CONCRETE STRUCTURES TEST I

Number of Questions: 25

Directions for questions 1 to 25: Select the correct alternative from the given choices.

- **1.** The following two statements are made with reference to a simply supported Under Reinforced RCC beam.
 - I. Steel reaches ultimate stress prior to concrete reaching ultimate stress.
 - II. There is a shift in neutral axis upwards as the load is increased.
 - (A) Both the statements are false
 - (B) I is true but II is false
 - (C) I is false but II is true
 - (D) Both statements are true.
- **2.** As per the provisions of IS 456-2000, the (short term) modulus of elasticity of M40 grade concrete (in N/mm²) can be assumed to be
 - (A) 31600 (B) 28500
 - (C) 30000 (D) 36000
- **3.** As per IS 456-2000, the effective length of column in a Reinforced concrete building frame is independent of
 - (A) height of column
 - (B) loads acting on frame
 - (C) frame type
 - (D) span of beam
- 4. Maximum strains in an extreme fiber in concrete and in the tension Reinforcement (Fe-250 grade and Es = 200 kN/mm²) in a balanced section at limit state of flexure are respectively
 - (A) 0.0035 and 0.0041
 - (B) 0.002 and 0.0038
 - (C) 0.0035 and 0.0030
 - (D) 0.002 and 0.0018
- **5.** An isolated foot bridge has a slab of 4 m width. The central supporting beam is of 8 m length, width of web-350 mm. The effective width of flange is,

			U /
(A)	1.25 m	(B)	1.68 m
(C)	1.75 m	(D)	2.0 m

6. The percentage of minimum shear Reinforcement as per IS456 using HYSD bars of Fe 415 grade is

(A)	0.11%	(B)	0.15%	
(C)	0.3%	(D)	0.2%	

- 7. Which of the following is the correct expression to estimate the development length of deformed reinforced bars used in compression as per IS456 in limit state of design?
 - (A) $\frac{\phi\sigma_s}{8\tau_{bd}}$ (B) $\frac{\phi\sigma_s}{4\tau_{bd}}$

(C)
$$\frac{\phi \sigma_s}{64 \tau_{bd}}$$
 (D) $\frac{\phi \sigma_s}{5 \tau_b}$

8. What is the value of minimum percentage of reinforcement in case of Fe 250 steel in slabs?

(A)	0.1%	(B)	0.12%
(C)	0.2%	(D)	0.15%

- **9.** Minimum grades of concrete to be used for pre tensioned and post tensioned structural elements are respectively [As per IS1343-1980]
 - (A) M30 and M40
 - $(B) \quad M40 \ and \ M30$
 - (C) M20 and M30
 - (D) M30 and M30
- **10.** Which of the following are subjected to primary torsion?
 - (A) Isolated L-beam
 - (B) Ringbeam of circular water tank
 - (C) A and B
 - (D) Grid system
- A singly reinforced rectangular section of 300mm wide and 550 mm effective depth, reinforced with 3 bars of 16 mm diameter Fe415 steel bars. The concrete used is M20 grade. The ultimate moment of resistance of beam is _____ (in kN-m)
 - (A) 110 (B) 150 (C) 120 (D) 100
- 12. A reinforced beam of size 300 mm width and 700 mm overall depth is subjected to a service moment of 80 kN-m. If M25 and Fe 415 is used, it is be designed as (use effective cover = 50 mm)
 - (A) doubley reinforced section
 - (B) singly reinforced section
 - (C) over reinforced section
 - (D) None
- **13.** The effective flange width of T-beams spaced at 4 m with web depth of 1.2 m, web width of 0.5 m spanning 10 m with a flange slab of 150 mm thickness is

(A)	4 m	(B)	2 m
(C)	3 m	(D)	5 m

- 14. An *RC* beam of 350 mm width and effective depth 550 mm is subjected to a factored shear force of 120 kN. M20 grade concrete is used for the beam. For shear reinforcement 6 mm diameter two legged mild steel stirrups are used. The spacing of shear reinforcement in beam is [take $\tau_{c^{2}max} = 2.8$ MPa and $\tau_{c} = 0.60$ MPa] (A) 1500 mm (B) 410 mm (C) 90 mm (D) 300 mm
- 15. A bar of 12 mm diameter is embedded in concrete for a distance of 15 cm. Calculate the maximum load which the bar can take if bond stress is not to exceed 0.5 N/mm^2 ?

Time: 60 min.

3.64 | Concrete Structures Test 1

(A)	1.4 KN	(B)	3.5 KN
(C)	2.0 KN	(D)	2.8 KN

16. The minimum extension of steel bars of 12 mm diameter bar of Fe250 grade steel in M25 grade concrete with a design bond strength of 1.6 MPa and 135° standard bend at the end is

(A)	410 mm	(B)	265 mm
(C)	150 mm	(D)	None

17. A reinforced concrete beam of 12 m effective span and 1.5 m effective depth is simply supported. If the total udl on the beam is 5 kN/m, the design shear force for the beam is

(A)	22.5 KN	(B)	50 KN
(~)		(T)	

(C)	30 KN	(D)	40 KN
-----	-------	-----	-------

- **18.** At the limit state of collapse, an RCC beam is subjected to total flexural moment of 300 kN-m, shear force of 30 kN, torque of 18 kN-m, the beam is of 350 mm wide and 450 mm gross depth with an effective cover of 30 mm. The equivalent nominal shear stress (τ_{ve}) as calculated using the code turns out to be lesser than the design shear strength (τ_c) of concrete. The equivalent shear force is
 - (A) 30 KN
 - (B) 115 KN
 - (C) 80 KN
 - (D) 200 KN
- **19.** Based on the above data, the equivalent bending moment (Me₁) for designing the longitudinal tension steel is
 - (A) 400 KN-m
 - (B) 300 KN-m
 - (C) 325 KN-m
 - (D) 18 KN-m
- 20. A rectangular column of 350 mm × 650 mm is reinforced with 0.8% reinforcement based on gross area. Fe500 steel and M25 grade concrete is used. The ultimate load carrying capacity of column is
 - (A) 4.8 MN
 - (B) 2.8 MN
 - (C) 3.2 MN
 - (D) 5.6 MN
- **21.** The composition of an air entrained concrete is given below:

Water : 180 kg/m³ Ordinary Portland cement: 360 kg/m³ Sand : 600 kg/m³

Coarse aggregate : 1200 kg/m3

Assume the specific gravity of OPC, sand and coarse aggregate to be 3.0, 2.68 and 2.70 respectively. The air content in liters/m³ is _____

(A) 30	(B)) 40
(C) 50	(D)) None

- 22. A column of size 300×550 mm has unsupported length of 4.0 m and is braced against side sway in both directions. According to IS456-2000, the minimum eccentricities (in mm) with respect to major and minor principle axes are
 - (A) 18 mm, 26.33 mm
 - (B) 26.33 mm, 18 mm
 - (C) 20 mm, 18 mm
 - (D) 26.33 mm, 20 mm
- **23.** A simply supported reinforced concrete beam of length 12 m sags while undergoing shrinkage. Assuming a uniform curvature of 0.006 m⁻¹ along the span, the maximum deflection at mid span is
 - (A) 0.20 m
 - (B) 0.11 m
 - (C) 0.30 m
 - (D) 0.25 m
- 24. In a pre stressed concrete beam section shown in figure. The net loss is 15% and the final prestressing force applied at y is 700 KN. The initial fiber stresses (in N/mm²) at the top and bottom of beam were:

- (A) + 49 and 58
- (B) -58 and -49
- $(C) \ -49 \ and \ 58$
- $(D)\ -58\ and\ 49$
- **25.** A concrete column carries an axial load of 350 KN and a bending moment of 45 KN-m at its base. An isolated footing of 3 m \times 5m with 5m side along the plane of bending moment, is provided under column. The C.G. of column and footing coincides, the net maximum and minimum pressures in KN/m² on the soil under the footing are respectively?

(A)	150, 98	(B)	100, 75
(C)	150, 120	(D)	134, 98

Answer Keys									
1.	D	2. A	3. B	4. C	5. B	6. A	7. A	8. D	9. B
10. C	11. A	12. B	13. C	14. C	15. D	16. B	17. A	18. B	19. B
20. B	21. A	22. D	23. B	24. C	25. D				

HINTS AND EXPLANATIONS

- **2.** $E_c = 5000 \sqrt{fck} = 5000 \sqrt{40}$ $= 31622 \text{ N/mm}^2$ Choice (A)
- 4. Maximum strain in steel at extreme tension fiber 0 07 (

$$\leq 0.002 + \frac{0.87 \, fy}{Es} \\ = 0.002 + \frac{0.87 \times 250}{2 \times 10^5}$$

= 0.0030.

Miximum strain in concrete = 0.0035Choice (C)

5.
$$b_f = \frac{\ell_o}{\frac{\ell_o}{b} + 4} + bw \le b$$

Isolated T-beam : so use the above formula

$$b_f = \frac{8}{\frac{8}{4} + 4} + 0.35 = \frac{8}{6} + 0.35$$

 $b_f = 1.68 \text{ m}$ Choice

Choice (B)

6. $\frac{A_{sv}}{b \times s_v} = \frac{0.4}{0.87 \, fy}$

% minimum shear Reinforcement = $\frac{0.4}{0.87 \times 415} \times 100$ = 0.110%

7.
$$L_d = \frac{\phi \sigma_s}{4 \times \tau_{bd}}$$

For HYSD bars increase $\tau_{\it bd}$ by 60% and for compression increase τ_{bd} by 25%

$$L_{d} = \frac{\phi \sigma_{s}}{4 \times 1.6 \times 1.25 \tau_{bd}} = \frac{\phi \sigma_{s}}{8 \tau_{bd}}$$
 Choice (A)

11. Given

Singly Reinforced section b = 300 mmd = 550 mm $A_{st} = 3 \times \frac{\pi}{4} \times (16)^2$ $f_y = 415 \text{ N/mm}^2$ $f_{ck} = 20 \text{ N/mm}^2$ $M_{_{\!H}}=?$ $X_{\text{umax}} = (0.48) (d) = 0.48 \times 550 = 264 \text{ mm}$

Calculation of
$$x_{v}$$
:
0.36 $f_{ck}bx_{u} = 0.87 fyA_{ar}$
 $X_{u} = \frac{0.87 \times 415 \times 3 \times \frac{\pi}{4} \times 16^{2}}{0.36 \times 20 \times 300}$
 $X_{u} = 100.82 \text{ mm}$
 $X_{u} < x_{umax} \Rightarrow \text{ under reinforced section}$
 $\therefore M = T \times \text{lever arm}$
 $M_{u} = 0.87 f_{y}A_{u} (d - 0.42 x_{u})$
 $M_{u} = 0.87 \times 415 \times 3 \times \frac{\pi}{4} \times 16^{2} (550 - 0.42 \times 100.82)$
 $M_{u} = 110.55 \text{ KN-m}$ Choice (A)
12. $b = 300 \text{ mm};$
 $D = 700 \text{ mm}; d = 650 \text{ mm}$
Design moment, $M_{u} = 80 \times 1.5 = 120 \text{ KN-m}$
 $f_{ck} = 25 \text{ MPa}$
 $fy = 415 \text{ MPa}$
 $d^{1} = 50 \text{ mm}$
 $M_{u} \lim = 0.138 fck bd^{2} = 0.138 \times 25 \times 300 \times 650^{2}$
 $= 437.28 \text{ KN-m}$
 $M_{u} \le M_{u}, \lim \Rightarrow \text{singly Reinforced section}$. Choice (B)
13. $C = 4 \text{ m}$
 $b_{w} = 0.5 \text{ m}$
 $D_{f} = 150 \text{ mm}$
 $\ell_{a} = 10 \text{ m}$
 $b_{f} = \frac{\ell_{a}}{6} + b_{w} + 6D_{f} \le c = 4 \text{ m} = \frac{10}{6} + 0.5 + 6 (0.15)$
 $b_{f} = 3.06 \text{ m}$ Choice (C)
14. $b = 350 \text{ mm}$
 $v_{u} = 120 \text{ KN}$
 $f_{ck} = 20 \text{ MPa}$
 $\tau_{cms} = 2.8 \text{ MPa}$
 $\tau_{c} = 0.60 \text{ MPa}$
 $\tau_{c} = 7$
Nominal (average) shear stress due to external load is
 $\tau_{u} = \frac{V_{u}}{bd} = \frac{120 \times 10^{3}}{350 \times 550}$
 $\tau_{v} = 0.623 \text{ N/mm^{2}}$
 $\tau_{v} < \tau_{cmax} \Rightarrow \text{ No. diagonal compression failure.}$
 $\tau_{v} < \tau_{c} (bd)$
 $= 120 \times 10^{3} - 0.60 (350 \times 550) = 4500 \text{ N}$
 $V_{uv} = 4.5 \text{ KN}$
 $V_{uv} = \frac{0.87 \text{ fy} A_{vy}d}{s_{v}}$

 $4500 \text{ N} = \frac{0.87 \times 250 \times 2 \times \frac{\pi}{4} \times 6^2 \times 550}{-}$ support $S_{\rm m} = 1503 \text{ mm}$ $S_{\rm o}$ based on minimum shear RFM $\frac{A_{sv}}{bs_v} = \frac{0.4}{0.87 fy}$ $S_{v} = \frac{(A_{sv})(0.87 \, fy)}{(0.4)(b)}$ $S_{v} = \frac{\left(2 \times \frac{\pi}{4} \times 6^{2}\right)(0.87 \times 250)}{0.4 \times 350}$ $\tau_{\nu e} < \tau_{c}$ $S_{\rm u} = 87.85 \text{ mm}$ $S_v = 0.75 \times 550 = 412.5 \text{ mm}$ S should be minimum of (1) s_{y} calculated based on vertical stirrups (2) s_{y} based on minimum shear reinforcement (3) $\leq 0.75 d$ (4) 300 mm **20.** *b* = 350 mm Choice (C) $\therefore s_v = 87.85 \text{ mm}$ **15.** $\tau_{bd} = 0.5 \text{ N/mm}^2$ $L_d = 15 \text{ cm}$ $\phi = 12 \text{ mm}$ P = ? $P = (\tau_{\mu}) (\prod \phi L_{\mu})$ $= (0.5) (\pi \times 12 \times 150)$ P = 2827.43 N P = 2.82 kNChoice (D) **16.** $\phi = 12 \text{ mm}$ fv = 250 MPafck = 25 MPa $\tau_{bd} = 1.6 \text{ MPa}$ 135° bend $(L_d)_{\text{required}} = (L_d)_{\text{straight bar}} - \text{anchorage value}$ $(L_d)_{\text{straight bar}} = \frac{\phi \sigma_s}{4\tau_{s,d}} = \frac{12 \times 0.87 \times 250}{4 \times 1.6}$ = 407.81 mmAnchorage value for a 135° bend $= 12\varphi = 12\times 12 = 144 \text{ mm}$ $(L_d)_{\text{required}} = 407.81 - 144$ = 31.67= 263.81 mm Choice (B) **17.** L = 12 md = 1.5 m5 kN/m

Critical section for shear is at a distance 'd' from $\therefore \text{ Design shear force} = \frac{wl}{2} - wd = \frac{5 \times 12}{2} - 5(1.5)$ F = 22.5 kNChoice (A) **18.** $M_{\rm m} = 300 \, \rm kN-m$ $V_{\mu} = 30 \text{ kN}$ $T_{...} = 18 \text{ kN-m}$ b = 350 mmD = 450 mm $d^{1} = 30 \text{ mm}$ d = 420 mmEquivalent shear force; $V_e = V_u + V_T = V_u + \frac{1.6T_u}{h} = 30 + \frac{1.6 \times 18}{0.35}$ $V_{\mu} = 112.28 \text{ KN}$ Choice (B) **19.** Longitudinal tension steel is based on M_{μ} only. [ignoring the effect of torsion] If $\tau_{ve} < \tau_c$ $\therefore M_{e1} = M_{\mu} = 300 \text{ KN-m}$ Choice (B) D = 650 mm $A_{sc} = 0.8\% (A_{o})$ $=\frac{0.8}{100}(350\times 650)$ $A_{sc} = 1820 \text{ mm}^2$ $A_{c} = A_{a} - A_{sc}$ $=(350 \times 650) - (1820)$ $A_{c} = 225680 \text{ mm}^{2}$ $P_{\mu} = (0.4 fckA_{c}) + (0.67 fyA_{sc})$ $= (0.4 \times 25 \times 225680) + (0.67 \times 500 \times 1820)$ $P_{u} = 2866 \text{ KN}$ $P_{u} = 2.8 \text{ MN}$ Choice (B) 21. $\frac{Mc}{\rho_c} + \frac{M_s}{\rho_s} + \frac{M_a}{\rho_a} + v_w + v_a = 1$ $\frac{360}{3 \times 1000} + \frac{600}{2.68 \times 1000} + \frac{1200}{2.7 \times 1000} + \frac{180}{1000} + v_a = 1$ $V_a = 0.0316$ $= 0.0316 \times 1000$ Choice (A)

22.
$$e_{\min} = \frac{L}{500} + \frac{b}{30}$$
 or 20 mm which ever is more
 $e_{xx} = \frac{4000}{500} + \frac{550}{30} = 26.33$ mm
 $e_{yy} = \frac{4000}{500} + \frac{300}{30} = 18.0$ mm

Subject to a minimum of 20 mm, so, take 20 mm.

23.
$$EI \frac{d^2 y}{dx^2} = M_x$$

 $\frac{d^2 y}{dx^2} = \frac{M_x}{EI}$
 $\frac{d^2 y}{dx^2} = \rho$
 $\frac{dy}{dx} = \rho x$
 $y = \frac{\rho x^2}{2}$
 $y_{atx=\frac{L}{2}} = \frac{(0.006)(\frac{L}{2})^2}{2}$
 $= \frac{(0.006)(6)^2}{2} = 0.108 \text{ m}$ Choice (B)
 $q_i = \frac{P}{A} \pm \frac{M}{I} \times y$ Choice (D)
 $q_{min} = 98.74 \text{ kN/m}^2$