l—&mﬂ](ﬁ:-l—y:} Bt (bl =0h S
Gﬂ 1:-L1t-tmg r+3.fe.—ef" Wi ULt&JTJ p=PRwi or *mt,ﬁntlmt R
oy (A 4 O PN (BB e
g A goR 3mf—fsﬂu3m!+3m3mr+ﬁ’mu a:-f

:md gr~z;[ gin 3wt+ﬂ'm23ui£ ﬂmu wx-i-Ecoa it IR
H{TW whﬁr- B0, i 0, ;r-ﬂ y--ibandy~ﬂ We thu;a a}hrbam Py
T E.-{smumt - Ein wi]= — b Ein® @, :
ancl- : 3r=-b[ma3mf+3mﬂuﬂ] _—4lfl-ﬂ'l}330:-f-.

. Hahos' ri + 1.3 e {4?—;"3“  font: auspad h}rp-ncyclmd, o :
.é..]su, if A I’ are-the coordinatas referved to mﬂeﬂ aiae. c&mmdmg 'mth :
i mﬂvlng mes b tinie tc -0, theén . s S 7
; N Ly 08 wf i ST dof b andm %
and v Y—i.z:ammﬂ-t-g.rcﬁs w560y 4«.: B.En
s ' IE+{P'+BE'=]I~—E' which ma;ctmla
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Y i 2
53. B2 -|-'.u,ﬂ"_—-|?l',,|.-=r"3ﬁ"u—T-J—I:-h where £ e fa —3—“3+ﬂ.
A 1 . S
Hence T + ﬁ fmm—1 LTS §
fuse I, oo =1, 80 that iﬂ ia positive. Henee
B du
l?=f i ——  [Put Zeiet 1=£2 2o that 3.
"mrf—l‘-h,n" u:H—-] [ & Smd]
By d.:t'f L]
[ Rl S

em-LI': Lig— sevsly T8 —
¥l cosl (8 -_;_r,u-l;11 ot

. g = .>_ ———'m T T i
co B+ 1=£2 qgmh*"lﬁ' ] cosh {f =)~ 1

Case 1T, au-=1, 50 't.]_mt Lﬂ'{i‘ m negative, Hence

st _
i === [PubZow+1=§, so that < 3,
[[l—ﬂrﬂ:l-m"'ﬂan+] [Pub 2az + £, so ]
” g .IM 'fé ~F3+E
_f f: Ei lCIg |rz % &, -

Bmh" 3 (8- —8) , eosh (88 -1

o Brapd ]l mgt= cosh®d (0~ i) 14eosh (8- 3}’EM

Tu the second part we similerly ﬁbt.aml:;ﬂ._ +_l,_§ e T

Coze I, ], aml T pusjt.i'm. Then

T =
N

& ek 1
J o R 1+ y , 2iving wi= -n:;c:n’rha

T T 3% 1

Caza 1T ow<]1, pnd :1;: negative,

i 1 'l-Hm & 3
ﬁ.’ﬁ [1 Y R R e + gz giviag at= —tﬂuh

” i W1 : u
58, ¥—pfi=0), am ~ o = :;, 50 that (78 @),
if the initial dine is in the divection of the initial veloeity.

= 1 o l'.'f 1 clat
s oty 1 S ,3'-] ey i % gl
rITI,'I;ﬁ._J ‘!-!'afﬂlﬂ-fll |u m,u'ld?‘ ﬁy i H+2'H- “

Tience the fivst cquation gives 26 (i 4 ) +§_ﬂ= 0.

i ' 1
Put we Eﬂ’}, and we bhavae 'E"'*g. E_]-.E (1 '—mﬂ) =1
i £=4:1'.J'i fﬂ}-l—ﬂtf...i{ﬂ]:

g that = Agt [I—L& e — L ]+B[l- L+ ane— ],
where L, A, ... are known constants,
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Now when #={, r=m, and therefore w=0, so that =0,

dr o ey
A_'Iaf,-wh-euﬁ 0, EE_.*'“_"F’ L d—hh{.

g ‘i'“*,,fgﬁalﬂ J:A »..-“’w ”*+...):|E=D-ﬁ ,\/{i

soa=giia \/’ L 1 (6.

: S 1
—_
b T 1 A1 B
55|- ?I’z‘l‘ﬂ —(ﬁ —"'_ﬂid.- du:;"_ﬁ(&__t) 1
! ye i el T S
mth.ﬂ.t- e e .. (ﬂ‘ﬂ) T -@T‘JET—G}S.
A Dt 1t
Nuwf-fiwhenr-—cﬂ-c acrthatﬂ Py

; 'Pl.lt" F g- \/_qﬁ_ and ¢= RN
sl ({%) =2£¢'§‘ M;-ﬂ, w]:m the squares of ¢ are omitbed, since
' s amaﬂ the st-rmg belmz anky ahghtl.}r elagtie,

e[ i

£ mtin 126 T

'-ﬁﬁ._ e W}E— —*gumm;;.. _. i

"'___m_if:*’ 08 w£+_d c-:-sh {mﬂ-i-Eh- L [ms mg_l_n Gmh 'N].

wherﬂ e .f ::;|[l+n]| fnr, whén I E] m_-—and £={J
Imﬂally, =l -g :imi mr themfore j:noartwe, and: t‘hr p&rhcla a,t once

-lﬂuvmt-hatubeﬂfl{:a :_ S b e i

Case 1. E}Tautl -::f, e, nxmmaa,nd s

T].‘ia:ll gr'='% when 1+ﬂh‘ﬂﬁ8mﬂ+ﬂ Mfsl‘: wl, e wheu mu"_%:m sinky ¥
This aIwa,ya has a- r&:;.l root, wher-e m{ S, lfﬂmpﬂmtwe, LR c]ear fmm'
:4’151'1’-1?31l e ;

“This also clear f‘mm & gmph tha.t & va,nmheﬁ far a value of -t be!,ween

0 and =, and then besomen IH'.IEH-!"PE and mmmnm Ha af:. ]mt untﬂ a:—Ea—.
The particle thus ]eax.va@ st i.be akid w]:m'e 11: mme . '

e IT, t’-c: gﬁ,, 1R unga;uv& and nmmerically < 1

Theu '- x=«% whgn—l—mmmamﬁoawhet

1.0 when . lfl cmg?—]-wcmhg‘g
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This has & root for w, which 38 <0, since » is nepative, Also it is essily
seen that & is then negative, The parbicle thus moes out at the other
end of the tubs.

(e T En;%. Here n=10 and x=% eos wd, £4 thoe particls conting.
slly oscillates about the cantra of the tube, its velocity just vanishing
when it reachss the ends of the tube,

57. When the string has turned through an angle 8, so that the part
unwound sseaf - b, we have a3 in Ex. 25, Page 115,

I

—eiu?“——‘F , sud a4 id =0, de sf—congt.= T,
‘. (af+0) 8= ¥, 5o that (af 451 =2 Fut 4 82

3
The string is cotnpletely unwound when d=m, 1.0, when g:."_r.ETP?iE"
: m e
Aldeo Pt (ol -1 2= - g "
{ ) A B2 2 ot
8. af=winsind.oosd—gein d PP & &

When 2 is sinall, this gives adf=(wfa—g) 0. Hense & i= positive, and
therefore the equiliteinm unstable, if eaf> g
Integeating (1), we have
af?= @i ain® #4+ 2y cos 8- 9.

A iz ero again when o {1 4002 m-%ﬂ-’, aba,
. . : P = g
The work done sgainst gravity =myg (o — @ cos 6, )= 2mga (I - WT-CEJ ]
5 &, -
The total work done s 2mgo (l ui)] +-ﬁ| ma sin 8. d (@ sin §)

a mata® | o _g_)
= Tiper (I ;’EE) T st ) =dmge (1 )

59. In the work of Art 110, we have ¢ 80" nearly, and we can replace
& by oy so that

a2
,,§f= —pt?, and W=gp= -ﬂ‘i‘ﬁ Approx.

oov= T, and i;——i g z;rg[fh‘”—].]+t-&nu

Soosa (tu.u u+m) + Z;g-lﬁ 1 —ea“:’ﬁ=atc., on expansion.

BO. #Fue — pig e0s o 008 e — ity 8in g 8in fr = — gy [oos ad 4 ain g,
and @ g sin o cos e — pog 008 w 8in § — g =pg 500 ok - msqyj —d.

ceb=—pg (woosatpaina+ Fessd i L)
and  Gaepp (wsina—yosa) - i+ VD s LE}
o (D g cosw) @4 pg sin oy~ Voos 8,
s C—pgain gzt 4 pgeose) p= Uein g —g

LIRS ) oon s B g® w=pp T cos (a4 80+ ot s at.
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SRR B PR [,u_gr ain g7} + B'sin (g sin at)]

v
| y + ym{a_{_m_l_h;un_wir::ﬂan
' ﬂub@tltutlng in (1) wa have g “The arbﬂ.mrf constants can be foupd

sines & and ¥ both vanish with ¢,
61. Let O be the origing and O0=F Then

i‘.l
.a::-:-?‘nl: = &)~ iy 20 that #—h= Jle mg[\/},_"_g_'_g]
&8l Art, 117, and, 8 in that artiole, the particle i= at rest when

,\/:'L—-#I t+B=a 74a Irta, .., etc,

o L #
Ak oo el 5 b -S4
a0 that a— #E:-,e? cose, bh=b=—ds * cose and o—b=4de ¥ cosa
o= A=
__i- Pk" "_'T" ‘I.rhare 4 ia tha raqmred diatance,

e ﬂﬂ' .ﬂ’_—w M 635, and de E-E——E-E-_-'E{—Eg
32 'arg-: fﬂr;;kﬁ He'!ca —==ka+d %.s—:—l
..and ——ﬁh-[-ﬂ EEH- 1ﬂ : ;+£'m’ m.:d et (ltf-m) %9' eto.
I = Ealﬂ{], @—ESED -:mq:l ﬁ:BUO, theu i—ﬁm :
Hancra whan abamﬂ t:ﬁ:Téﬂxﬁgfm—lﬁ-limcﬁ. o

63, At tmne t Iet tha strmg Hve-mm thmu:gh .r, and tha maeut hava

-cmwlnd o distance ¥ along the ﬂtr].ug.. TJ:um :
& ]

._ 7 & (ﬁf—ﬂ"y) J-:F, m{:&—y}"—- F ami g.f"“tl, mtha.t y-w”.

( M&r) a:-an:h m*u mtinﬁ mltla..lly {JI—bm};{_-mu

ok r--a-,"ﬁ-' “.‘ —"&_ [lcug (M +m H I >:|“_'-'{3t;é_j e
i M+m M,g £ '_ Ll

” E‘[ P+ T {i }} :| {.-ﬂ.gp.'if.'"*’?. P}

{ﬂf Et:}x—-ﬁi"::g(al 2). £
e J"*‘{EE Ev}g—Jﬂg (=22 }f&l Ex}a@.;r 25[332.1'-—4&3 M:r
s v R 2 :

e .._E-{aa-w e, ie i v etc.
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65, If = is the velocity of the element which i inclined at 4 to the

. de  dT . P .
horizon, then m T ™ g M N oy and m iass —mgeog g L1}
If v i eonstant, thesa give g sin mﬁ:m [Fige cos e+ med],
. et 1d
copEind=— (pooayl, . - oh =3 tan g, da # il =conzst.,
pHin =2 (p con y T ¥, b groos? p=cong
(88 s=ctany, o catenary whoss shape does not depend on w.

Aleo, from (13, if the velociby changes from #; to 4, the bension is in-
creased by am (uf — e, eto

g6, [f wis constant and there aro po extornal forees, then
a1 g T r 5
ﬂnE- and s — == g0 that T=m?,
g gop ?

which iz independent of the particalar cuzve in which the chain rans.

87, If IV be the veloctty in the steady motion, then

L a min’ g

=in q=arm1§-=g Wtqﬂr=g.3 tan e 8o that Pe=go e

When the particle is af a point whose ecoentric amgle is 8, the eguations
of Art, 133 give

=T bsing and #4000 = T2 Sepet {08 § — cos a)),
! i
ie [ aind g4 18 cos? 8 2= V2 (1 - %5—;) +Zga {oos J— cod g
Hence, an diffsrenbiation, :
{a aint d 4 5% coa® ) d+ 2% (0% — 19 sin @ oos e

P2 et g eos 8

T
For & small secillation put #=g -+, where ¢ iz small, and neglect ¢#:

then

{n? sin?a+ b conda) dh=goe[oin a (1 +deobe) =3 (1 — o tana) — sin s — o cos a]

LY '
mﬂa{1+3ma o) b Hence, ote,

g 30 B,

68, Reduce s to rest by ziving to the whele svatem the acceleration

g slong the line joining the particles.

In the first case f= — Db lrf;&m that ;12=‘}_‘ m"‘f‘ .
B W E o R
In the second case § —s = —]'Lm+?? i . f#— ),
s’
and r?f=ronat,= b w, where - bul= —52{b—al

e &‘—gm2= —alfr-al
Put rm bt £ whers £ 12 small, Then
£ mli? (.1 - %) —nf (b—ntti= —(Aut+ 1" £
4, required period =2% =+ /5 But,
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59. .dﬂ[ -m;r“—k 13‘.5:|———---F-f5 mﬁ+li7.1':+¢ar=ﬂi

LT ! -
-_EPut- : = a:‘"andwehmnp-—— ,\/m T

= *‘”"CGE[,\/; lﬁm sq-EjI

_ _"Hehm t]:e period is as stated.
" For the forced oseillation, m# + L b 4er=4 cos pt.

1 (2 —smptl— 34D
o Adeosples m—— =4
mm:flmﬂ o T I L
"‘v'[e mpi}"-k-];b-;ﬁ ol

CoE & sme 1

\'wheie i

-'*9 gt ﬁﬁ}’ ‘q.-"{s P TS Py

T]Je denummatm' r;»t {l}m lﬂa&:t wh.m — g (e =imp?) +Fp El

# i .f.:r
s,u,,. o s ik il
i whan p Sy arit.hen 11-, \/ (m - n,%) ”

2 amﬂ. theg,mp‘lltude c:-f tne umﬂiatmn— I: .

R A e e de
T . = e By e X
: 45._1&__0_. taue E_.{,‘p l{e mp Eip (Sm.) T
'Fﬂ ﬁt ttrue r ]al; th-e nug m hama mci'i'-ed t.hmugh ;m., aud the- at.rmg b -

:"'mci-lmacl atf o ‘t.lxé hm'imnl;:n.] e

© Binee - them is 110 ﬁnnmnt&ﬂ fome ssﬁmg rm Isha Eystem the Ectal.
"hnnzomml momentum i5 constant. Hﬁ:nc.e R

Gl e (e Imnﬂri';:l]l e {m+-m}.n wfﬂmne?ti {1];__ :
: th-a ‘Principle of Energy gives. ‘ ok
i %qu L' [(# = B sin 8y -!-.’,g é ohet H]-mgl sin ff

HL ' ! |:~:r1.+m}1'=—~2m .ﬂﬂ sin f 4w F‘dﬂ-zm m! Bl E

__m- bj' {1) Ji {in + -mf ma“ Hj—-—-— |{m +~m )8 il ﬂ {‘3}

Thl} grr:aiest \rs,lma of 7 is  this as i B : i
Inﬁ‘erent.iate {EJ, put ﬂ:-:g(}“.-_.d:, where n;f- s aml], a.nd neglal}tr s;ta13 aurI

E'T:Ia.‘i"ﬂ__ ; A e "f’=_ _I'i’se{"ﬂ' Sk

'i'l; ,mr-:mg h_ —z—z.r m‘tha.t —ﬁbpl a,nd mmﬂuly—,—a;-p»?

Whm hn’.‘rth masay’ are fren, let, aand - .r+$ e thmr &ept.ha at t.mu: ﬂ_._"
--__Than n’u: }ln‘?kg‘..h'l 1+~myf mp@{ﬁ Ig] mpl fx—I,}-E-mg,
;ﬂﬁ) Sy st (=) =
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The equilibrinm pesitions (4 and £} are given by :
O g +am'pg (€= lg) = wapy® (i~ B}, amd O’y — m'pe? (6 — &
Pt wm syt 4 and £=£ bn, anid we have
mf =gty =y g and §+ij= —patn,

i 2 i
L4 {B‘-’+j};“}y—mpfq=ll, and DRy {(fRFpg=0

{(Dg-l-p]i} (LR +pa) -I—%mﬂ }_)3}3;=1},
I we put- Y = A rou |::rL$ -!—,R]l, wi have the gi‘,'an E\Iil.ll;bﬁﬂll{fﬁm ¥

T ot P .Efm, i m:( f;)-.- . %@-——
fﬂei::;c,g'f_ﬁ
Hence O = fuet, f=—j§ _
nd pm ot G _jpip e By
Henes the first equation gives
- 1'3?52 ?j:—ft u’-‘--P-»— (- —), eie, @

T3, P (V4 Dainue# #fif=m L7 oo nd.

v Work dong— [ Pds m j Prdi

= I [l cos 8 (T4 Hﬁ|n£}+hki’+rmn&}3]‘ﬂ

{whara nt= f]

FH‘ [ V643 FO5in? EJGEH--F[W 2r+¢><wrr3xl.‘—']
1}

200
Al .
= T [I’Tﬂ-"é L’Ej.
If the velocity were constant, and = T, the work done would

=xa¥*, V. - and the vatio reguired=1 +? o
' w b -F’_'

=
B!

T4, i — puwt hit, IF & were zero, the solution would be o= a cus (4/pt),
Put this value in the small term &% of the above equation, and we have

B o=t pf sind J&:‘&E [3— 4 coa (20 u)+coe (4 4/ pdl].

R | em[a.f’;:f+31+£—“~5[3+§t_‘m(%\f;zj—-—ms q.v'ﬁ:]
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The initial conditions give a—-J{ ooz B+ bat u, and D A &in B,
. (a——kpa‘ o8 -..fpz+--— I-'3+ (e} (Em,wtj fsua{«i J-Jp:;]

When x=0 let A/pi="1 £+, where y- is small, and we Nk

k £ 1
e (u——.ﬂpﬂ)\ﬂr-i- iz (3 2= 15)>

NET cr b o oy 3.
a0 that - 1{!‘=l’m , and the inoreasze in the Jc.il:n:na-- —t - 'ﬁ-—ﬁiﬂi :
f Bl Bpueet 'I,EI-';-LG-
Whan @f:n,x_-ta,-—)+ =i 3+3_.l_5j| L 5
g0 thit thie amplitude of the swing is diminished as stated.
T, v = fg sk
;i ch' 1'Fd ‘1 el 1 1 1
h__ *u”-“” :m '*4‘?‘“ : 'ﬁ!“ ;a.nd h_— P m—l[ﬂm—l 1.:?1‘-" ’

' l
Ifm—g. 2& .EEIDD 1.—13{!1 aﬂ:u:’,l. !-‘:-1 then }ﬁz[r m] ICI}

m-;.d . 'l-ﬂ_ﬂ--a[q— -\fﬂmu] ﬂﬂ,ﬂothais—m

Tﬁ il r'@= - pR ME::: thﬂ equa.tmna nf .&.r‘t.. 135 Enfa

el - <
S '-.:__.?‘-"\“ﬁlﬂ.gmf?5== -]u.R ;5—:.,...-..';.,;,.,.,-._..-:_.:.,.I['lj_ _
s Spaes i
e :Hmu-:acrs-n.q:-“:-R- i Tl i :,-.'..-.'..-...,-.._..,._{EJ
ol ﬁmnd LI 'E_'ﬂ"mﬂa-:,ﬁ vsigﬂtgxu DR
aud W _.__ E i

o ""]'a'.ﬁd :{'ﬂ'}ﬁw;_ i

_.Elcr tha.t S e

"'-_'{3} g:l?es {5 ":":.r%=du= “sina’ Ll
s [ ¢ ¥ ] - b RO
N--I-r‘!mn cuj:- __'ta._n_a:.(}ﬂg '.u) +*—-§‘ S

- i i-'IE . '“E

}dtﬂmtn

" vgg 2 PR-‘—J-‘*'BIHEMNE_H s ::.
Fﬂ:’“[ m“(l ?)T’ [Putlﬂg-v‘?==— muﬂ]

; a9

""d —r""t*"“ﬂ I
1 ) E psﬁﬂl‘tﬂ -
"'E“F ta.ua .Hr;r""gs 1 “‘g -f=,,,f,,.s+da
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T7. The cquations of Art. 125 giva

a{ﬁ—sin&umﬂdﬂ]:——-ﬁ—m@€+-—#— siug,

gornl i e

B s g B o g

anil - 1-—~£|[r,\; sin® dgh) =10, so that usinfﬁcf.—l /

i & el & e
Eiu“'{.—l--cﬂa”—;

, Bato cosd 2 2 Bloosd

) sinfd 8 .4 smid
cos’ 5 sin’

o #=0 aud d=const. Hence, ete,

T8. Asin Art 133, sd=const. =% ﬁffd-iyﬁ{.f

i o S S Gy S Alen e it A el g
AT b aloy e Bl 4 87 (5 —5h p it = g = o o
¢ % |
Hence ! :;;:;E =2 (2y—2)+ 3k, (1 —%‘) 5

If I:=i y E=1, 10 addifion o the Btarting Prnin{:] when

4t =g (P Heta ta e, e when (7 &) {455+ 8%+ San’ o8 =0,
the only solution of which is 2=z,

If =gy, then $=0 again when 302 =5, (o' + %5 425452,
¢, when (Bg—) (108 + Tl + Benf 5" = 0,
ga that the motion @ confined between ==z ﬁ.r_lﬂ,::% .

T8, The third eguation of Arb. 125 gives

f_i= m—za 1?'::ig-{Hingﬂzf}}=E;—'!;:"'H s % givl @ pod 88 = Da cos § 17,

80, Frim Art, 125 we have

Ferain® g mg cos g, — il numu¢3=q—n—gsmm

t%(?ﬂ ai!lgands}=ﬂ, ao that v aindad m w29k B sin g,

I o
s E=geos ek 2ﬁrfsﬂg-:'E:n-t'l.sit.i‘»‘vn.i always, so that ¢ continually inereases,
Also £=5rsin a —ﬁi-@ . Henee § ncreases with .

It is positive originally if £ < 3 A sin a tan o

BL. As in the proviens question, +* sin® agh= R sina 43R cos g

F . . pon i
Also M4risin® ad® =329 cos g, 50 that :i"-=--‘[-:"r--:i,3Ett (rS— A3,

. _ g I_ \/a-*—ﬂﬁ
TdLaine T W OB T
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If o be the angle between two successive generators, wa hinve
rafd=rzin &' d:,f_- s that dd=dg sin «,

. g R macd (3;)? i ¥ cos '§= 13

! 82, Let the gharting point 2 be in latitnde £ and the inittial velocity be
¥V at an angle o to the horwon messured towards the North, Let the axis
wf 7 be the line through the contze O of the earth in 4 northward diveetion,
lat -0 ba the line in which the plane through the shell and O eute the
B nator, arid lot E?y be perpendionlar to O and O, and towards the East.

Then e bemg the angulsr velosity of the esrth, and o* being neglected,
the eq_1mtmns of Art 51 e

i .z' Emynz-—g-:ml— —_gfm.sl nﬂm.y, i +{1J
and } §—~—gs:1r11——gmn£ Fbpep et
;rérm_" G :[ﬁl}- -F"noa( +5 —e)= Vi (2= 2 St

[3.]“_0 a:nd [;]U'— ¥ gin (E+_—u Ftﬂﬁllu—ﬂ:]..“

The:l:u {1} pives o Em_gr—--—ycn:ﬁﬁ £ Fain jg— t’.}
Henm [E} 1H yni‘&gm it =3 Twsin [u - E}, o negleictmg m"’
e L mge:iﬁltz—"‘;’msmra'—i'}
aﬁd sl ‘y &mg G815 . F’umn(umi}ﬂ A T
¥ v
Whan dis EF;'H ﬁ.,@- 41 Hﬂ;smg [g ainaw ens§ sm{u Ij]ig. .
g Py

Iu t-hE ﬁi‘st c:.afsﬂ e are gnren u=-e1F.-' smd 3—45" 'su tha.t. 3.r1=.E EE

ITr t!m aaouu.d ea.ae, u—l?ﬂ a.ud I= -15“ 50 that- 3,!'3— —% % :

e
Nuw We H:m gw{m I—_—Eﬂ lnlomatreﬂ-=2 X 14}“ crE.

g it
":_;'.rx , e \/? :
S “‘mﬁ"’ Vo BeT 24«:@0%0_ Sl 951 “‘“““’*‘
:' CI“ ...,."ﬂ{)mat.ma e-a.rl 108 ® EEH i:}m.et.:‘ea n-e:a.rl
T Tl - 3'_316 7 i i

i -65-}5 nmtnea nearly.
o : : 'ihcabﬂut- ‘rH- mtres towanrds thib East_,
i _; : yg- a.hmlt BE matrm tnwa-rda t]::ia Waat
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