Understanding Metals and Non-Metals

खालील प्रश्नांची एका वाक्यात उत्तरे लिहा.

मूलद्रव्यांचे वर्गीकरण कसे करतात?

उत्तर: मूलद्रव्यांचे धातू, अधातू आणि धातुसदृश यांमध्ये वर्गीकरण केले जाते.

धातुसदृश म्हणजे काय?

उत्तर: जी मूलद्रव्ये धातू आणि अधातू अशा दोघांचेही गुणधर्म दर्शवितात, अशा मूलद्रव्यांना धातुसदृश म्हणतात. उदा: सिलिकॉन (Si), ॲंटिमनी (Sb), जर्मेनिअम (Ge) इत्यादी

 विद्युत तारेच्या बाह्यावरणासाठी कोणता पदार्थ वापरतात?

उत्तर: विद्युत तारेच्या बाह्यावरणासाठी PVC (पॉलीव्हिनायल क्लोराइड) या विद्युत दुर्वाहक असलेल्या पदार्थाचा वापर करतात.

विस्थापन अभिक्रिया म्हणजे काय?

उत्तर: ज्या अभिक्रियेत कमी क्रियाशील मूलद्रव्याचे (धातूचे) त्यांच्या संयुगांच्या द्रावणांतून त्यापेक्षा अधिक क्रियाशील मूलद्रव्यामुळे (धातूमुळे) विस्थापन घडून येते, त्या अभिक्रियेस विस्थापन अभिक्रिया म्हणतात.

 आयिनक संयुगे स्थायुरूपात आणि कठीण का असतात?

उत्तरः धनप्रभारित आणि ऋणप्रभारित आयनांमध्ये तीव्र आकर्षण बल असल्यामुळे आयनिक संयुगे स्थायुरूपात व कठीण असतात.

- बॉक्साइट या धातुकात कोणत्या अशुद्धी असतात?
- उत्तरः बॉक्साइटमध्ये वाळू, सिलिका (SiO_2) आणि आयर्न ऑक्साइड (Fe_2O_3) या अशुद्धी असतात.
- *8. बॉक्साइटचे संहतीकरण करण्याच्या पद्धतीचे नाव लिहा. [मार्च 14]

उत्तर: बॉक्साइटचे संहतीकरण बेअरच्या पद्धतीने केले जाते.

- *9. ॲल्युमिनिअम हायड्रॉक्साइडवर होणाऱ्या उष्णतेच्या परिणामाचे रासायनिक समीकरण लिहा.
- उत्तर: ॲल्युमिनिअम हायड्रॉक्साइडवर उष्णतेचा परिणाम पुढील समीकरणाद्वारे दाखविता येईल,

- 10. जास्त अभिक्रियाशील धातूंचे निष्कर्षण कोणत्या पद्धतीने केले जाते?
- उत्तर: जास्त अभिक्रियाशील धातूंचे निष्कर्षण विद्युत अपघटनी क्षपण पद्धतीने करतात.
- *11. ॲल्युमिनाचे विद्युत अपघटनी क्षपण होताना कॅथोडवरील अभिक्रिया लिहा. |मार्च 14|
- उत्तरः ॲल्युमिनाच्या विद्युत अपघटनी क्षपण अभिक्रियेत कॅथोडवरील अभिक्रियाः $AI^{3+} + 3e^- \longrightarrow AI$
- 12. ॲल्युमिनिअमच्या निष्कर्षणात ॲनोडवर होणाऱ्या अभिक्रियेचे समीकरण लिहा. |सप्टेंबर 14|

उत्तरः ॲल्युमिनिअमच्या निष्कर्षणात ॲनोडवर होणारी अभिक्रियाः $20^{2-} \longrightarrow O_2 + 4e^-$

- 13. पारदसंमिश्र म्हणजे काय?
- उत्तर: संमिश्रामधील एखादा धातू जर पारा असेल, तर त्याला पारदसंमिश्र म्हणतात.

खालील प्रश्नांची उत्तरे लिहा.

मॅग्नेशिअमची ऑक्सिजनबरोबर अभिक्रिया लिहा.

उत्तर: मॅग्नेशिअम ऑक्सिजनशी कक्ष तापमानास अभिक्रिया करत नाही; परंतु उष्णता दिल्यास मॅग्नेशिअम हवेत प्रखरतेने व शुभ प्रकाशाने जळते आणि मॅग्नेशिअम ऑक्साइड तयार होते.

> $2Mg + O_2 \xrightarrow{\overline{\text{sount}}} 2MgO$ मॅग्नेशिअम ऑक्सिजन मॅग्नेशिअम् ऑक्साइड

 बर्नरच्या ज्योतीमध्ये लोखंडाची पूड भुरभुरल्यास काय होते?

उत्तर: बर्नरच्या ज्योतीमध्ये लोखंडाची पूड भुरभुरल्यास ती लगेच पेट घेते व आयर्न ऑक्साइड (Fe₃O₄) तयार होते.

> $3Fe + 2O_2 \xrightarrow{3 \text{BUIRT}} Fe_3O_4$ आयर्न ऑक्सिजन आयर्न ऑक्साइड

तांब्याची ऑक्सिजनबरोबर काय अभिक्रिया होते?

उत्तर: तांबे सर्वांत कमी क्रियाशील असून ते हवेत पेट घेत नाही; परंतु उष्णता दिल्यास तप्त धातूवर काळ्या रंगाचा कॉपर ऑक्साइडचा थर जमा होतो.

 $2Cu + O_2 \xrightarrow{\overline{\text{3}}^{\text{su}} \cap \Pi} 2CuO$ कॉपर ऑक्साइड

 जस्त आणि ॲल्युमिनिअमची ऑक्सिजनबरोबरची रासायनिक अभिक्रिया सांगा.

उत्तर: जस्ताची ऑक्सिजनबरोबर अभिक्रिया: अतिशय तीव्र उष्णता दिल्यास जस्ताचे हवेत ज्वलन होऊन झिंक ऑक्साइड तयार होते.

> $2Zn + O_2 \xrightarrow{3^{\text{su}} \cap \Pi} 2ZnO$ झिंक ऑक्सिजन झिंक ऑक्साइड

ॲल्युमिनिअमची ऑक्सिजनबरोबर अभिक्रियाः ॲल्युमिनिअमचा हवेशी संपर्क झाल्यास त्यावर ॲल्युमिनिअम ऑक्साइडचा पातळ थर तयार होतो.

 $4Al + 3O_2 \xrightarrow{3 \varpi l \pi l} 2Al_2O_3$ ॲल्युमिनिअम ऑक्सिजन ॲल्युमिनिअम ऑक्साइड सोडिअम आणि पोटॅशिअमची पाण्याबरोबर अभिक्रिया सांगा.

उत्तर: सोडिअम आणि पोटॅशिअमची पाण्याबरोबर अभिक्रिया झाल्याने हायड्रोजन वायू मुक्त होतो व त्वरित पेट घेतो, ज्यामुळे प्रचंड उष्णता निर्माण होते. या उष्मादायी अभिक्रिया आहेत.

> $2Na + 2H_2O \longrightarrow 2NaOH + H_2 \uparrow + उष्णता$ सोडिअम पाणी सोडिअम हायड्रोजन हायड्रॉक्साइड

 $2K + 2H_2O \longrightarrow 2KOH + H_2 \uparrow + उष्णता$ पोटॅशिअम पाणी पोटॅशिअम हायड्रोजन हायड्रॉक्साइड

6. आम्लराज म्हणजे काय? ते कसे तयार करतात?

- उत्तर: i. आम्लराज अतिशय क्षरणकारी आणि वाफाळणारा द्रव आहे.
 - सोने आणि प्लॅटिनम या धातूंना विरघळवू शकणाऱ्या काही थोड्या अभिक्रियाकारकांपैकी एक आहे.

- iii. संहत हायड्रोक्लोरिक आम्ल आणि संहत नायट्रिक आम्ल 3:1 प्रमाणात घेऊन त्यापासून आम्लराजचे ताजे मिश्रण तयार करतात.
- आयनिक संयुगांचे सामान्य गुणधर्म लिहा.
 उत्तरः आयनिक संयुगांचे सामान्य गुणधर्मः
 - धनप्रभारित आणि ऋणप्रभारित आयनांमध्ये तीव आकर्षण बल असल्यामुळे आयनिक संयुगे ही स्थायुरूपात असून कठीण असतात.
 - ही संयुगे ठिसूळ असून दाब प्रयुक्त केल्यास त्यांचे तुकडे करता येतात.
 - iii. आंतररेण्वीय आकर्षण अधिक असल्यामुळे ते तोडण्यास बरीच ऊर्जा लागते. त्यामुळे आयनिक संयुगांचे द्रवणांक व उत्कलनांक उच्च असतात.
 - iv. ही संयुगे साधारणपणे पाण्यात द्रावणीय असतात;
 परंतु केरोसीन, पेट्रोल यांसारख्या द्रावकात
 अद्रावणीय असतात.
 - स्थायुरूपातील आयिनक संयुगे विद्युत वहन करत नाहीत; परंतु वितळलेल्या अवस्थेत विद्युत वहन होते.

- *8. खालील संज्ञा स्पष्ट करा.
- i. खनिजे

ii. धातुके

iii. मृदा अशुद्**धी**

iv. धातूविज्ञान

उत्तर: i. खिनजे: धातूंची जी संयुगे अशुद्धीसह निसर्गात आढळतात त्यांना खिनजे म्हणतात.

> उदा. चिनीमाती व बॉक्साइट ही ॲल्युमिनिअमची खनिजे आहेत.

> धातुके: ज्या खनिजांपासून सोयीस्कर आणि फायदेशीररीत्या धातू वेगळा करता येतो त्यांना धातुके म्हणतात.

उदा. बॉक्साइट हे ॲल्युमिनिअमचे धातुक आहे.

iii. मृदा अशुद्**धी**:

- धातुकामध्ये धातूच्या संयुगांबरोबर माती, वाळू,
 खडकीय पदार्थ वगैरे अशुद्धी असतात, त्या
 अशुद्धीला मृदा अशुद्धी म्हणतात.
- धातुकांमध्ये नेहमी बदलत्या प्रमाणात अशुद्धी आढळते.

iv. धातुविज्ञान:

- विलगनाच्या विविध पद्धती वापरून धातूंचे त्यांच्या धातुकांपासून निष्कर्षण करता येते.
- धातुकांपासून धातूंचे शुद्ध रूपात निष्कर्षण करण्याच्या क्रियेला धातुविज्ञान म्हणतात.

 धातूंची अभिक्रियाशीलता श्रेणी म्हणजे काय? सर्वांत वरच्या आणि सर्वांत खालच्या थरात कोणते मूलद्रव्य आहे?

उत्तरः धातूंची अभिक्रियाशीलता श्रेणीः

- धातूंची त्यांच्या अभिक्रियाशीलतेच्या उतरत्या क्रमाने क्रमवार केलेल्या मांडणीला धातूंची अभिक्रियाशीलता श्रेणी म्हणतात.
- ii. धातूंची अभिक्रियाशीलता श्रेणी खालीलप्रमाणे:

K
Na
Ca
Mg
Al
Zn
Fe
Pb
Cu
Hg
Ag
Au

iii. अभिक्रियाशीलता श्रेणीत सर्वांत जास्त क्रियाशील धातू पोटॅशिअमला सर्वांत वरचे स्थान आहे, तर सर्वांत कमी क्रियाशील धातू सोने याला सर्वांत खालचे स्थान दिले आहे असे दिसते.

- अभिक्रियाशीलतेच्या आधारे धातूंचे वर्गीकरण करा.
- उत्तर: अभिक्रियाशीलतेच्या आधारे धातूंचे तीन गटांत वर्गीकरण करता येते.
 - i. जास्त अभिक्रियाशील धातू: K, Na, Ca, Al इ.
 - ii. मध्यम अभिक्रियाशील धातू: Fe, Zn, Pb इ.
 - iii. कमी अभिक्रियाशील धातू: Ag, Au इ.
- 11. धातूंच्या निष्कर्षणासाठी जास्त अभिक्रियाशील धातूंचा क्षपणक म्हणून वापर का करतात?
- उत्तरः काही वेळा जास्त अभिक्रियाशील धातू जसे सोडिअम, कॅल्शिअम, ॲल्युमिनिअम इ. धातू क्षपणक म्हणून वापरले जातात; कारण ते कमी अभिक्रियाशील धातूचे त्याच्या संयुगातून विस्थापन करतात.
 - उदा. 3MnO₂+4Al → 3Mn +2Al₂O₃ + उष्णता
- *12. क्रायोलाइटचे ॲल्युमिनिअमच्या निष्कर्षणामध्ये कार्य आणि रासायनिक सूत्र लिहा. [मार्च 14]
- उत्तर: क्रायोलाइटचे रासायनिक सूत्र: AlF3·3NaF किंवा Na3AlF6
 - कार्य: क्रायोलाइटमुळे ॲल्युमिनाचा वितळ बिंदू 1000° से.,पुर्यंत खाली आणला जातो.

*13. ॲल्युमिनिअमच्या निष्कर्षणात ॲनोड वेळोवेळी बदलणे गरजेचे का असते?

- उत्तर: i. ॲल्युमिनिअमच्या विद्युत अपघटनी क्षपण प्रक्रियेत ॲनोडवर मुक्त झालेल्या ऑक्सिजन वायूची कार्बन ॲनोडशी अभिक्रिया करून कार्बन डायऑक्साइड तयार होतो.
 - ii. या अभिक्रियेमुळे कार्बन ॲनोडची झीज होते.
 म्हणून, ॲल्युमिनिअमच्या निष्कर्षणात ॲनोड वेळोवेळी बदलणे गरजेचे असते.

14. निस्तापन म्हणजे काय?

उत्तर: ज्या प्रक्रियेमध्ये कार्बोनेट धातुके मर्यादित हवेत तीव्रपणे तापवून ऑक्साइडमध्ये रूपांतरित केली जातात, त्या प्रक्रियेस निस्तापन असे म्हणतात.

उदा. जस्ताच्या धातुकाचे निस्तापनः

 $ZnCO_3$ निस्तापन $ZnO + CO_2$ झिंक कार्बन कार्बन आक्साइड डायऑक्साइड वायू

15. झिंकच्या सल्फाइड धातुकातून झिंक कसे मिळवतात?

उत्तर:i. झिंक सल्फाइडला (झिंकच्या सल्फाइड धातुकाला) अतिरिक्त हवेमध्ये तीव्रपणे तापवून त्याचे ऑक्साइडमध्ये रूपांतर केले जाते.

$$2ZnS + 3O_2$$
 $\xrightarrow{\text{भाजणे}}$ $2ZnO + 2SO_2$ हिंक ऑक्सिजन हिंक सल्फर सल्फाइड वायू ऑक्साइड डायऑक्साइड वायू

ii. झिंक ऑक्साइडचे कार्बन (coke) सारख्या योग्य क्षपणकाचा वापर करून क्षपण करतात. ZnO + C → Zn + CO झिंक कार्बन झिंक कार्बन ऑक्साइड मोनॉक्साइड वायू

16. थर्मिट अभिक्रिया म्हणजे काय ?

उत्तरः थर्मिट अभिक्रिया ही एक रासायनिक अभिक्रिया असून यामध्ये आयर्न ऑक्साइडची ॲल्युमिनिअमबरोबर अभिक्रिया होऊन आयर्न आणि ॲल्युमिनिअम ऑक्साइड तयार होते आणि प्रचंड उष्णता बाहेर पडते. ही उष्मादायी अभिक्रिया आहे.

 $Fe_2O_3 + 2Al \longrightarrow 2Fe + Al_2O_3 + उष्णता$ आयर्न (III) ॲल्युमिनिअम आयर्न ॲल्युमिनिअम ऑक्साइड

17. तांब्याच्या सल्फाइड धातुकापासून तांबे कसे मिळवतात?

उत्तर: तांब्याच्या सल्फाइड धातुकापासून (म्हणजेच Cu₂S पासून) खालीलप्रकारे तांबे मिळवतात:

पायरी I:

कॉपरचे सल्फाइड धातुक अतिरिक्त हवेमध्ये तीव्रपणे तापविले जाते.

$$2Cu_2S + 3O_2 \xrightarrow{\overline{swini}} 2Cu_2O + 2SO_2$$
कॉपर ऑक्सिजन क्युप्रस सल्फर
सल्फाइड वायू ऑक्साइड डायऑक्साइड

पायरी II:

तयार झालेले ऑक्साइड धातुक उर्वरित सल्फाइड धातुकाशी अभिक्रिया करते व त्यातून तांबे मिळते.

$$2Cu_2O + Cu_2S \xrightarrow{3 \mbox{sw}/\mbox{nl}} 6Cu + SO_2$$

क्युप्रस क्युप्रस कॉपर सल्फर
ऑक्साइड सल्फाइड डायऑक्साइड
वायू

18. पाऱ्याच्या सल्फाइड धातुकाचे नाव सांगा. त्यापासून धातुरूप पारा कसा मिळवतात?

- उत्तर: i. सिन्नाबार (HgS) हे पाऱ्याचे सल्फाइड धातुक आहे.
 - त्यापासून पारा मिळविण्यासाठी खालील पद्धतीचा अवलंब करतात:

पायरी I:

सिन्नाबारला हवेत उष्णता दिल्यास त्याचे मर्क्युरिक ऑक्साइडमध्ये रूपांतर होते. $2HgS + 3O_2 \xrightarrow{\overline{\text{smn}}} 2HgO + 2SO_2$ $\overline{\text{Re-nialt}}$ $\overline{\text{Miffinal}}$ $\overline{\text{Heyother}}$ $\overline{\text{Heyother}}$

वायू

पायरी II:

त्यानंतर मर्क्युरिक ऑक्साइड अधिक तापवून द्रवरूप पारा मिळवितात.

 $2HgO \xrightarrow{\overline{swn_{11}}} 2Hg + O_2$ \overline{rangle} $\overline{rangle$

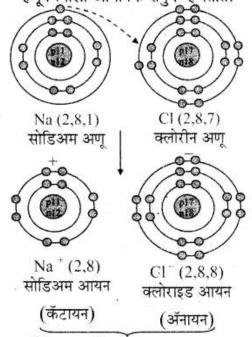
- 19. खालील संज्ञा स्पष्ट करा.
- *i. भाजणे ii. शुद्धीकरण

ii. शुद्धीकरणः

- अशुद्ध धातुंमधील अशुद्धी वेगळी करण्याच्या पद्धतीस शुद्धीकरण म्हणतात.
- b. कोणत्याही निष्कर्षण पद्धतीतून मिळालेल्या धातूंमध्ये अशुद्धी असते. ही अशुद्धी वेगळी करून शुद्ध धातू मिळविण्यासाठी शुद्धीकरण केले जाते.
- अशुद्ध धातूचे शुद्धीकरण करण्यासाठी सर्वांत जास्त वापरली जाणारी पद्धत म्हणजे विद्युत अपघटन होय.

20. तांब्याच्या वस्तू मोकळ्या हवेत बराच काळ ठेवल्यास काय घडते?

- उत्तर: i. तांब्याच्या वस्तू उघड्यावर बराच काळ ठेवल्यास तांब्याची दमट हवेतील कार्बन डायऑक्साइड बरोबर अभिक्रिया होते.
 - या अभिक्रियेत तांब्यावर हिरव्या रंगाचा कॉपर कार्बोनेटचा थर जमा होतो.
 - अशा प्रकारे, तांब्याच्या वस्तू बराच काळ मोकळ्या हवेत ठेवल्यास तांब्याची चकाकी जाते.
- लोखंडाचे गंजणे रोखण्याच्या तीन पद्धती लिहा. [सप्टेंबर 14]


उत्तरः लोखंडाचे गंजापासून रक्षण करण्याच्या पद्धतीः

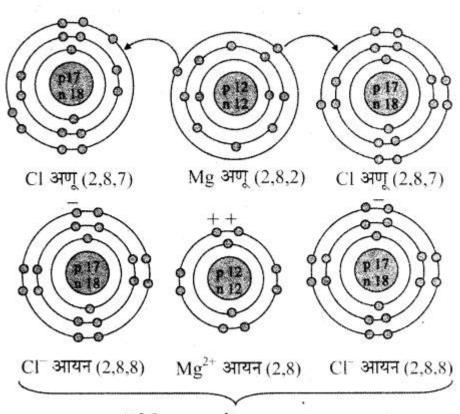
- गॅल्व्हनायझिंगः या पद्धतीत लोखंड किंवा
 स्टीलचे क्षरण रोखण्यासाठी त्यावर जस्ताचा
 पातळ थर दिला जातो.
 - उदा. चकाकणारे लोखंडी खिळे, टाचण्या इ.
- ii. संमिश्रीकरण: दोन किंवा अधिक धातू किंवा एक धातू आणि एक अधातू यांना ठरावीक प्रमाणात एकत्र केल्यास तयार होणऱ्या संमिश्राचे सहसा क्षरण होत नाही.
- iii. लोखंडावर रंग, तेल, ग्रीस किंवा वॉर्निश यांचा थर लावून लोखंडाचे क्षरण रोखता येते.
- *22. संमिश्र म्हणजे काय? त्यांच्या रासायनिक गुणधर्मासह दोन उदाहरणे द्या. [मार्च 15, 16] उत्तर: संमिश्र:
 - दोन किंवा अधिक धातू आणि एक धातू व एक अधातू यांच्या ठरावीक प्रमाणातील मिश्रणाला संमिश्र म्हणतात.
 - ii. संमिश्राचे सहसा क्षरण होत नाही.
 - उदा: a. पितळ (तांबे आणि जस्त)
 - b. ब्राँझ (तांबे आणि कथिल)

- धातूंचे भौतिक गुणधर्म सिवस्तर वर्णन करा.
 उत्तर: धातूंचे भौतिक गुणधर्म पुढीलप्रमाणे:
 - भौतिक स्थिती: धातू कक्ष तापमानास स्थायुरूप असतात. अपवाद पारा आणि गॅलिअम. हे दोन धातू कक्ष तापमानास द्रव अवस्थेत असतात.
 - ii. चकाकी: शुद्धरूपात धातूंना तेज असते. धातूचा पृष्ठभाग घासल्याने त्यावरून प्रकाशाचे परावर्तन चांगल्या प्रमाणात होते.
 - iii. वर्धनीयताः धातू वर्धनीय असतात म्हणजेच धातू ठोकल्यामुळे धातूचे पातळ पत्र्यात रूपांतर करता येते. या गुणधर्मास धातूची वर्धनीयता म्हणतात.
 - iv. तन्यताः धातू तन्य असतात म्हणजेच त्यांचे बारीक तारेत रूपांतर करता येते.
 - v. वाहकता: धातू उष्णता व विजेचे सुवाहक असतात. चांदी आणि तांबे हे धातू सर्वांत चांगले उष्णतावाहक आहेत, तर शिसे आणि पारा हे कमी उष्णता वाहक आहेत.
 - vi. कठीणपणाः धातू हे साधारणपणे कठीण असतात. धातुपरत्वे कठीणपणा बदलतो. अपवाद फक्त सोडिअम आणि पोटॅशिअम, हे अल्क धातू मृदू आहेत.
 - vii. द्रवणांक आणि उत्कलनांक: धातूंचा द्रवणांक आणि उत्कलनांक सहसा उच्च असतो. सोडिअम आणि पोटॅशिअम या अल्क धातूंचा द्रवणांक कमी आहे.
 - viii. नादमयता: कठीण पृष्ठभागावर आघात झाल्यामुळे नाद किंवा ध्वनी निर्माण होतो. अशा धातूंना नादमय धातू म्हणतात.

- अधातूंचे भौतिक गुणधर्म सविस्तर लिहा.
 उत्तर: अधातूंचे भौतिक गुणधर्म पुढीलप्रमाणे:
 - भौतिक स्थिती: अधातू स्थायू किंवा वायू अवस्थेत असतात. अपवाद ब्रोमीन, हा कक्ष तापमानाला द्रव अवस्थेत असतो.
 - चकाकी: अधातूंना चकाकी नसते. अपवाद आयोडिन.
 - iii. वाहकता: ग्रॅफाइटव्यितिरिक्त अन्य सर्व अधातू विद्वयुत दुर्वाहक आहेत.
 - iv. कठीणपणाः अधातूंना कठीणपणा नसतो. अपवाद म्हणजे हिरा स्वरूपातील कार्बन. हिरा हा सर्वाधिक कठीण पदार्थ आहे.
 - v. अधातूंमध्ये वर्धनीयता व तन्यता हे गुणधर्म आढळत नाहीत.
- सोडिअम क्लोराइड रेणू कसा तयार होतो ?
 उत्तर: सोडिअम क्लोराइड रेणू तयार होणे:
 - सोडिअमचे (₁₁Na) इलेक्ट्रॉन संरूपण (2,8,1)
 आहे, तर क्लोरीनचे (₁₇Cl) इलेक्ट्रॉन संरूपण (2,8,7) आहे.
 - ii. सोडिअमच्या अणूच्या बाह्यतम कक्षेत 1 इलेक्ट्रॉन असतो. अष्टक पूर्ण करण्यासाठी सोडिअमचा अणू एक इलेक्ट्रॉन देऊन टाकतो. अशा प्रकारे सोडिअम आयन (Na⁺) तयार होतो.
 - iii. क्लोरीनच्या बाह्यतम कक्षेत 7 इलेक्ट्रॉन्स असतात व त्याला अष्टक पूर्ण करण्यासाठी एका इलेक्ट्रॉनची गरज असते.
 - iv. क्लोरीनचा अणू सोडिअमचा एक इलेक्ट्रॉन स्वीकारतो व अष्टक पूर्ण करतो. अशा प्रकारे क्लोराइड आयन (CI⁻) तयार होते.
 - v. सोडिअम व क्लोराइड या दोन समान आणि विरुद्ध प्रभाराच्या आयनांच्या दरम्यान तीव्र आकर्षण बल असते. परिणामी त्यांच्यामध्ये इलेक्ट्रोव्हॅलंट किंवा आयनिक बंध तयार होतो व सोडिअम क्लोराइडची (NaCI) निर्मिती होते.

 vi. अशा प्रकारे, धातूकडून अधातूकडे इलेक्ट्रॉन्स दिले जाऊन सोडिअम क्लोराइड तयार होते, म्हणून त्याला आयनिक संयुग म्हणतात.

सोडिअम क्लोराइड (NaCl) -


*4. धातू आणि अधातूंमध्ये इलेक्ट्रॉन्सची देवाणघेवाण होऊन आयिनक संयुग कसे तयार होते ते स्पष्ट करा.

> Mg धातू आणि Cl अधातू यांच्या साहाय्याने उत्तराचे स्पष्टीकरण करा.

उत्तरः इलेक्ट्रॉन्सची देवाणघेवाण झाल्याने धातू व अधातू यांच्यात आयनिक संयुगे तयार होतातः

- मॅग्नेशिअमचे (12Mg) इलेक्ट्रॉन संरूपण (2,8,2) आहे.
- मॅग्नेशिअम अष्टक पूर्ण करण्यासाठी आपल्या बाह्यतम कक्षेतील दोन आयन देऊन Mg²⁺ बनवतो.
- iii. क्लोरीनचे (17Cl) इलेक्ट्रॉन संरूपण (2,8,7) आहे.
- iv. क्लोरीनला अष्टक पूर्ण करण्यासाठी एका इलेक्ट्रॉनची गरज असते.

- मॅग्नेशिअमने गमावलेले इलेक्ट्रॉन्स क्लोरीनच्या दोन अणूंद्वारे स्वीकारले जातात. त्यामुळे प्रत्येक क्लोरीन अणूला एक इलेक्ट्रॉन मिळतो व क्लोराइड आयन (CI आयन) तयार होते.
- vi. मॅग्नेशिअम आणि क्लोराइड या आयनांवर विरुद्ध प्रभार असल्याने त्यांच्या दरम्यान तीव आकर्षण बल असते.
- vii. अशा प्रकारे, मॅग्नेशिअमचे आयन दोन क्लोराइड आयनाशी संयोग पावतात आणि इलेक्ट्रॉन्सच्या देवाणघेवाण यामधून आयनिक बंध तयार होऊन उदासीन मॅग्नेशिअम क्लोराइड MgCl₂ तयार होते.

मॅग्नेशिअम क्लोराइड (MgCl₂)

 बेअर पद्धतीने बॉक्साइटचे संहतीकरण कसे करतात याचे वर्णन करा.

किंवा

बेअर पद्धतीचा वापर बॉक्साइटचे ॲल्युमिनामध्ये रूपांतर करण्यासाठी कसा केला जातो ते स्पष्ट करा.

उत्तरः बेअर पद्धतः

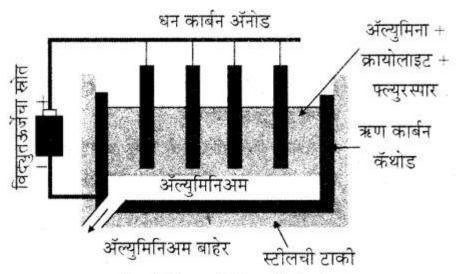
- सर्वसाधारणपणे आढळणारे ॲल्युमिनिअमचे धातुक म्हणजे बॉक्साइट (Al₂O₃.H₂O) होय.
- ii. बॉक्साइटमध्ये 30 ते 70 टक्के Al₂O₃ आणि उरलेला भाग मृदा अशुद्धीचा असतो. तो वाळू, सिलिका (SiO₂) व आयर्न ऑक्साइड (Fe₂O₃) इत्यादींचा बनलेला असतो.
- iii. बॉक्साइटचे संहतीकरण बेअरच्या पद्धतीने करतात. या पद्धतीत, उष्ण संहत कॉस्टिक सोड्याच्या (NaOH) द्रावणाबरोबर उच्च दाबाखाली 2 ते 8 तास 140° से. ते 150° से. तापमानास सारसंग्राहकामध्ये तापविले जाते.
- iv. ॲल्युमिनिअम ऑक्साइड उभयधर्मी असल्यामुळे सोडिअम हायड्रॉक्साइडच्या जलीय द्रावणात विरघळते आणि पाण्यात द्रावणीय असे सोडिअम ॲल्युमिनेट तयार होते.

 $Al_2O_{3(s)} + 2NaOH_{(aq)} \rightarrow 2NaAlO_{2(aq)} + H_2O_{(l)}$ ॲल्युमिनिअम सोडिअम सोडिअम पाणी ऑक्साइड हायड्रॉक्साइड ॲल्युमिनेट

 मृदा अशुद्धीमधील आयर्न ऑक्साइड हे जलीय सोडिअम हायड्रॉक्साइडमध्ये विरघळत नाहीत, ते गाळून वेगळे काढले जातात.

- vi. मृदा अशुद्धीमधील सिलिका जलीय सोडिअम हायड्रॉक्साइडमध्ये विरघळून पाण्यात द्रावणीय असे सोडिअम सिलिकेट तयार होते.
- vii. सोडिअम ॲल्युमिनेट पाण्यात टाकून विरल केले जाते व 50° से. पर्यंत थंड केले जाते. त्यामुळे ॲल्युमिनिअम हायड्रॉक्साइडचे अवक्षेपण घडून येते.

 $NaAlO_{2(aq)} + 2H_2O_{(I)} \rightarrow NaOH_{(aq)} + Al(OH)_{3(s)}$ सोडिअम पाणी सोडिअम ॲल्युमिनिअम ॲल्युमिनेट हायड्रॉक्साइड हायड्रॉक्साइड


viii. अवक्षेपित गाळून, धुऊन कोरडे करतात, नंतर 1000° से. तापमानावर तापवून ॲल्युमिना मिळतो.

6. ॲल्युमिनापासून शुद्ध ॲल्युमिनिअम कसे मिळवतात?

किंवा

ॲल्युमिनाच्या विद्युत अपघटनी क्षपणाचे नामनिर्देशित आकृतीसह वर्णन करा.

- उत्तर: i. बेअर पद्धतीने मिळालेल्या ॲल्युमिनाचे विद्युत अपघटनी क्षपण करून शुद्ध ॲल्युमिनिअम मिळते.
 - ऑल्युमिनाचा द्रवणांक 2000° से. पेक्षा जास्त असतो.
 - iii. ॲल्युमिनाचे विद्युत अपघटनी क्षपण करण्यासाठी त्याच्या मिश्रणामध्ये क्रायोलाइट (AIF₃. 3NaF) आणि फ्ल्युरस्पार (CaF₂) मिसळले जाते. क्रायोलाइट व फ्ल्युरस्पारमुळे ॲल्युमिनाचा वितळबिंदू 1000° से. पर्यंत कमी केला जातो.

ॲल्युमिनिअमचे निष्कर्षण

- iv. ॲल्युमिनाचे विद्युत अपघटनी क्षपण एका मोठ्या स्टीलच्या टाकीमध्ये केले जाते, ज्यामध्ये आतील बाजूस ग्रॅफाइटचे अस्तर असते. ग्रॅफाइटचे अस्तर कॅथोडचे (ऋणाग्राचे) काम करते. वितळलेल्या विद्युत अपघटनी पदार्थात बुडवलेल्या कार्बनच्या (ग्रॅफाइटच्या) कांड्या ॲनोडचे (धनाग्राचे) कार्य करतात.
- v. विद्युत प्रवाह सुरू करताच ॲल्युमिनाचे विद्युत अपघटन होते.
- vi. ॲल्युमिनिअम कॅथोडकडे जमा होते व ऑक्सिजन वायू ॲनोडवर मुक्त होतो.
- vii. इलेक्ट्रोडवरील अभिक्रिया पुढीलप्रमाणे: कॅथोडवरील अभिक्रिया:

 $Al^{3+} + 3e^{-} \longrightarrow Al$ ॲनोडवरील अभिक्रिया:

$$2Q_2^{2-} \longrightarrow O_2 + 4e^-$$

- viii. ॲनोडवर मुक्त झालेला ऑक्सिजन वायू ॲनोडच्या कार्बनशी अभिक्रिया करतो व कार्बन डायऑक्साइड वायू तयार होतो.
 - $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$
- ix. ॲल्युमिनाच्या विद्युत अपघटन पद्धतीत, ॲनोडवर ऑक्सिडीकरण प्रक्रिया झाल्याने ॲनोड वेळोवेळी बदलावा लागतो.

टिपा लिहा.

1. धनाग्रीकरण तंत्र (Anodising)

- उत्तर: i. धनाग्रीकरण या पद्धतीत ॲल्युमिनिअमच्या वस्तूंवर त्याच्या ऑक्साइडचा जाड थर लेपला जातो.
 - ii. ॲल्युमिनिअम हवेच्या संपर्कात आल्यावर ऑक्साइडचा पातळ थर तयार होतो.
 - iii. ॲल्युमिनिअम ऑक्साइड (Al_2O_3) च्या थरामुळे पुढील क्षरण टळते.
 - iv. क्षरण पूर्णपणे रोखण्यासाठी ऑक्साइडच्या जाड थराचा लेप द्यावा लागतो.
 - v. या तंत्रात ॲल्युमिनिअमची वस्तू ॲनोडचे कार्य करते तसेच विरल सल्फ्युरिक आम्लाचा विद्युत अपघटनी द्रावण म्हणून वापर करतात.
 - vi. ॲनोडवरील अभिक्रियेत ॲल्युमिनिअमच्या वस्तूच्या (ॲनोडच्या) पृष्ठभागावर काळ्या रंगाच्या ॲल्युमिनिअम ऑक्साइडचा पातळ थर जमा होतो.

- vii. अपघटनी द्रावणामध्ये योग्य रंग मिसळून वस्तूचा पृष्ठभाग रंगीत व आकर्षक करता येतो.
- viii. स्वयंपाकघरातील उपकरणे जसे ॲनोडाइज्ड प्रेशर कुकर, ॲनोडाइज्ड कढई तसेच सरकत्या खिडक्यांच्या चौकटी हे सर्व धनाग्रीकरण तंत्राचे उपयोजन आहे.

2. जास्त अभिक्रियाशील धातूंचे निष्कर्षण

- उत्तर: i. अभिक्रियाशील श्रेणीच्या सर्वांत वर असलेले धातू खूप क्रियाशील असतात. उदा. सोडिअम, पोटॅशिअम, ॲल्युमिनिअम इ.
 - ii. हे धातू विद्युत अपघटनी क्षपण पद्धतीने मिळविले जातात.
 - उदा. सोडिअम, पोटॅशिअम आणि कॅल्शिअम त्यांच्या वितळलेल्या क्लोराइडस्च्या अपघटनाद्वारे मिळवतात.
 - iii. धातू कॅथोडवर (ऋणाग्रावर) जमा होतात, तर ॲनोडवर (धनाग्रावर) क्लोरीन मुक्त होतो.
 - उदा. सोडिअम धातूच्या निष्कर्षणात कॅथोड आणि ॲनोडवरील अभिक्रिया पुढीलप्रमाणे:

कॅथोडवरील अभिक्रिया : $Na^+ + e^- \longrightarrow Na$ ॲनोडवरील अभिक्रिया : $2Cl^- \longrightarrow Cl_2 + 2e^-$

3. धातूंचे क्षरण

- उत्तर: i. वातावरणातील घटकांशी होणाऱ्या अभिक्रियांमुळे धातूंचा होणारा ऱ्हास म्हणजे क्षरण होय.
 - लोखंडाची दमट हवेत अभिक्रिया होऊन त्यावर तपिकरी पदार्थाचा थर जमतो, त्याला गंज म्हणतात.
 - iii. गंजरोधक द्रावणाचा वापर करून धातूचे गंजण्यापासून रक्षण करता येते. त्यामुळे त्याचा आर्द्रतेशी आणि ऑक्सिजनशी संपर्क येत नाही.
 - iv. धातूवर रंग, तेल, ग्रीस किंवा वॉर्निशचा थर दिल्यामुळे धातूचे क्षरण रोखता येते.
 - ४. क्षरणकारी धातूवर अक्षरणकारी धातूचा थर बसवल्यामुळे सुद्धा क्षरण रोखता येते.
 - vi. लोखंडाचे क्षरण ही प्रमुख समस्या आहे, कारण लोखंडाचा वापर अनेक प्रकारच्या बांधकामांत जसे इमारती, पूल, जहाजे, वाहने इत्यादींमध्ये केला जातो.

4. गॅल्व्हनायझिंग

- उत्तर: i. गॅल्व्हनायझिंग म्हणजे लोखंड किंवा स्टीलचे क्षरण रोखण्यासाठी यावर जस्ताचा पातळ थर देणे.
 - या पद्धतीत क्षरण होणारे लोखंड किंवा स्टील वितळलेल्या जस्तात बुडविले जाते.
 - अशा प्रकारे, लोखंडावर संपूर्णपणे जस्ताचा पातळ थर जमा होतो.
 - iv. नवीन लोखंडी खिळे, टाचण्या इ. गॅल्व्हनायझिंगमुळे चकचकीत दिसतात.

कथिलीकरण

- उत्तर: i. कथिलीकरण म्हणजे कथिलाचा पातळ थर देणे म्हणजेच वितळलेल्या कथिलाचा दुसऱ्या धातूवर थर देणे होय.
 - ii. धातूला क्षरणापासून वाचविण्याची ही एक पद्धत आहे.

- iii. स्वयंपाकाची भांडी ही तांब्याची किंवा पितळेची असल्यास त्यावर क्षरणामुळे हिरवट थर जमा होतो. हा हिरवट थर विषारी असतो.
- iv. यामुळे, तांब्या-पितळेच्या भांड्यांना क्षरणापासून वाचविण्यास कल्हई करतात.

विद्युत विलेपन

- उत्तर: i. विद्युत विलेपन या पद्धतीत विद्युत अपघटनाद्वारे एका धातूवर दुसऱ्या धातूचा थर दिला जातो.
 - ii. ही प्रक्रिया दोन कारणांसाठी करतात:
 - a. अति क्रियाशील धातूंचे क्षरण होण्यापासून वाचविण्यासाठी.
 - b. वस्तूच्या रंगरूपात आकर्षक बदल करण्यासाठी.
 - iii. लोखंडाच्या किंवा पोलादाच्या वस्तूंवर क्रोमिअम किंवा निकेलचे विद्युत विलेपन केल्यामुळे त्यांचे गंजण्यापासून रक्षण होते.
 - iv. पितळी वस्तूंवर चांदीचे विद्युत विलेपन करून त्या अधिक आकर्षक बनवता येतात.
 - चांदीच्या दागिन्यांवर सोन्याचा थर दिल्याने ते उठावदार व मूल्यवान दिसतात.

धातू विजेचे सुवाहक असतात.

- उत्तर: i. धातूंच्या अणूच्या बाह्यतम कक्षेतील इलेक्ट्रॉन धातूमध्ये मुक्तपणे फिरत असतात.
 - विभवांतर नसल्यास इलेक्ट्रॉन्स वेगवेगळ्या दिशेत
 आणि निरिनराळ्या गतीने फिरत असतात म्हणजेच
 इलेक्ट्रॉन्सच्या वहनास कोणतीच दिशा नसते.
 - iii. धातूच्या तारेच्या दोन टोकांवर विभवांतर प्रयुक्त केल्यास इलेक्ट्रॉन्सचे एकाच दिशेने वहन सुरू होते आणि विद्युतधारेचे वहन सुरू होते.

त्यामुळे, धातू विजेचे सुवाहक असतात.

*2. सोने व चांदी यांचा वापर दागिने बनविण्यासाठी करतात. [जुलै 16]

उत्तर: i. सोने व चांदी हे राजधातू आहेत.

- ii. ते तंतृक्षम, वर्धनीय तसेच चकाकणारे धातू आहेत.
- iii. सामान्य स्थितीत आर्द्रता, हवा, आम्ल यांमुळे त्यांचे क्षरण होत नाही.

म्हणून, दागिने बनविण्यासाठी सोने व चांदीचा वापर करतात.

#3. शाळा, मंदिरे आणि चर्चमधील घंटा धातूच्या असतात.

- उत्तर: i. धातू कठीण आणि भरीव असून सहज तोडता येत नाहीत.
 - ii. ते नादमय असतात म्हणजेच कठीण पृष्ठभागावर आदळल्यास ते नाद निर्माण करतात.

म्हणून, शाळा, मंदिरे आणि चर्चमधील घंटा धातूच्या असतात.

*4. सोडिअम हा धातू नेहमी केरोसीनमध्ये ठेवतात.

[सप्टेंबर 14]

किंवा

सोडिअम केरोसीनमध्ये का ठेवतात?

|ऑक्टोबर 13|

उत्तर: i. सोडिअम जास्त क्रियाशील धातूंपैकी एक आहे.

 कक्ष तापमानास सोडिअम हवेतील ऑक्सिजनशी अभिक्रिया करतो व सोडिअम ऑक्साइड तयार होते.

 $4Na + O_2 \longrightarrow 2Na_2O$ सोडिअम ऑक्सिजन सोडिअम ऑक्साइड

iii. सोडिअम पाण्याशी अभिक्रिया करतो व हायड्रोजन वायू तयार होतो. हायड्रोजन वायू पटकन पेट घेतो. यात मोठ्या प्रमाणात उष्णता बाहेर पडते.

> $2Na + 2H_2O \longrightarrow 2NaOH + H_2 + उष्णता$ सोडिअम पाणी सोडिअम हायड्रोजन हायड्रॉक्साइड वायू

iv. सोडिअम केरोसीनमध्ये बुडतो व केरोसीनबरोबर त्याची अभिक्रिया होत नाही. त्यामुळे सोडिअमचा हवेशी संपर्क होत नाही.

म्हणून, सोडिअम नेहमी केरोसीनमध्ये ठेवतात.

- ॲल्युमिनिअम ऑक्साइड हे उभयधर्मी ऑक्साइड आहे.
- उत्तर: i. धातूंची ऑक्साइडस् आम्लधर्मी व आम्लारिधर्मी असे दोन्ही गुणधर्म दर्शवित असल्यास त्याला उभयधर्मी ऑक्साइड म्हणतात.
 - ती आम्ल तसेच आम्लारीशी अभिक्रिया करून क्षार व पाणी तयार करतात.

iii. ॲल्युमिनिअम ऑक्साइड आम्लाशी तसेच आम्लारीशी अभिक्रिया करते.

> Al_2O_3 + $6HCl \longrightarrow 2AlCl_3 + 3H_2O$ ऑल्युमिनिअम हायड्रोक्लोरिक ॲल्युमिनिअम पाणी ऑक्साइड आम्ल क्लोराइड

 $Al_2O_3 + 2NaOH \longrightarrow 2NaAlO_2 + H_2O$ ऑल्युमिनिअम सोडिअम सोडिअम पाणी ऑक्साइड हायड्रॉक्साइड ॲल्युमिनेट

म्हणून, ॲल्युमिनिअम ऑक्साइड उभयधर्मी ऑक्साइड आहे.

- *6. पाण्याशी अभिक्रिया होताना कॅल्शिअम पाण्यावर तरंगते. [जुलै 15]
- उत्तर: i. कॅल्शिअमचा तुकडा पाण्यावर ठेवल्यावर तो प्रथम पाण्यात बुडतो, कारण त्याची घनता पाण्याच्या घनतेपेक्षा जास्त आहे.
 - कॅल्शिअमची पाण्याशी अभिक्रिया होऊन कॅल्शिअम हायड्रॉक्साइड व हायड्रोजन वायू तयार होतात.

 ${
m Ca_{(s)}} + 2{
m H_2O_{(l)}} \longrightarrow {
m Ca(OH)_{2(aq)}} + {
m H_{2(g)}} \uparrow$ कॅल्शिअम पाणी कॅल्शिअम हायड्रोजन हायड्रॉक्साइड

iii. पुरेशी उष्णता निर्माण न झाल्याने हायड्रोजनचे ज्वलन होत नाही. त्याऐवजी, तयार झालेले हायड्रोजनचे बुडबुडे कॅल्शिअम धातूच्या पृष्ठभागावर जमा होतात अणि कॅल्शिअम पाण्यावर तरंगू लागते.

म्हणून, पाण्याशी अभिक्रिया होताना कॅल्शिअम पाण्यावर तरंगते.

- *7. आयनिक संयुगांचा द्रवणांक आणि उत्कलनांक उच्च असतो.
- उत्तर: i. धनप्रभारित आणि ऋणप्रभारित आयनांमध्ये तीव्र आकर्षणाचे बल असल्यामुळे आयनिक संयुगे ही स्थायुरूपात असून ती कठीण असतात.
 - ii. आंतररेण्वीय आकर्षण अधिक असल्यामुळे ते तोडण्यासाठी प्रचंड ऊर्जेची आवश्यकता असते. त्यामुळे, आयनिक संयुगांचा द्रवणांक व उत्कलनांक उच्च असतो.
- मिठाचा द्रवणांक व उत्कलनांक उच्च असतो.
 |मार्च 15|
- उत्तर: i. मीठ हे आयनिक संयुग असून त्याच्या विरुद्ध प्रभार असलेल्या आयनांमध्ये म्हणजेच Na⁺ आणि Cl⁻ आयनांमध्ये तीव आकर्षण बल असते.
 - ii. हे आकर्षण बल तोडण्यासाठी तसेच मिठाला वितळवण्यासाठी किंवा उकळविण्यासाठी फार जास्त प्रमाणात उष्णतेची गरज असते.

म्हणून, मिठाचा द्रवणांक व उत्कलनांक उच्च असतो.

- ॲल्युमिनाचे विद्युत अपघटन वितळलेल्या क्रायोलाइट व फ्ल्युरस्पारमध्ये केले जाते.
- उत्तर: i. विद्युत अपघटन होण्यासाठी अपघटन करावयाचा पदार्थ द्रवरूपात असणे आवश्यक असते.
 - ii. ॲल्युमिनाचा द्रवणांक अतिशय उच्च आहे. (>2000° से.)
 - iii. ॲल्युमिना वितळलेल्या क्रायोलाइट (AIF3.3NaF) आणि फ्ल्युरस्पार (CaF2) मध्ये विरघळवल्यास ॲल्युमिनाचे विद्युत अपघटन अतिशय कमी तापमानात (1000° से.) करता येते.
 - iv. क्रायोलाइट व फ्ल्युरस्पार मिसळल्याने मिश्रणाचे तापमान कमी होते आणि मिश्रणाची विद्युत वाहकता वाढते.

म्हणून, ॲल्युमिनाचे विद्युत अपघटन वितळलेल्या क्रायोलाइट व फ्ल्युरस्पारमध्ये केले जाते.

*10. काळवंडलेली तांब्याची भांडी स्वच्छ करण्यासाठी लिंबू रस किंवा चिंच वापरतात.

- उत्तर: i. तांब्याची दमट हवेतील कार्बन डायऑक्साइडबरोबर अभिक्रिया होते. तांब्यावर कॉपर कार्बोनेटचा हिरवा थर जमा झाल्यामुळे तांब्याची चकाकी जाते.
 - लिंबाचा रस व चिंच यामध्ये अनुक्रमे सायट्रिक आम्ल व टार्टारिक आम्ल असते.
 - iii. ही आम्ले कॉपर कार्बोनेटबरोबर अभिक्रिया करून पाण्यात विद्राव्य क्षार तयार करतात जे सहज धुतले जातात.
 - iv. त्यामुळे, भांड्यावरील डाग निघून जाऊन भांडी पुन्हा चकाकतात.

म्हणून, डागाळलेली तांब्याची भांडी चिंच किंवा लिंबाचा रस लावून स्वच्छ करतात.

ऑल्युमिनिअमच्या भांड्यांचे दमट हवामानात क्षरण होत नाही.

- उत्तर: i. हवेच्या संपर्कात ॲल्युमिनिअमचे ऑक्सिडीकरण होते. त्यामुळे ॲल्युमिनिअमच्या पृष्ठभागावर ॲल्युमिनिअम ऑक्साइडचा पातळ थर जमा होतो.
 - या ऑक्साइडमुळे ॲल्युमिनिअमचा ऑक्सिजन व पाणी यांच्याशी संपर्क रोखला जातो व त्याचे क्षरण रोखले जाते.

त्यामुळे, ॲल्युमिनिअमचे दमट हवेत क्षरण होत नाही.

12. दागिने घडवताना 22 कॅरेट सोने वापरतात.

- उत्तर: i. शुद्ध सोने 24 कॅरेटचे असते; ते अतिशय मऊ असल्याने दागिने बनविण्यासाठी वापरता येत नाही.
 - शुद्ध सोन्याचा दागिन्यात वापर करण्यासाठी त्यात प्रथम चांदी किंवा तांबे मिसळून कठीण करतात.
 - iii. भारतात दागिने बनविण्यासाठी सर्वसाधारणपणे 22 कॅरेट सोने वापरतात. याचा अर्थ 22 भाग सोन्यावर 2 भाग संमिश्राचा म्हणजे तांबे किंवा चांदीचा वापर करतात.

खालील संतुलित रासायनिक अभिक्रिया सांगा.

 ॲल्युमिनिअम ऑक्साइडबरोबर हायड्रोक्लोरिक आम्ल मिसळले.

उत्तर: ॲल्युमिनिअम ऑक्साइडबरोबर हायड्रोक्लोरिक आम्लाची अभिक्रिया होऊन ॲल्युमिनिअम क्लोराइड तयार होते.

 Al_2O_3 + $6HCl \longrightarrow 2AlCl_3$ + $3H_2O$ ऑल्युमिनिअम हायड्रोक्लोरिक ॲल्युमिनिअम पाणी ऑक्साइड आम्ल क्लोराइड

*2. ॲल्युमिनिअम ऑक्साइड, जलीय सोडिअम हायड्रॉक्साइडच्या द्रावणात विरघळले.

उत्तर: ॲल्युमिनिअम ऑक्साइड जलीय सोडिअम हायड्रॉक्साइडमध्ये विरघळल्यास सोडिअम ॲल्युमिनेट तयार होते.

 Al_2O_3 + $2NaOH \longrightarrow 2NaAlO_2$ + H_2O ऑल्युमिनिअम सोडिअम पोणी ऑक्साइड हायड्रॉक्साइड ॲल्युमिनेट

सोडिअम ऑक्साइड पाण्यात विरघळले.

उत्तर: सोडिअम ऑक्साइड पाण्यात विरघळल्यास सोडिअम हायड्रॉक्साइड तयार होते.

$$Na_2O + H_2O \longrightarrow 2NaOH$$
 सोडिअम पाणी सोडिअम आंक्साइड हायड्रॉक्साइड

पोटॅशिअम ऑक्साइड पाण्यात विरघळले.

उत्तर: पोटॅशिअम ऑक्साइड पाण्यात विरघळल्यास पोटॅशिअम हायड्रॉक्साइड त्तयार होते.

$$K_2O + H_2O \longrightarrow 2KOH$$
 पोटॅशिअम पाणी पोटॅशिअम आॅक्साइड हायड्रॉक्साइड

मॅग्नेशिअमची उष्ण पाण्याबरोबर अभिक्रिया.

उत्तर: मॅग्नेशिअमची गरम पाण्याशी अभिक्रिया होऊन मॅग्नेशिअम हायड्रॉक्साइड आणि हायड्रोजन वायू तयार होतात.

$$Mg(s) + 2H_2O_{(I)} \longrightarrow Mg(OH)_{2(aq)} + H_{2(g)}$$
 \uparrow मॅग्नेशिअम पाणी मॅग्नेशिअम हायड्रोजन हायड्रॉक्साइड

*6. ॲल्युमिनिअमवरून पाण्याची वाफ जाऊ दिली.

उत्तर: ॲल्युमिनिअमवरून पाण्याची वाफ जाऊ दिल्यास ॲल्युमिनिअम ऑक्साइड तयार होऊन हायड्रोजन मुक्त होतो.

$$2A1 + 3H_2O \longrightarrow Al_2O_3 + 3H_2$$
 अल्युमिनिअम पाणी ॲल्युमिनिअम हायड्रोजन ऑक्साइड

लोखंडावरून वाफ जाऊ दिली.

उत्तर: लोखंडावरून वाफ जाऊ दिल्यास आयर्न ऑक्साइड तयार होते आणि हायड्रोजन वायू मुक्त होतो.

$$3Fe + 4H_2O \longrightarrow Fe_3O_4 + 4H_2$$
 आयर्न पाण्याची आयर्न हायड्रोजन वाफ ऑक्साइड

मॅग्नेशिअमची विरल हायड्रोक्लोरिक आम्लाशी अभिक्रिया झाल्यास.

उत्तर: मॅग्नेशिअमची विरल हायड्रोक्लोरिक आम्लाशी अभिक्रिया होऊन मॅग्नेशिअम क्लोराइड आणि हायड्रोजन वायू तयार होतात.

> $Mg + 2HCl \longrightarrow MgCl_2 + H_2$ ि मॅग्नेशिअम हायड्रोक्लोरिक मॅग्नेशिअम हायड्रोजन आम्ल क्लोराइड

9. कॅल्शिअमची पाण्याबरोबर होणारी अभिक्रिया.

[जुलै 16]

उत्तर: शास्त्रीय कारणे लिहा मधील प्र. 6 पाहा.

10. झिंक आणि हायड्रोक्लोरिक आम्लाची अभिक्रिया.

उत्तर: झिंक आणि हायड्रोक्लोरिक आम्लाची अभिक्रिया झाल्यास झिंक क्लोराइड तयार होऊन हायड्रोजन वायू मुक्त होतो.

$$Zn + 2HC1 \longrightarrow ZnCl_2 + H_2$$
ि
झिंक हायड्रोक्लोरिक झिंक हायड्रोजन
आम्ल क्लोराइड

लोखंडाची विरल हायड्रोक्लोरिक आम्लाशी अभिक्रिया.

उत्तरः लोखंडाची विरल हायड्रोक्लोरिक आम्लाशी अभिक्रिया झाल्यास फेरस क्लोराइड तयार होऊन हायड्रोजन वायू मुक्त होतो.

Fe + 2HCl
$$\longrightarrow$$
 FeCl₂ + H₂ \uparrow miles हायड्रोक्लोरिक फेरस हायड्रोजन आम्ल क्लोराइड

- लोखंडाची विरल हायड्रोक्लोरिक आम्लाशी अभिक्रिया.
- उत्तर: लोखंडाची विरल हायड्रोक्लोरिक आम्लाशी अभिक्रिया झाल्यास फेरस क्लोराइड तयार होऊन हायड्रोजन वायू मुक्त होतो.

Fe + 2HCl \longrightarrow FeCl₂ + H₂ \uparrow miles हायड्रोक्लोरिक फेरस हायड्रोजन आम्ल क्लोराइड

- *12. ॲल्युमिनिअमच्या धातुकाला संहत कॉस्टिक सोड्याबरोबर उष्णता दिली.
- उत्तर: ॲल्युमिनिअमचे धातुक संहत कॉस्टिक सोड्याबरोबर तापविल्यास पाण्यात विद्राव्य सोडिअम ॲल्युमिनेट तयार होते.

 Al_2O_3 + $2NaOH \longrightarrow 2NaAlO_2$ + H_2O ऑल्युमिनिअम सोडिअम सोडिअम पाणी ऑक्साइड हायड्रॉक्साइड ऑल्युमिनेट

- मँगनीज डायऑक्साइड ॲल्युमिनिअम पावडरबरोबर तापविल्यास
- उत्तर: मँगनीज डायऑक्साइड ॲल्युमिनिअम पावडरबरोबर तापविल्यास ॲल्युमिनिअम ऑक्साइड आणि मँगनीज तयार होतात.

 $3MnO_2 + 4Al \longrightarrow 3Mn + 2Al_2O_3 + उष्णता$ मँगनीज ॲल्युमिनिअम मँगनीज ॲल्युमिनिअम डायऑक्साइड ऑक्साइड

योग्य जोड्या लावा.

1.

	'अ' गट		'ब' गट
i.	पारा	a.	सर्वांत कठीण अधातू
ii.	हिरा	b.	अतिशय तन्य धातू
iii.	ब्रोमीन	c.	द्रवरूप धातू
iv.	सोने	d.	द्रवरूप अधातू

उत्तरे: (i - c), (ii - a), (iii - d), (iv - b)

2.

	'अ' गट		'ब' गट
i.	तांबे	a.	उष्णतेचा दुर्वाहक
ii.	टंगस्टन	b.	कमी द्रवणांक
iii.	शिसे	c.	उष्णतेचा सुवाहक
iv.	पोटॅशिअम	d.	उच्च द्रवणांक

उत्तरे: (i - c), (ii - d), (iii - a), (iv - b)

3.

	'अ' गट		'ब' गट
i.	प्ल्युरस्पार	a.	SiO ₂
ii.	क्रायोलाइट	b.	Al ₂ O ₃ .H ₂ O
iii.	बॉक्साइट	c.	AlF ₃ ·3NaF
iv.	सिलिका	d.	CaF ₂

उत्तरे: (i-d), (ii-c), (iii-b), (iv-a)

4.

'अ' गट		'ब' गट		
गॅल्व्हनायझिंग	a.	स्टेनलेस स्टील		
कथिलीकरण	b.	लोखंडी खिळे		
विद्युत विलेपन	c.	स्वयंपाकाची भांडी		
संमिश्रीकरण	d.	चांदीविलेपित चमचे		
	गॅल्व्हनायझिंग कथिलीकरण विद्युत विलेपन	गॅल्व्हनायझिंग a. कथिलीकरण b. विद्युत विलेपन c.		

उत्तरे: (i - b), (ii - c), (iii - d), (iv - a)

खालील जोड्यांतील तुलनात्मक फरक सांगा.

1. धातू आणि अधातू

उत्तर:

	धातू	अधातू
i.	भौतिक अवस्थाः धातू सर्वसाधारणपणे कक्ष तापमानास स्थायुरूप असतात.	भौतिक अवस्थाः अधातू सर्वसाधारणपणे वायू किंवा स्थायू अवस्थेत असतात.
	अपवादः पारा कक्ष तापमानास द्रव अवस्थेत असतो.	अपवादः ब्रोमीन कक्ष तापमानास द्रव अवस्थेत असते.
ii.	काठिण्यः धातू कठीण असतात. अपवादः सोडिअम, पोटॅशिअम	काठिण्यः अधातू सर्वसाधारणपणे मऊ असतात. अपवादः हिरा
iii.	चकाकी: धातूचा पृष्ठभाग घासला असता त्याला चकाकी येते.	चकाकी: अधातूंना चकाकी नसते. अपवाद: आयोडिन

iv.	वर्धनीयताः धातू वर्धनीय असतात. (पातळ पत्र्यात रूपांतर करता येते.)	वर्धनीयताः अधातू वर्धनीय नसतात.
v.	तन्यताः धातू तन्य असतात.	तन्यताः अधातू तन्य नसतात.
vi.	वाहकताः धातू विद्युत सुवाहक असतात.	वाहकताः अधातू विद्युत दुर्वाहक असतात. अपवादः ग्रॅफाइट.
vii.	धातू नादमय असतात. म्हणजेच कठीण पृष्ठभागावर आघात झाल्यामुळे धातू ध्वनी निर्माण करतात.	अधातू नादमय नसतात.
viii.	धातूंची ऑक्साइडस् आम्लारिधर्मी असतात. अपवाद: ॲल्युमिनिअम आणि झिंक ऑक्साइड उभयधर्मी असतात.	अधातूंची ऑक्साइडस् आम्लधर्मी असतात.

2. निस्तापन आणि भाजणे

	निस्तापन	भाजणे
i.	निस्तापन करताना कार्बोनेट धातुक मर्यादित हवेत तीव्रपणे तापविले जाते.	यामध्ये अतिरिक्त हवेमध्ये सल्फाइड धातुक भाजले जाते.
ii.	यामध्ये सर्वसाधारणपणे कार्बोनेट धातुकाचे ऑक्साइडमध्ये रूपांतर केले जाते. ZnCO₃→ ZnO+CO₂	यामध्ये सर्वसाधारणपणे सल्फाइड धातुकाचे ऑक्साइडमध्ये रूपांतर केले जाते. 2ZnS+3O ₂ →2ZnO+2SO ₂
iii.	या प्रक्रियेत CO2 वायू मुक्त होतो.	यां प्रक्रियेत SO ₂ वायू मुक्त होतो.

संकीर्ण

- *1. खाली दिलेल्या वैशिष्टचांच्या यादीवरून धातू आणि त्यांच्या संयुगांना लागू पडणारी पाच वैशिष्टचे लिहा.
 - i. तंतुक्षम
 - ii. विद्युत वहन करणे
 - iii. आम्लधर्मी ऑक्साइड
 - iv. ॲनोडवर मुक्त होणे
 - v. आम्लारिधर्मी ऑक्साइड
 - vi. ठिसूळ
 - vii. संयुजा इलेक्ट्रॉन्स (1,2,3)
 - viii. कॅथोडवर मुक्त होणे
 - ix. संयुजा इलेक्ट्रॉन्स (5,6,7)
 - x. स्थायू किंवा वायू अवस्थेत आढळतात.

उत्तरः धातूंशी संबंधित वैशिष्टचेः तंतुक्षम, विद्युत वहन करणे, संयुजा इलेक्ट्रॉन (1,2,3) कॅथोडवर मुक्त होणे. संयुगांशी संबंधित वैशिष्टचेः आम्लारिधर्मी ऑक्साइडस. #2. खालील समीकरणे पूर्ण करा.

ii.
$$Zn + H_2SO_4 \longrightarrow \underline{\hspace{1cm}}$$

iii.
$$Mg + H_2SO_4 \longrightarrow$$

उत्तर: i. Fe ची विरल H2SO4 बरोबर अभिक्रिया:

Fe +
$$H_2SO_4$$
 → FeSO₄ + H_2 ↑ लोखंड सल्फ्युरिक फेरस हायड्रोजन अग्प्ल सल्फेट

ii. Zn ची विरल H2SO4 बरोबर अभिक्रिया:

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$$
ि झिंक सल्पयुरिक झिंक हायड्रोजन आम्ल सल्फेट

iii. Mg ची विरल H2SO4 बरोबर अभिक्रिया:

$$Mg + H_2SO_4 \longrightarrow MgSO_4 + H_2 \uparrow$$

тічोशाअम सल्फ्युरिक मॅग्नेशाअम हायड्रोजन
आम्ल सल्फेट

3. खालील धातूंचे इलेक्ट्रॉन संरूपण सांगा.

- i. सोडिअम
- ii. मॅग्नेशिअम
- iii. ॲल्युमिनिअम
- iv. पोटॅशिअम
- v. कॅल्शिअम

उत्तर:

पलदलो	अणुअंक	इलेक्ट्रॉन संरूपण			
मूलद्रव्ये	(Z)	K	L	M	N
सोडिअम (Na)	11	2	8	1	-
मॅग्नेशिअम (Mg)	12	2	8	2	-
ॲल्युमिनिअम (Al)	13	2	8	3	-
पोटॅशिअम (K)	19	2	8	8	1
कॅल्शिअम (Ca)	20	2	8	8	2

- खालील अधातूंचे इलेक्ट्रॉन संरूपण सांगा.
 - i. नायट्रोजन
- ii. ऑक्सिजन
- iii. फ्लोरीन
- iv. फॉस्फरस
- v. **सल्फर**
- vi. क्लोरीन

उत्तर:

गलदलो	अणुअंक	इलेक्ट्रॉन संरूपण			
मूलद्रव्ये	(Z)	K	L	M	N
नायट्रोजन (N)	7	2	5	(.=.)	-
ऑक्सिजन (O)	8	2.	6	140	-
-फ्लोरीन (F)	9	2	7	(#)	-
फॉस्फरस (P)	15	2	8	5	-
सल्फर (S)	16	2	. 8-	6	-
क्लोरीन (Cl)	17	2	8	7	-

- *5. खालील रूपात आढळणाऱ्या धातूचे नाव लिहा.
 - i. सल्फाइड
- ii. कार्बोनेट
- iii. ऑक्साइड

उत्तर: i. जस्त: ZnS (झिंक सल्फाइड)

ii. जस्त: ZnCO3 (झिंक कार्बीनेट)

iii. ॲल्युमिनिअम: Al₂O₃ (ॲल्युमिनिअम ऑक्साइड)

*6. खालील धातूंची त्यांच्या अभिक्रियाशीलतेच्या उतरत्या क्रमाने मांडणी करा.

Cu, Mg, Fe, Na, Ca, Zn.

उत्तर: रासायनिक अभिक्रियाशीलतेच्या दृष्टीने धातूंचा उतरता क्रम:

Na > Ca > Mg > Zn > Fe > Cu

 *7. झिंक सल्फाइडपासून झिंक मिळविण्यासाठी दोन अभिक्रिया घडतात.

 $ZnS \xrightarrow{\mu i \sigma i D} ZnO \xrightarrow{f + k \pi i U T} A$ A आणि B साठी समीकरणे लिहा.

उत्तर: A. भाजणे:

$$2ZnS + 3O_2 \longrightarrow 2ZnO + 2SO_2$$
ि झिंक ऑक्सिजन झिंक सल्फर
सल्फाइड ऑक्साइड डायऑक्साइड

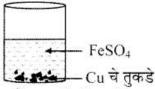
B. निस्तापन:

HOTS

*1. X या मूलद्रव्याची ऑक्सिजनशी अभिक्रिया होऊन X₂O हे ऑक्साइड तयार होते. हे ऑक्साइड पाण्यात विरघळते आणि यामुळे लाल लिटमस कागद निळा होतो. X मूलद्रव्य धातू आहे का अधातू ते सांगा. एक उदाहरण देऊन स्पष्ट करा.

उत्तरः मूलद्रव्याचे ऑक्साइड (X_2O) पाण्यात विरघळते व ते लाल लिटमस निळा करते. म्हणजेच हे ऑक्साइड आम्लारिधर्मी आहे. धातूच्या ऑक्साइडस्ची जलीय द्रावणे ही आम्लारिधर्मी असतात, म्हणून X हा धातू असला पाहिजे.

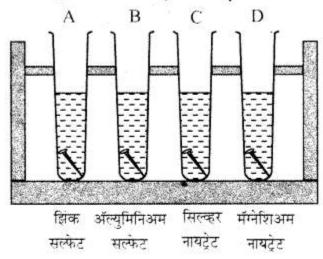
उदा. सोडिअम अतिक्रियाशील धातू असून त्याची ऑक्सिजनबरोबर अभिक्रिया होऊन सोडिअम ऑक्साइड तयार होते.


$$4Na + O_2 \longrightarrow 2Na_2O$$
 सोडिअम ऑक्सिजन सोडिअम ऑक्साइड

सोडिअम ऑक्साइड पाण्यात विरघळते आणि त्यामध्ये लाल लिटमस निळा होतो, म्हणजेच ते आम्लारिधर्मी आहे.

- 2. 'E' या मूलद्रव्याचा ऑक्सिजनशी संयोग होऊन E_2O हे ऑक्साइड तयार होते.
 - या ऑक्साइडच्या पाण्यातील द्रावणात लाल लिटमस कागद निळा होतो, तर
 - त्या ऑक्साइड E₂O चा प्रकार कोणता, ते लिहा.
- ii. ते 'E' मूलद्रव्य कोणते ते लिहा. [मार्च 13] उत्तर: i. आम्लारिधर्मी ऑक्साइड ii. सोडिअम
- फेरस सल्फेटचे द्रावण ॲल्युमिनिअमच्या भांडचात ठेवता येईल का?

उत्तरः फेरस सल्फेटचे द्रावण ॲल्युमिनिअमच्या भांड्यात ठेवता येत नाही, कारण ॲल्युमिनिअम जलद क्रियाशील असल्याने ते फेरस सल्फेटच्या द्रावणामधील आयर्नचे विस्थापन करते व ॲल्युमिनिअम सल्फेट तयार होते.


खालील परिस्थितीत काय घडेल असे वाटते?

उत्तर: Cu हे Fe पेक्षा कमी क्रियाशील असल्याने कोणतीही अभिक्रिया घडणार नाही.

5. एक माणूस सोनार आहे असे सांगून घरोघरी फिरून जुन्या आणि मळकट झालेल्या सोन्याच्या दागिन्यांना झळाळी आणून देऊ म्हणून सांगत होता. सौ.लीनाने आपल्या सोन्याच्या बांगड्या त्याला दिल्या. त्या त्याने एका द्रावणात बुडवल्या. बांगड्या चकाकू लागल्या; परंतु नंतर तिच्या असे लक्षात आले, की बांगड्यांचे वजन फारच कमी झाले आहे व तिची फसवणूक झाली आहे, तर त्या माणसाने वापरलेले द्रावण कोणते होते?

उत्तर: हे द्रावण म्हणजे आम्लराज असेल. म्हणजेच संहत हायड्रोक्लोरिक आम्ल (HCI) व संहत नायट्रिक आम्ल (HNO₃) यांचे 3:1 प्रमाणातील मिश्रण होय. फक्त याच द्रावणात सोने विरघळू शकते. आकृतीत दाखिवल्याप्रमाणे A, B, C आणि D परीक्षानळ्या या चार वेगवेगळ्या द्रावणांनी भरून ठेवल्या आहेत. प्रत्येक परीक्षानळीत एक खिळा टाकला.

- कोणत्या परीक्षानळीतील खिळ्याच्या रूपात बदल दिसून येतो ते सांगा. का?
- ii. कोणकोणत्या परीक्षानळीतील खिळ्याच्या रूपात काहीही बदल दिसून येत नाही? का?
- उत्तर: i. चांदीपेक्षा लोखंड हे जास्त क्रियाशील असते. त्यामुळे परीक्षानळी C मधील सिल्व्हर नायट्रेटच्या द्रावणातील चांदीची जागा लोखंड घेते व खिळा चकचकीत दिसतो.
 - ii. जस्त, ॲल्युमिनिअम व मॅग्नेशिअमपेक्षा लोखंड हे कमी क्रियाशील असते. त्यामुळे परीक्षानळी A, B ऑणि D मध्ये कोणतीही अभिक्रिया दिसून येत नाही, म्हणून परीक्षानळी A, B आणि D मधील खिळा जसाच्या तसाच राहतो.

- Fe + CuSO₄ → FeSO₄ + Cu
 Zn + FeSO₄ → ZnSO₄ + Fe
 वरील अभिक्रियांनुसार खालीलपैकी
 अभिक्रियाशीलतेचा कोणता क्रम योग्य आहे?
 आपल्या उत्तराचे समर्थन करा.
- i. Fe > Cu > Zn ii. Cu > Fe > Zn iii. Zn > Fe > Cu iv. Zn > Cu > Fe उत्तर: Zn > Fe > Cu हे बरोबर आहे.

पहिल्या अभिक्रियेत, Fe हा Cu चे विस्थापन करतो. म्हणून Fe हा Cu पेक्षा जास्त क्रियाशील आहे. दुसऱ्या अभिक्रियेत Zn हा Fe चे विस्थापन करतो. अशा प्रकारे, Zn हा Fe पेक्षा जास्त क्रियाशील असतो.

- 8. कॉपर सल्फेटचे द्रावण एका लोखंडी डब्यात ठेवले. काही दिवसांनंतर असे आढळले, की त्या डब्याला अनेक छिद्रे पडली. हे असे का झाले याचे समर्थन करा व झालेल्या अभिक्रियेचे समीकरण लिहा.
- उत्तर: Cu पेक्षा Fe हा जास्त क्रियाशील असतो. तो कॉपर सल्फेटच्या द्रावणातील Cu ची जागा घेतो व त्या ठिकाणी लोखंडी डब्याला छिद्र पडते.

 $Fe + CuSO_4 → FeSO_4 + Cu$ आयर्न कॉपर फेरस कॉपर

सल्फेट सल्फेट

- *9. सुधाने तांब्याचे नाणे सिल्व्हर नायट्रेटच्या द्रावणात बुडिवले. थोड्या वेळाने तिला त्या नाण्यावर चकाकी दिसली. असे का घडले? संतुलित रासायिनक समीकरण लिहा. किंवा गीताने तांब्याचे नाणे सिल्व्हर नायट्रेटच्या द्रावणात बुडिवले. थोड्या वेळाने तिला त्या द्रावणावर चकाकी दिसली. असे का घडले? संतुलित रासायिनक समीकरण लिहा. रासायिनक अभिक्रियेचा प्रकार सांगा.
- उत्तर: i. तांबे हे चांदीपेक्षा अधिक क्रियाशील आहे. त्यामुळे चांदीच्या द्रावणातून तांबे चांदीचे विस्थापन करते.
 - ii. सिल्व्हर नायट्रेटच्या द्रावणात तांब्याचे नाणे बुडविल्यास तांब्याच्या नाण्यावर चांदीचा पातळ थर जमा होतो; त्यामुळे नाण्याला चांदीची चकाकी येते.
 - iii. या अभिक्रियेचे संतुलित रासायनिक समीकरण पुढीलप्रमाणे:
 - $2AgNO_{3(aq)} + Cu_{(s)} \longrightarrow Cu(NO_3)_{2(aq)} + 2Ag_{(s)} \downarrow$ सिल्व्हर नायट्रेट कॉपर कॉपर नायट्रेट सिल्व्हर
- *10. A धातूचे इलेक्ट्रॉन संरूपण (2,8,1) आहे. B धातूचे इलेक्ट्रॉन संरूपण (2,8,8,2) आहे. कोणता धातू अधिक क्रियाशील आहे? हे दोन धातू कोणते ते ओळखा आणि त्यांची विरल हायड्रोक्लोरिक आम्लाबरोबर होणारी अभिक्रिया लिहा. [मार्च 16]
- उत्तर: i. धातू A चे इलेक्ट्रॉन संरूपण (2,8,1) आहे म्हणजे धातू सोडिअम (Na) आहे.

- ii. धातू B चे इलेक्ट्रॉन संरूपण (2,8,8,2) आहे म्हणजे धातू कॅल्शिअम (Ca) आहे.
- iii. धातू A हा B पेक्षा अधिक क्रियाशील आहे कारण स्थिर इलेक्ट्रॉन संरूपण मिळविण्यासाठी त्याच्या बाह्यतम कक्षेतील एक इलेक्ट्रॉन द्यावा लागेल, तर धातु B ला दोन इलेक्ट्रॉन्स गमवावे लागतील.
- iv. दोन्ही धातू सोडिअम आणि कॅल्शिअमची विरल HCl बरोबर अभिक्रिया होते आणि क्षार तयार होऊन हायड्रोजन वायू मुक्त होतो.
- $2Na_{(s)} + 2HCl_{(aq)} \longrightarrow 2NaCl_{(aq)} + H_{2(g)}$ ी सोडिअम हायड्रोक्लोरिक सोडिअम क्लोराइड हायड्रोजन आम्ल
- $Ca_{(s)} + 2HCl_{(aq)} \longrightarrow CaCl_{2(aq)} + H_{2(g)}$ कॅल्शिअम हायड्रोक्लोरिक कॅल्शिअम क्लोराइड हायड्रोजन आम्ल
- 11. A धातूचे इलेक्ट्रॉन संरूपण 2, 8, 1 आहे आणि B धातूचे इलेक्ट्रॉन संरूपण 2, 8, 2 आहे:
 - i. कोणता धातू अधिक क्रियाशील आहे? का?
 - ii. ते धातू ओळखा.
 - iii. B धातूची विरल हायड्रोक्लोरिक आम्लाबरोबरची अभिक्रिया पूर्ण करा.

।ऑक्टोबर 13।

किंवा

A धातूचे इलेक्ट्रॉन संरूपण (2, 8, 1) आहे. B धातूचे इलेक्ट्रॉन संरूपण (2, 8, 2) आहे.

- कोणता धातू कमी क्रियाशील आहे?
- ii. हे दोन धातू कोणते?
- iii. कोणत्याही एका धातूचे हायड्रोक्लोरिक आम्लाबरोबर होणाऱ्या अभिक्रियेचे समीकरण लिहा. |जुलै 15|

- उत्तर: i. धातू A हा धातू B पेक्षा अधिक क्रियाशील आहे, कारण त्याच्या बाह्यतम कक्षेत एक इलेक्ट्रॉन आहे, तर धातू B ला स्थिर इलेक्ट्रॉन संरूपण प्राप्त करण्यासाठी दोन इलेक्ट्रॉन्स गमवावे लागतील.
 - ii. धातू A चे इलेक्ट्रॉन संरूपण (2, 8, 1) आहे; म्हणजेच तो धातू सोडिअम आहे, तर धातू B चे इलेक्ट्रॉन संरूपण (2, 8, 2) आहे; म्हणजेच तो धातू मॅग्नेशिअम आहे.
 - iii. मॅग्नेशिअमची विरल हायड्रोक्लोरिक आम्लाबरोबर अभिक्रिया होऊन मॅग्नेशिअम क्लोराइड व हायड्रोजन वायू तयार होतो.

 $Mg_{(s)}^{+}+ 2HCl_{(aq)} \longrightarrow MgCl_{2(aq)}^{-}+ H_{2(g)}^{-}$ मंग्नेशिअम हायड्रोक्लोरिक मंग्नेशिअम हायड्रोजन आम्ल क्लोराइड

12. 'X' या मूलद्रव्याचा अणुअंक 20 आहे आणि 'Y' या मूलद्रव्याचा अणुअंक 17 आहे, तर 'X' आणि 'Y' यांचे धातू व अधातू यांमध्ये वर्गीकरण करा.

उत्तर: 'X' हे मूलद्रव्य धातू आहे (2, 8, 8, 2) आणि 'Y' हे मूलद्रव्य अधातू आहे (2, 8, 7). 13. खालील परिच्छेद वाचून दिलेल्या प्रश्नांची उत्तरे लिहा.

गॅल्व्हनायझिंग म्हणजे स्टीलच्या किंवा लोखंडाच्या वस्तूंवर जस्ताचा पातळ थर चढवणे. गॅल्व्हनायझिंग हे लोखंड किंवा स्टीलचे क्षरण रोखण्यासाठी केले जाते. जस्त हा लोखंडापेक्षा अधिक क्रियाशील धातू आहे. जस्त आणि लोखंड एकमेकांच्या सान्निध्यात असताना जस्ताचे क्षरण होते. त्यामुळे जस्ताचा लोखंडी वस्तूवर थर जमा होऊन त्या वस्तूचे क्षरण होण्यापासून रक्षण होते. गॅल्व्हनायझिंग हे त्याच्या कमी किंमत, सोप्या पद्धती, टिकाऊपणामुळे इतर पद्धतींपेक्षा जास्त पसंद केले जाते. यामुळे, गॅल्व्हनाइज्ड स्टेनलेस स्टील हे इमारत बांधकाम तसेच मोटारगाड्यांपासून ते घरगुती उपकरणांसारख्या वस्तूंमध्ये देखील वापरले जाते. गॅल्व्हनायझिंगच्या अनेक पद्धतींमधील हॉट-डीप गॅल्व्हनायझिंग ही पद्धत सर्वांत जास्त वापरली जाते ज्यात स्टीलचे किंवा लोखंडाचे भाग वितळलेल्या जस्तात बुडवले जातात.

प्रश्न:

- गॅल्व्हनायझिंगमध्ये कोणत्या धातूचा थर वस्तूवर दिला जातो?
- गॅल्व्हनाइज्ड वस्तूंचा उपयोग कुठे केला जातो?
- iii. गॅल्व्हनायझिंग प्रक्रियेत जस्ताचा थर लोखंडी वस्तूचे क्षरण रोखण्यास कशी मदत करतो?

उत्तरे:

- गॅल्व्हनायझिंगमध्ये जस्ताचा थर वस्तूंवर दिला जातो.
- गॅल्व्हनाइज्ड स्टील वस्तूंचा उपयोग इमारत बांधकामासाठी तसेच मोटारगाड्यांपासून ते घरगुती उपकरणांपर्यंत होतो.
- iii. जस्त हे लोखंडापेक्षा अधिक क्रियाशील आहे. जस्त आणि लोखंड एकमेकांच्या सान्निध्यात असताना जस्ताचे (ऑक्सिडिकरण अभिक्रियेने) क्षरण होते, म्हणून लोखंडी वस्तूंवर जस्ताचा थर जमा होतो व तो लोखंडी वस्तूचे क्षरण होण्यापासून रक्षण करतो.