CHAPTER

Conic Sections,
Parametrized Curves,
and Polar Coordinates

OVERVIEW The study of motion has been important since ancient times, and
calculus provides the mathematics we need to describe it. In this chapter, we extend
our ability to analyze motion by showing how to track the position of a moving
body as a function of time. We begin with equations for conic sections, since these
are the paths traveled by planets, satellites, and other bodies (even electrons) whose
motions are driven by inverse square forces. As we will see in Chapter 11, once
we know that the path of a moving body is a conic section, we immediately have
information about the body’s velocity and the force that drives it. Planetary motion
is best described with the help of polar coordinates (another of Newton’s inventions,
although James-Jakob-Jacques Bernoulli (1655-1705) usually gets the credit), so
we also investigate curves, derivatives, and integrals in this new coordinate system.

Conic Sections and Quadratic Equations

This section shows how the conic sections from Greek geometry are described
today as the graphs of quadratic equations in the coordinate plane. The Greeks of
Plato’s time described these curves as the curves formed by cutting a double cone
with a plane (Fig. 9.1, on the following page); hence the name conic section.

Circles

~ Definitions
A circle is the set of points in a plane whose distance from a given fixed

o point in the plane is constant. The fixed point is the center of the circle;
the constant distance is the radius.
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Parabola: plane parallel

Circle: plane perpendicular
to side of cone

to cone axis

Ellipse

Hyperbola: plane
(a) parallel to cone axis

9.1 The standard conic sections (a) are
the curves in which a plane cuts a double
cone. Hyperbolas come in two parts,
called branches. The point and lines

; ; Point: plane through Single line: plane e P
obtamed' by passing the plane through _ cone vertex only tangent to cone Pair of intersecting lines
the cone’s vertex (b) are degenerate conic
sections. b)

The standard-form equations for circles, derived in Preliminaries, Section 4, from
the distance formula d = \/(xz — x1)2 + (y2 — y1)?, are these:

Circles
Circle of radius a centered Circle of radius a centered
at the origin: at the point (A, k):

P +y?=a® (x —h)?>+ (y —k)? = a?




x2= 4py

F(0,p)

Focus ¢
P > Pz, y)
The vertex lies —

halfway between
directrix and focus. |

Directrix: y = —p O, ~p)

9.2 The parabola x? = 4py.

Directrix: y = p

Vertex at origin_

[

AN
Focus (0, —p)

x*=—4py

9.3 The parabola x?* = —4py.
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Parabolas

Definitions

A set that consists of all the points in a plane equidistant from a given fixed
point and a given fixed line in the plane is a parabola. The fixed point is
the focus of the parabola. The fixed line is the directrix.

If the focus F lies on the directrix L, the parabola is the line through F
perpendicular to L. We consider this to be a degenerate case and assume henceforth
that F does not lie on L.

A parabola has its simplest equation when its focus and directrix straddle one
of the coordinate axes. For example, suppose that the focus lies at the point F'(0, p)
on the positive y-axis and that the directrix is the line y = —p (Fig. 9.2). In the
notation of the figure, a point P (x, y) lies on the parabola if and only if PF = PQ.
From the distance formula,

PF = /(x =02+ (y = p)* = V2> + (y - p)?
PQ =2+~ =p) =V +p>
When we equate these expressions, square, and simplify, we get

X2

~ap

y or x?= 4py. Standard form (1
These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis
the axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the
parabola x2 = 4py lies at the origin (Fig. 9.2). The positive number p is the
parabola’s focal length.

If the parabola opens downward, with its focus at (0, —p) and its directrix the
line y = p, then Egs. (1) become

x2

- and x? = —4py
4p

y =
(Fig. 9.3). We obtain similar equations for parabolas opening to the right or to the

left (Fig. 9.4, on the following page, and Table 9.1).

Table 9.1 Standard-form equations for parabolas with vertices at the
origin (p > 0)

Equation Focus Directrix Axis Opens
x*= 4py ©, p) y=-p y-axis Up

x? = —4 py 0, —p) y= p y-axis Down

y2= 4px (p,0) x=-p Xx-axis To the right
y? = —4 px (=p,0) x= p x-axis To the left
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9.4 (a) The parabola y? = 4px. (b) The
parabola y? = —4px.

9.5 How to draw an ellipse.

y y
Directrix 2 Directrix
x=-p Y =dpx x=p
Vertex Vertex
Focus
- x PN x
0} F(p,0) F(-p,0) JO

(a) ()

EXAMPLE 1 Find the focus and directrix of the parabola y*> = 10x.

Solution We find the value of p in the standard equation y? = 4px:

10 5
4p = 10, N¢J p=—4—=5.

Then we find the focus and directrix for this value of p:

5
Focus: (p,0) = (5,0>
5

Directrix: = - = —=.
irectrix x p or x 5 0
The horizontal and vertical shift formulas in Preliminaries, Section 4, can be
applied to the equations in Table 9.1 to give equations for a variety of parabolas in
other locations (see Exercises 39, 40, and 45-48).

Ellipses

Defmltlons

An ellipse is the set of pomts in a plane whose dlstances from two ﬁxed
points in the plane have a constant sum. The two ﬁxed points are the foci
of the ellipse. o

The quickest way to construct an ellipse uses the definition. Put a loop of string
around two tacks F; and F,, pull the string taut with a pencil point P, and move
the pencil around to trace a closed curve (Fig. 9.5). The curve is an ellipse because
the sum PF; + PF,, being the length of the loop minus the distance between the
tacks, remains constant. The ellipse’s foci lie at F; and F,.



Vertex [ Focus Center Focus \Vertex

L & &

Focal axis

9.6 Points on the focal axis of an ellipse.

P(x, y)

Focg/ Focus

Fl(—'c, 0) O|Center F2(E, 0) |4

9.7 The ellipse defined by the equation
PFy + PF, = 2a is the graph of the
equation (x2/a%) + (y?/b%) = 1.
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Definitions

The line through the foci of an ellipse is the ellipse’s focal axis. The point
~ on the axis halfway between the foci is the center. The points where the

focal axis and ellipse cross are the ellipse’s vertices (Fig. 9.6).

If the foci are F,(—c, 0) and F5(c, 0) (Fig. 9.7), and PF; + PF, is denoted by
2a, then the coordinates of a point P on the ellipse satisfy the equation

Va+o2+y + /(x — ) +y* = 2a.

To simplify this equation, we move the second radical to the right-hand side, square,
isolate the remaining radical, and square again, obtaining

x2 y2

2t asa=t @

Since PF; + PF, is greater than the length FjF, (triangle inequality for triangle
PF\| F;), the number 2a is greater than 2c¢. Accordingly, a > ¢ and the number
a* — ¢? in Eq. (2) is positive.

The algebraic steps leading to Eq. (2) can be reversed to show that every point
P whose coordinates satisfy an equation of this form with 0 < ¢ < a also satisfies
the equation PF; + PF, = 2a. A point therefore lies on the ellipse if and only if
its coordinates satisfy Eq. (2).

If

b=+Va?--c?, (3)

then a? — ¢ = b? and Eq. (2) takes the form
X2y
S+l _ @)
Equation (4) reveals that this ellipse is symmetric with respect to the origin
and both coordinate axes. It lies inside the rectangle bounded by the lines x = *a
and y = +b. It crosses the axes at the points (£a, 0) and (0, +b). The tangents
at these points are perpendicular to the axes because
dy  bx

Obtained from Eq. (4) by
implicit differentiation

dx ~—  a?y

is zero if x = 0 and infinite if y = 0.

The Major and Minor Axes of an Ellipse

The major axis of the ellipse in Eq. (4) is the line segment of length 2a joining the
points (£ a, 0). The minor axis is the line segment of length 2b joining the points
(0, £b). The number a itself is the semimajor axis, the number b the semiminor
axis. The number ¢, found from Eq. (3) as

c =+a?-b?,

is the center-to-focus distance of the ellipse.
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ety =1

Vertex
(-4,0)
Focus

o
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(0,3)

Q

w

0,-3)

9.8 Major axis horizontal (Example 2).

~<

=

2

|‘<

2
+ 1

1
Focus
(-3,0)

=}
[o)}

(0, 4) Vertex

b (0, V7)
3,0
X

Center
Focus ¢

Vertex

0,-4)

9.9 Major axis vertical (Example 3).

Vertex
4,0)
Focus
X

EXAMPLE 2  Major axis horizontal
The ellipse
X252
4+ =1 5
16 + 9 ©)
(Fig. 9.8) has
Semimajor axis: a = V16 = 4, Semiminor axis: b = +/9 =3
Center-to-focus distance: ¢ = /16 — 9 = /7
Foci: (%c¢,0) = (£+4/7,0)
Vertices: (£a,0) = (+£4,0)
Center: (0, 0). a
EXAMPLE 3  Major axis vertical
The ellipse
X2 y?
4+ =1, 6
9 16 (©)

obtained by interchanging x and y in Eq. (5), has its major axis vertical instead of
horizontal (Fig. 9.9). With a? still equal to 16 and b? equal to 9, we have

a=+16 =4, Semiminor axis: b=+/9=3
c=416—-9 = V7

Semimajor axis:

Center-to-focus distance:

Foci: (0,%¢) = (0, £+/7)
Vertices: (0, £a) = (0, +4)
Center: (0, 0). |

There is never any cause for confusion in analyzing equations like (5) and (6).
We simply find the intercepts on the coordinate axes; then we know which way the
major axis runs because it is the longer of the two axes. The center always lies at
the origin and the foci lie on the major axis.

Standard-Form Equations for Ellipses Centered at the Origin
X2 y?
Foci on the x-axis: —+5= 1 (a>Db)
a b?
Center-to-focus distance: ¢ = +/a? — b?
Foci: (xc¢,0)
Vertices: (£ a,0)
2 g2
Foci on the y-axis: —+—==1 (a>Db)
b a?
Center-to-focus distance: ¢ = +/a? — b?
Foci: (0, £c¢)
Vertices: (0, £a)
In each case, a is the semimajor axis and b is the semiminor axis.




P(x, )

F(~c,0) 0 Fy(c, 0)

9.10 Hyperbolas have two branches. For
points on the right-hand branch of the
hyperbola shown here, PF; — PF, = 2a.
For points on the left-hand branch,

PFz - PF1 = 2a.

Vertices

Focus Focus

Cer'ner /

Focal axis

9.11 Points on the focal axis of a
hyperbola.
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Hyperbolas

Definitions
A hyperbola is the set of points in a plane whose distances from two fixed

points in the plane have a constant difference. The two fixed points are the
foci of the hyperbola.

If the foci are Fj(—c,0) and F,(c, 0) (Fig. 9.10) and the constant difference
is 2a, then a point (x, y) lies on the hyperbola if and only if

VaE 40?2 +y2 —J(x—c)?+y2=+2a. 7)

To simplify this equation, we move the second radical to the right-hand side, square,
isolate the remaining radical, and square again, obtaining

X2 y2

aZ a2 — 2

=1 (8)
So far, this looks just like the equation for an ellipse. But now a®> — ¢? is negative
because 2a, being the difference of two sides of triangle PFF, is less than 2c, the
third side.

The algebraic steps leading to Eq. (8) can be reversed to show that every point
P whose coordinates satisfy an equation of this form with 0 < a < c also satisfies
Eq. (7). A point therefore lies on the hyperbola if and only if its coordinates satisfy
Eq. (8).

If we let b denote the positive square root of ¢? — a2,

b=+c?*-a?, 9)

then a? — ¢* = —b? and Eq. (8) takes the more compact form
PLI

The differences between Eq. (10) and the equation for an ellipse (Eq. 4) are the
minus sign and the new relation

¢ =a®+b*  FomEq (9)
Like the ellipse, the hyperbola is symmetric with respect to the origin and

coordinate axes. It crosses the x-axis at the points (+a, 0). The tangents at these
points are vertical because
2
dy _ b Obtained from Eq. (10) by
dx a?y implicit differentiation

is infinite when y = 0. The hyperbola has no y-intercepts; in fact, no part of the
curve lies between the lines x = —a and x = a.

Definitions

The line through the foci of a hyperbola is the focal axis. The point on the
axis halfway between the foci is the hyperbola’s center. The points where
the focal axis and hyperbola cross are the vertices (Fig. 9.11).
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Asymptotes of Hyperbolas—Graphing
The hyperbola

X2y
i =1 (11)
has two asymptotes, the lines
b
y==+x-x
a

The asymptotes give us the guidance we need to graph hyperbolas quickly. (See
the drawing lesson.) The fastest way to find the equations of the asymptotes is to
replace the 1 in Eq. (11) by O and solve the new equation for y:

2 2 2 2
X y x y b
- =13 Z——-==0 = y=*—nx
a> b? a?  b? Y a
———
hyperbola 0 for 1 asymptotes

Standard-Form Equations for Hyperbolas Centered at the Origin

x2 2 2 x2
Foci on the x-axis: i z—z =1 Foci on the y-axis: 2—2 3, =1
Center-to-focus distance: ¢ = /a2 + b? Center-to-focus distance: ¢ = +/a? + b?
Foci: (%¢,0) Foci: (0, +¢)
Vertices: (+a, 0) Vertices: (0, +a)
2 2 2 2
y b y x a

Asymptotes: — — = =0 or =+—x Asymptotes: = — — =0 or =+ -x

ymp 2 » y 2 ymp 2 B y b

Notice the difference in the asymptote equations (b/a in the first, a/b in the second).

DRAWING LESSON
2 2

Xy
How to Graph the Hyperbola 72 B 1

n Mark the points (+a,0) and
(0, £ b) with line segments and

complete the rectangle they y
determine.

y=-by b,

E Sketch the asymptotes by I I ca a —a

LELY

ﬁ‘l‘<
ol

extending the rectangle’s X *
diagonals.

-b : ~b

B Use the rectangle and,
asymptotes to guide your
drawing.

~b




9.12 The hyperbola in Example 4.

9.13 The hyperbola in Example 5.
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EXAMPLE 4 Foci on the x-axis

The equation
2 2

X y
- =1 (12)
4 5
is Eq. (10) with a®> = 4 and b* = 5 (Fig. 9.12). We have
Center-to-focus distance: ¢ = a2 +b>=+/4+5=3
Foci: (*c¢,0) = (£3,0), Vertices: (£a,0) = (£2,0)
Center: (0, 0)
x
4

2

2 5
—%:0 or y=:!:£x. 0

Asymptotes: >

EXAMPLE 5  Foci on the y-axis

The hyperbola

y2 X2

-1,
4 5

obtained by interchanging x and y in Eq. (12), has its vertices on the y-axis instead
of the x-axis (Fig. 9.13). With a? still equal to 4 and b? equal to 5, we have

Center-to-focus distance: ¢ = Va2 +b2=/4+5=3
Foci: (0, +c¢) = (0, £3), Vertices: (0, £a) = (0, £2)
Center: (0, 0)

2 2
y x 2
A totes: — — — =0 =+ —nx.
symptotes 1 5 or y ﬁx
y
22
4 5

Reflective Properties

The chief applications of parabolas involve their use as reflectors of light and radio
waves. Rays originating at a parabola’s focus are reflected out of the parabola parallel
to the parabola’s axis (Fig. 9.14, on the following page, and Exercise 90). This prop-
erty is used by flashlight, headlight, and spotlight reflectors and by microwave broad-
cast antennas to direct radiation from point sources into narrow beams. Conversely,
electromagnetic waves arriving parallel to a parabolic reflector’s axis are directed
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Parabolic light/ Outgoing light parallel to axis

=L

—Filament (point source) at focus —

\Vd

HEADLAMP X

Parabolic radio
wave reflector

RADIO TELESCOPE

9.14 Two of the many uses of parabolic
reflectors.

N2
Hyperbola

7/
Ellipse

Parabola
M

Primary mirror

9.16 Schematic drawing of a reflecting
telescope.

toward the reflector’s focus. This property is used to intensify signals picked up by
radio telescopes and television satellite dishes, to focus arriving light in telescopes,
and to concentrate sunlight in solar heaters.

If an ellipse is revolved about its major axis to generate a surface (the surface
is called an ellipsoid) and the interior is silvered to produce a mirror, light from
one focus will be reflected to the other focus (Fig. 9.15). Ellipsoids reflect sound
the same way, and this property is used to construct whispering galleries, rooms
in which a person standing at one focus can hear a whisper from the other focus.
Statuary Hall in the U.S. Capitol building is a whispering gallery. Ellipsoids also
appear in instruments used to study aircraft noise in wind tunnels (sound at one
focus can be received at the other focus with relatively little interference from other
sources).

9.15 An elliptical mirror
(shown here in profile)
reflects light from one focus
to the other.

Light directed toward one focus of a hyperbolic mirror is reflected toward the
other focus. This property of hyperbolas is combined with the reflective properties
of parabolas and ellipses in designing modern telescopes. In Fig. 9.16 starlight
reflects off a primary parabolic mirror toward the mirror’s focus Fp. It is then
reflected by a small hyperbolic mirror, whose focus is Fg = Fp, toward the second
focus of the hyperbola, Fr = Fy. Since this focus is shared by an ellipse, the light
is reflected by the elliptical mirror to the ellipse’s second focus to be seen by an
observer.

As recent experience with NASA’s Hubble space telescope shows, the mirrors
have to be nearly perfect to focus properly. The aberration that caused the malfunc-
tion in Hubble’s primary mirror (now corrected with additional mirrors) amounted
to about half a wavelength of visible light, no more than 1/50 the width of a human
hair.

Other Applications

Water pipes are sometimes designed with elliptical cross sections to allow for
expansion when the water freezes. The triggering mechanisms in some lasers are
elliptical, and stones on a beach become more and more elliptical as they are
ground down by waves. There are also applications of ellipses to fossil formation.
The ellipsolith, once thought to be a separate species, is now known to be an
elliptically deformed nautilus.

Hyperbolic paths arise in Einstein’s theory of relativity and form the basis
for the (unrelated) LORAN radio navigation system. (LORAN is short for “long
range navigation.”) Hyperbolas also form the basis for a new system the Burlington
Northern Railroad developed for using synchronized electronic signals from satel-
lites to track freight trains. Computers aboard Burlington Northern locomotives in
Minnesota have been able to track trains to within one mile per hour of their speed
and to within 150 feet of their actual location.



Exercises 9.1 719

Exercises 9.1

Identifying Graphs
Match the parabolas in Exercises 1-4 with the following equations:

2 2

x2 =2y, x>=-6y, y*=8x, y>=—4x.

Then find the parabola’s focus and directrix.
1. 2.
y
4.
y
X
X

Match each conic section in Exercises 5-8 with one of these equations:

|

x2 y2 x2
—t5 =L F+y¥=1
7779 7 T

2 2 2
Y =1, LY g
4 49

Then find the conic section’s foci and vertices. If the conic section is
a hyperbola, find its asymptotes as well.

5. 6.

_—_——<

Parabolas

Exercises 9-16 give equations of parabolas. Find each parabola’s
focus and directrix. Then sketch the parabola. Include the focus and
directrix in your sketch.

9. y2 =12x 10. x> =6y 11. x? = -8y
12. y2 = —2x 13. y = 4x? 14. y = —8x?
15. x = —3y? 16. x = 2y?

Ellipses

Exercises 17-24 give equations for ellipses. Put each equation in
standard form. Then sketch the ellipse. Include the foci in your sketch.

17. 16x” +25y* = 400 18. 7x2 + 16y = 112
19. 2x* +y? =2 20. 2x2 + )2 =4

21. 3x* +2y* =6 22. 9x% + 10y? = 90

23. 6x> +9y> =54 24. 169x2 + 25y% = 4225

Exercises 25 and 26 give information about the foci and vertices of
ellipses centered at the origin of the xy-plane. In each case, find the
ellipse’s standard-form equation from the given information.

25. Foci: (£+/2,0) 26. Foci: (0, £4)
Vertices: (£2,0) Vertices: (0, £5)
Hyperbolas

Exercises 27-34 give equations for hyperbolas. Put each equation in
standard form and find the hyperbola’s asymptotes. Then sketch the
hyperbola. Include the asymptotes and foci in your sketch.

27. x2—y*=1 28. 9x2 — 16y* = 144
29. y?—-x2=38 30. y2—x>=4
31. 8x2 -2y’ =16 32. 2 -3x2=3

R, 3y — 2w =16 34, x? — %y =204

Exercises 35-38 give information about the foci, vertices, and asymp-
totes of hyperbolas centered at the origin of the xy-plane. In each
case, find the hyperbola’s standard-form equation from the informa-
tion given.

35. Foci: (0, £+/2) 36. Foci: (£2,0)
Asymptotes: y =+x 1
P Asymptotes: y =+ —x
V3
37. Vertices: (£3,0) 38. Vertices: (0, £2)
4 1
Asymptotes: y = £ 3 x Asymptotes: y == 2 x

Shifting Conic Sections

39. The parabola y?> = 8x is shifted down 2 units and right 1 unit
to generate the parabola (y 4 2)> = 8(x — 1). (a) Find the new
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parabola’s vertex, focus, and directrix. (b) Plot the new vertex,
focus, and directrix, and sketch in the parabola.

40. The parabola x? = ~4y is shifted left 1 unit and up 3 units to
generate the parabola (x + 1) = —4(y — 3). (a) Find the new
parabola’s vertex, focus, and directrix. (b) Plot the new vertex,
focus, and directrix, and sketch in the parabola.

41. The ellipse (x2/16) + (y%/9) = 1 is shifted 4 units to the right
and 3 units up to generate the ellipse

x —4)? —3)2
(=47 =3 _
16 9

(a) Find the foci, vertices, and center of the new ellipse. (b) Plot
the new foci, vertices, and center, and sketch in the new ellipse.

42. The ellipse (x2/9) + (y%/25) = 1 is shifted 3 units to the left and
2 units down to generate the ellipse

(x +3)? 4 y+2?

9 25

(a) Find the foci, vertices, and center of the new ellipse. (b) Plot
the new foci, vertices, and center, and sketch in the new ellipse.

1.

1.

43. The hyperbola (x2/16) — (y?/9) = 1 is shifted 2 units to the right
to generate the hyperbola
x=2 ¥y _
16 9 7

(a) Find the center, foci, vertices, and asymptotes of the new
hyperbola. (b) Plot the new center, foci, vertices, and asymptotes,
and sketch in the hyperbola.

44, The hyperbola (y?/4) — (x?/5) =1 is shifted 2 units down to
generate the hyperbola

(y +2)? xzﬂ1
4 5

(a) Find the center, foci, vertices, and asymptotes of the new
hyperbola. (b) Plot the new center, foci, vertices, and asymptotes,
and sketch in the hyperbola.

Exercises 4548 give equations for parabolas and tell how many units
up or down and to the right or left each parabola is to be shifted. Find
an equation for the new parabola, and find the new vertex, focus, and
directrix.

45, y? = 4x, left2, down 3
46. y? = —12x,
47. x* =8y, right 1, down 7
48. x?> =6y, left 3, down 2

right 4, up 3

Exercises 49-52 give equations for ellipses and tell how many units
up or down and to the right or left each ellipse is to be shifted. Find
an equation for the new ellipse, and find the new foci, vertices, and
center.

2 2
! %:1, left 2, down 1

49. —
6+

x2
50. > +y*=1, right3,up4
2 2
51. %+%=1, right 2, up 3
2 2
52. % + g—s —1, left4, down 5

Exercises 53-56 give equations for hyperbolas and tell how many
units up or down and to the right or left each hyperbola is to be
shifted. Find an equation for the new hyperbola, and find the new
center, foci, vertices, and asymptotes.

2 2
53. %—%:1, right 2, up 2
2 2
54, = Y _ 1, left5, down 1
6 9
55. y?—x2=1, left1,down 1
y2
56. 3 —x2=1, right1,up3

Find the center, foci, vertices, asymptotes, and radius, as appropriate,
of the conic sections in Exercises 57-68.

57. x’+4x+y* =12

58. 262 +2)2 — 28x + 12y + 114 =0
59. x?+2x4+4y—-3=0
60. y2 -4y —8x—12=0
61. x> +5y? +4x =1

62. 9x% + 6y +36y = 0

63. x> +2y? —2x —4y=-1
64. 4x> +y* +8x —2y = —1
65. x2 —y? —2x +4y =4
66. x2—y2+4x —6y =6
67. 2x2 —y2+6y =3

68. y> —4x2 4 16x =24

Inequalities

Sketch the regions in the xy-plane whose coordinates satisfy the in-
equalities or pairs of inequalities in Exercises 69-74.

69. 9x2 + 16y < 144

70. x> 4+y>>1 and 4x*+y’<4
71. x?+4y>>4 and 4x2+9y? <36
72, 242 —4H(x2+9y2-9) <0

73. 4y> —x2 >4

74, -y <1



Theory and Examples

75.

76.

77.

78.

79.

80.

81.

Archimedes’ formula for the volume of a parabolic solid.
The region enclosed by the parabola y = (4h/b?)x? and the line
y = h is revolved about the y-axis to generate the solid shown
here. Show that the volume of the solid is 3/2 the volume of the
corresponding cone.

AT

Suspension bridge cables hang in parabolas. The suspension
bridge cable shown here supports a uniform load of w pounds
per horizontal foot. It can be shown that if H is the horizontal
tension of the cable at the origin, then the curve of the cable
satisfies the equation

dy w
dx  H
Show that the cable hangs in a parabola by solving this differential
equation subject to the initial condition that y = 0 when x = 0.

y
Bridge cable
M—v——m x
0

Find an equation for the circle through the points (1, 0), (0, 1),
and (2, 2).

Find an equation for the circle through the points (2, 3), (3, 2),
and (—4, 3).

Find an equation for the circle centered at (—2, 1) that passes
through the point (1, 3). Is the point (1.1, 2.8) inside, outside, or
on the circle?

Find equations for the tangents to the circle (x — 2)2 + (y — 1)?
=5 at the points where the circle crosses the coordinate axes.
(Hint: Use implicit differentiation.)

If lines are drawn parallel to the coordinate axes through a point
P on the parabola y?> = kx, k > 0, the parabola partitions the
rectangular region bounded by these lines and the coordinate
axes into two smaller regions, A and B.

82.

83.

84.

85.

86.

87.

88.

89.

Exercises 9.1 721

a) If the two smaller regions are revolved about the y-axis,
show that they generate solids whose volumes have the
ratio 4:1.

b) What is the ratio of the volumes generated by revolving the
regions about the x-axis?

Show that the tangents to the curve y? = 4px from any point on
the line x = —p are perpendicular.
Find the dimensions of the rectangle of largest area that can be

inscribed in the ellipse x? 4 4y? = 4 with its sides parallel to the
coordinate axes. What is the area of the rectangle?

Find the volume of the solid generated by revolving the region
enclosed by the ellipse 9x2 + 4y? = 36 about the (a) x-axis,
(b) y-axis.

The “triangular” region in the first quadrant bounded by the
x-axis, the line x = 4, and the hyperbola 9x? — 4y? = 36 is re-
volved about the x-axis to generate a solid. Find the volume of
the solid.

The region bounded on the left by the y-axis, on the right by
the hyperbola x> — y> = 1, and above and below by the lines
y = =3 is revolved about the y-axis to generate a solid. Find
the volume of the solid.

Find the centroid of the region that is bounded below by the
x-axis and above by the ellipse (x2/9) + (y%/16) = 1.

Thecurve y = +/x2+1,0<x < /2, which is part of the upper
branch of the hyperbola y? — x? = 1, is revolved about the x-axis
to generate a surface. Find the area of the surface.

The circular waves in the photograph here were made by touching
the surface of a ripple tank, first at A and then at B. As the
waves expanded, their point of intersection appeared to trace a
hyperbola. Did it really do that? To find out, we can model the
waves with circles centered at A and B.
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90.

At time ¢, the point P is r4 (¢) units from A and rp (¢) units
from B. Since the radii of the circles increase at a constant rate,
the rate at which the waves are traveling is

dra _ drg

dr  dr
Conclude from this equation that r4 — rp has a constant value,
so that P must lie on a hyperbola with foci at A and B.

The expanding waves in Exercise 89.

The reflective property of parabolas. The figure here shows
a typical point P (xo, yo) on the parabola y? = 4px. The line
L is tangent to the parabola at P. The parabola’s focus lies at
F (p,0). The ray L’ extending from P to the right is parallel to
the x-axis. We show that light from F to P will be reflected out
along L' by showing that 8 equals «. Establish this equality by
taking the following steps.

a) Show that tan 8 = 2p/ys.
b) Show that tan ¢ = yy/(xo — p).
¢) Use the identity

tan ¢ —tan 8
1+ tan ¢ tan 8
to show that tan o = 2p/yy.

tan ¢ =

Since o and B are both acute, tan 8 = tan « implies 8 = «.

y
L

P(xg, ¥p) B L
B

« Yo

¢
# x
O\ F(p,0)

91.

92.

How the astronomer Kepler used string to draw parabolas.
Kepler’s method for drawing a parabola (with more modern tools)
requires a string the length of a T square and a table whose edge
can serve as the parabola’s directrix. Pin one end of the string to
the point where you want the focus to be and the other end to the
upper end of the T square. Then, holding the string taut against
the T square with a pencil, slide the T square along the table’s
edge. As the T square moves, the pencil will trace a parabola.
Why?

Aq—

g\i\“%

Focus ¢

Directrix

Construction of a hyperbola. The following diagrams appeared
(unlabeled) in Ernest J. Eckert, “Constructions Without Words,”
Mathematics Magazine, Vol. 66, No. 2, April 1993, p. 113. Ex-
plain the constructions.

93.

94.

y y

1 1

A C
P ) P
B
X
0 D(1,0) o D(1, 0)
@ (b)

The width of a parabola at the focus. Show that the number
4p is the width of the parabola x? = 4py (p > 0) at the focus
by showing that the line y = p cuts the parabola at points that
are 4p units apart.

The asymptotes of (x*/a%) — (y*/b?) = 1. Show that the verti-
cal distance between the line y = (b/a)x and the upper half
of the right-hand branch y = (b/a) +/x%2 — a? of the hyperbola
(x%/a*) — (y*/b*) = 1 approaches 0 by showing that

lim (%—SM) (x—\/ch———aE)=0.

xX—00 a
Similar results hold for the remaining portions of the hyperbola
and the lines y = &+ (b/a)x.

b .
= — lim
a x—oo



9.17 The ellipse changes from a circle to
a line segment as c increases from 0 to a.

Table 9.2 Eccentricities of planetary
orbits

Mercury 0.21 Saturn 0.06

Venus 0.01 Uranus 0.05
Earth 0.02  Neptune 0.01
Mars 0.09 Pluto 0.25

Jupiter 0.05

Mars

(&

Icarus

9.18 The orbit of the asteroid Icarus is
highly eccentric. Earth’s orbit is so nearly
circular that its foci lie inside the sun.

9.2 Classifying Conic Sections by Eccentricity 723

Classifying Conic Sections by Eccentricity
We now show how to associate with each conic section a number called the conic
section’s eccentricity. The eccentricity reveals the conic section’s type (circle, el-

lipse, parabola, or hyperbola) and, in the case of ellipses and hyperbolas, describes
the conic section’s general proportions.

Eccentricity

Although the center-to-focus distance ¢ does not appear in the equation
X2y
; + b—2 = 1, (a > b)

for an ellipse, we can still determine ¢ from the equation ¢ = +/a? — b2. If we fix
a and vary ¢ over the interval 0 < ¢ < a, the resulting ellipses will vary in shape
(Fig. 9.17). They are circles if ¢ = 0 (so that a = b) and flatten as ¢ increases. If
¢ = a, the foci and vertices overlap and the ellipse degenerates into a line segment.

We use the ratio of ¢ to a to describe the various shapes the ellipse can take.
We call this ratio the ellipse’s eccentricity.

Definition
The eccentricity of the ellipse (x*/a?) + (y*/b*) =1 (a > b) is

/a? — b?

c
e=— =
a a

The planets in the solar system revolve around the sun in elliptical orbits with
the sun at one focus. Most of the orbits are nearly circular, as can be seen from
the eccentricities in Table 9.2. Pluto has a fairly eccentric orbit, with e = 0.25, as
does Mercury, with e = 0.21. Other members of the solar system have orbits that
are even more eccentric. Icarus, an asteroid about 1 mile wide that revolves around
the sun every 409 Earth days, has an orbital eccentricity of 0.83 (Fig. 9.18).

EXAMPLE 1 The orbit of Halley’s comet is an ellipse 36.18 astronomical units
long by 9.12 astronomical units wide. (One astronomical unit [AU] is 149,597,870
km, the semimajor axis of Earth’s orbit.) Its eccentricity is

va b _ J(3618/2) — 9.12/2° _ /(1809 — (456 .
a (1/2)(36.18) - 18.09 77T

e =

Whereas a parabola has one focus and one directrix, each ellipse has two foci
and two directrices. These are the lines perpendicular to the major axis at distances
=+ a/e from the center. The parabola has the property that

PF =1.PD (1

for any point P on it, where F is the focus and D is the point nearest P on the
directrix. For an ellipse, it can be shown that the equations that replace (1) are

PF1=e-PD1, PF2:€'PD2. (2)
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9.19 The foci and directrices of the
ellipse (x2/a?) + (y?/b?) = 1. Directrix 1
corresponds to focus F, and directrix 2 to
focus F,.

Halley’s comet

Edmund Halley (1656-1742; pronounced
“haw-ley”), British biologist, geologist, sea
captain, pirate, spy, Antarctic voyager,
astronomer, adviser on fortifications,
company founder and director, and the author
of the first actuarial mortality tables, was also
the mathematician who pushed and harried
Newton into writing his Principia. Despite
his accomplishments, Halley is known today
chiefly as the man who calculated the orbit
of the great comet of 1682: “wherefore if
according to what we have already said [the
comet] should return again about the year
1758, candid posterity will not refuse to
acknowledge that this was first discovered by
an Englishman.” Indeed, candid posterity did
not refuse—ever since the comet’s return in
1758, it has been known as Halley’s comet.
Last seen rounding the sun during the
winter and spring of 1985-86, the comet is
due to return in the year 2062. A recent study
indicates that the comet has made about 2000
cycles so far with about the same number to
go before the sun erodes it away completely.

Yy
Directrix 1 Directrix 2
x=-2 x=92
T e T e
b
Fy(~c, 0) Fy(c, 0)

ol _—

D P(x, y\ D,

e—C = ae—>

YN

Here, e is the eccentricity, P is any point on the ellipse, F; and F, are the foci,
and D; and D, are the points on the directrices nearest P (Fig. 9.19).

In each equation in (2) the directrix and focus must correspond; that is, if we
use the distance from P to Fj, we must also use the distance from P to the directrix
at the same end of the ellipse. The directrix x = —a/e corresponds to F;(—c, 0),
and the directrix x = a/e corresponds to F(c, 0).

The eccentricity of a hyperbola is also e = ¢/a, only in this case ¢ equals
v/a? + b? instead of +/a? — b%. In contrast to the eccentricity of an ellipse, the
eccentricity of a hyperbola is always greater than 1.

Definition
‘The eccentricity of the hyperbola (x2/a?) — (y?/b%) =1 is

c
‘e= e
a a

In both ellipse and hyperbola, the eccentricity is the ratio of the distance
between the foci to the distance between the vertices (because c/a = 2¢/2a).

distance between foci

Eccentricity = — -
¥ distance between vertices

In an ellipse, the foci are closer together than the vertices and the ratio is less than
1. In a hyperbola, the foci are farther apart than the vertices and the ratio is greater
than 1.

EXAMPLE 2 Locate the vertices of an ellipse of eccentricity 0.8 whose foci
lie at the points (0, £ 7).



Directrix 1 Directrix 2
a

P(x,
D, (x, ¥)

Fc0] | o] 4 |Fy(e, 0)

le—a—>|

[e—C = ae—>

9.20 The foci and directrices of the
hyperbola (x?/a%) — (y?/b?) = 1. No matter
where P lies on the hyperbola,

PF1 =e -+ PD, and PF, = e « PD,.

9.2 Classifying Conic Sections by Eccentricity 725

Solution Since e = c/a, the vertices are the points (0, £ a) where
c 7

a = — = —

e 0.8

or (0, £ 8.75). Q

= 8.75,

EXAMPLE 3 Find the eccentricity of the hyperbola 9x? — 16y? = 144.

Solution We divide both sides of the hyperbola’s equation by 144 to put it in
standard form, obtaining

9x2  16y? x*  y?
— - — =1 and — —==1.
144~ 144 169
With a? = 16 and »? = 9, we find that ¢ = v/a? + b2 = /16 +9 =5, so
c 5
e=—=",
a 4 a

As with the ellipse, it can be shown that the lines x = +a/e act as directrices
for the hyperbola and that

PF]:E-PDI and PF2=€'PD2. (3)

Here P is any point on the hyperbola, F; and F, are the foci, and D; and D, are
the points nearest P on the directrices (Fig. 9.20).

To complete the picture, we define the eccentricity of a parabola to be e = 1.
Equations (1) — (3) then have the common form PF =e - PD.

Definition
The eccentricity of a parabola is e = 1.

The “focus—directrix” equation PF = e - PD unites the parabola, ellipse, and
hyperbola in the following way. Suppose that the distance PF of a point P from
a fixed point F(the focus) is a constant multiple of its distance from a fixed line
(the directrix). That is, suppose

PF =e¢ . PD, 4

where e is the constant of proportionality. Then the path traced by P is

a) a parabola if e = 1,
b) an ellipse of eccentricity e if e < 1, and
¢) a hyperbola of eccentricity e if e > 1.

Equation (4) may not look like much to get excited about. There are no co-
ordinates in it and when we try to translate it into coordinate form it translates
in different ways, depending on the size of e. At least, that is what happens in
Cartesian coordinates. However, in polar coordinates, as we will see in Section 9.8,
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o 1 F3,0)

9.21 The hyperbola in Example 4.

the equation PF = e - PD translates into a single equation regardless of the value
of e, an equation so simple that it has been the equation of choice of astronomers
and space scientists for nearly 300 years.

Given the focus and corresponding directrix of a hyperbola centered at the
origin and with foci on the x-axis, we can use the dimensions shown in Fig. 9.20 to
find e. Knowing e, we can derive a Cartesian equation for the hyperbola from the
equation PF = e - PD, as in the next example. We can find equations for ellipses
centered at the origin and with foci on the x-axis in a similar way, using the
dimensions shown in Fig. 9.19.

EXAMPLE 4 Find a Cartesian equation for the hyperbola centered at the origin
that has a focus at (3, 0) and the line x = 1 as the corresponding directrix.

Solution We first use the dimensions shown in Fig. 9.20 to find the hyperbola’s
eccentricity. The focus is

(c,0) = (3,0, SO c=3.
The directrix is the line
X = 4 =1, SO a=e.
e
When combined with the equation e = c/a that defines eccentricity, these results
give

3
e=—-=71, ) =3 and e=+/3.
a e

Knowing e, we can now derive the equation we want from the equation PF =
e - PD. In the notation of Fig. 9.21, we have

PF =e¢-PD Eq. (4)
Vi =32+ (=02 =+3]x -1 e= V3
x2—6x+94y? =3(x*—2x+1)
22—y =6
¥ _¥Y_,
3 6 ' a

Exercises 9.2

Ellipses

In Exercises 1-8, find the eccentricity of the ellipse. Then find and Exercises 9-12 give the foci or vertices and the eccentricities of el-

graph the ellipse’s foci and directrices.

lipses centered at the origin of the xy-plane. In each case, find the

1. 16x2 + 25y = 400 2. 73 4+ 16y? = 112 ellipse’s standard-form equation.
3. 242442 =2 4. 22 4+y2 =4 9. Foci: (0, +£3) 10. Foci: (£8,0)
Eccentricity: 0.5 Eccentricity: 0.2
5. 3x242y? =6 6. 9x2 4+ 10y?> =90 . .
R R ) ) 11. Vertices: (0, =70) 12. Vertices: (£ 10,0)
7. 6x° +9y" =54 8. 169x* +25y° = 4225 Eccentricity: 0.1 Eccentricity: 0.24



Exercises 13-16 give foci and corresponding directrices of ellipses
centered at the origin of the xy-plane. In each case, use the dimensions
in Fig. 9.19 to find the eccentricity of the ellipse. Then find the ellipse’s
standard-form equation.

13.

15.

17.

18.

19.

20.

21

.

22.

Focus: (v/5, 0) 14. Focus: (4, 0)

. . 9 . . 16
Directrix: x = — Directrix: x = —

J5 3

Focus: (—4, 0) 16. Focus: (—+/2, 0)
Directrix: x = —16 Directrix: x = —2+/2
Draw an ellipse of eccentricity 4/5. Explain your procedure.
Draw the orbit of Pluto (eccentricity 0.25) to scale. Explain your
procedure.
The endpoints of the major and minor axes of an ellipse are
(1, 1), (3, 4), (1, 7), and (—1, 4). Sketch the ellipse, give its
equation in standard form, and find its foci, eccentricity, and
directrices.
Find an equation for the ellipse of eccentricity 2/3 that has the

line x = 9 as a directrix and the point (4, 0) as the corresponding
focus.

What values of the constants a, b, and ¢ make the ellipse
a2+ y’ +ax+by+c=0

lie tangent to the x-axis at the origin and pass through the point
(=1, 2)? What is the eccentricity of the ellipse?

The reflective property of ellipses. An ellipse is revolved about
its major axis to generate an ellipsoid. The inner surface of the
ellipsoid is silvered to make a mirror. Show that a ray of light
emanating from one focus will be reflected to the other focus.
Sound waves also follow such paths, and this property is used
in constructing “whispering galleries.” (Hint: Place the ellipse in

standard position in the xy-plane and show that the lines from
a point P on the ellipse to the two foci make congruent angles
with the tangent to the ellipse at P.)

Hyperbolas

In Exercises 23-30, find the eccentricity of the hyperbola. Then find
and graph the hyperbola’s foci and directrices.

23. x2—y? =1
25. y2—x?>=38
27. 8x2 —2y? =16
29. 8y —2x2 =16

24. 9x%2 — 16y = 144
26. y?—x*=4

28. 2 —3x2=3

30. 64x2 — 36y% = 2304

Exercises 31-34 give the eccentricities and the vertices or foci of
hyperbolas centered at the origin of the xy-plane. In each case, find
the hyperbola’s standard-form equation.

31. Eccentricity: 3
Vertices:

33. Eccentricity: 3
Foci:

32. Eccentricity: 2
Vertices: (£ 2, 0)

34. Eccentricity: 1.25
Foci: (0, £ 5)

O, + 1)

(£3,0)

Exercises 9.2 727

Exercises 35-38 give foci and corresponding directrices of hyperbolas
centered at the origin of the xy-plane. In each case, find the hyper-
bola’s eccentricity. Then find the hyperbola’s standard-form equation.

35.

37.

39.

s 40.

41.

42.

36. Focus: (+/10, 0)
Directrix: x = /2
38. Focus: (=6, 0)
1 Directrix: x = —2

X=-=
2

Focus: (4, 0)
Directrix: x =2

Focus: (-2, 0)

Directrix:

A hyperbola of eccentricity 3/2 has one focus at (1, —3). The
corresponding directrix is the line y = 2. Find an equation for
the hyperbola.

The effect of eccentricity on a hyperbola’s shape. What hap-
pens to the graph of a hyperbola as its eccentricity increases?
To find out, rewrite the equation (x%/a%) — (y*/b?) = 1 in terms
of a and e instead of a and b. Graph the hyperbola for various
values of e and describe what you find.

The reflective property of hyperbolas. Show that a ray of
light directed toward one focus of a hyperbolic mirror, as in the
accompanying figure, is reflected toward the other focus. (Hint:
Show that the tangent to the hyperbola at P bisects the angle
made by segments PF; and PF;.)

y
\/ : Y)\
g X
7 [9) Fy(c,0)

A confocal ellipse and hyperbola. Show that an ellipse and a
hyperbola that have the same foci A and B, as in the accompa-
nying figure, cross at right angles at their point of intersection.
(Hint: A ray of light from focus A that met the hyperbola at P
would be reflected from the hyperbola as if it came directly from
B (Exercise 41). The same ray would be reflected off the ellipse
to pass through B (Exercise 22).)

\_7
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9.22 The focal axis of the hyperbola
2xy = 9 makes an angle of =/4 radians
with the positive x-axis.

0 M

9.23 A counterclockwise rotation
through angle « about the origin.

Quadratic Equations and Rotations

In this section, we examine one of the most amazing results in analytic geometry,
which is that the Cartesian graph of any equation

Ax*+ Bxy+Cy* +Dx+Ey+F =0, (1

in which A, B, and C are not all zero, is nearly always a conic section. The
exceptions are the cases in which there is no graph at all or the graph consists of
two parallel lines. It is conventional to call all graphs of Eq. (1), curved or not,
quadratic curves.

The Cross Product Term

You may have noticed that the term Bxy did not appear in the equations for the
conic sections in Section 9.1. This happened because the axes of the conic sections
ran parallel to (in fact, coincided with) the coordinate axes.

To see what happens when the parallelism is absent, let us write an equation
for a hyperbola with a = 3 and foci at F; (=3, —3) and F, (3, 3) (Fig. 9.22). The
equation |PF; — P F,| = 2a becomes |PF, — PF,| =2(3) = 6 and

VE+3)2+ (3 +3)2—/(x =32+ (y —3)2 = £6.

When we transpose one radical, square, solve for the radical that still appears, and
square again, the equation reduces to

2xy =9, 2)

a case of Eq. (1) in which the cross-product term is present. The asymptotes of the
hyperbola in Eq. (2) are the x- and y-axes, and the focal axis makes an angle of
7 /4 radians with the positive x-axis. As in this example, the cross product term is
present in Eq. (1) only when the axes of the conic are tilted.

Rotating the Coordinate Axes to Eliminate the
Cross Product Term

To eliminate the xy-term from the equation of a conic, we rotate the coordinate
axes to eliminate the “tilt” in the axes of the conic. The equations for the rotations
we use are derived in the following way. In the notation of Fig. 9.23, which shows
a counterclockwise rotation about the origin through an angle «,

x=O0OM=O0OP cos(0 +a)=0P cos 6 cosa— OP sin 0 sin «

3)
y=MP=0OPsin(@ +a)=OP cos 0 sin ¢+ OP sin 6 cos «.

Since

OP cos 6 = OM' =x'
and

OPsin=MP=y,

the equations in (3) reduce to the following.
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9.24 The hyperbola in Example 1 (x’ and
y' are the new coordinates).

9.3 Quadratic Equations and Rotations 729

Equations for Rotating Coordinate Axes

x=x"cosa—y sina
(4)

y =x'sina+y cos a

EXAMPLE 1 The x- and y-axes are rotated through an angle of /4 radians
about the origin. Find an equation for the hyperbola 2xy = 9 in the new coordinates.

Solution Since cos 7 /4 = sin /4 = 1/+/2, we substitute

x/_yl _xl+y/

N

from Egs. (4) into the equation 2xy = 9 and obtain

() ()

X =

x/2 _ y/2 =9
12 2
al A
9 9
See Fig. 9.24. a

If we apply Eqgs. (4) to the quadratic equation (1), we obtain a new quadratic
equation
AX?4+Bxy+Cy*+Dx+Ey+F =0. (5)
The new and old coefficients are related by the equations
A" = A cos’> @ + B cos a sin o + C sin® «
B' = B cos 2a + (C — A) sin 2«
C' = A sin®> @ — B sin « cos o + C cos’ « (6)
D' = D cos a + E sin «
E'= —D sina + E cos a
F' =F.

These equations show, among other things, that if we start with an equation
for a curve in which the cross product term is present (B # 0), we can find a
rotation angle « that produces an equation in which no cross product term appears
(B’ =0). To find o, we set B’ =0 in the second equation in (6) and solve the
resulting equation,
B cos 2a + (C — A) sin 2a =0,

for . In practice, this means determining @ from one of the two equations

A-C B
cot 200 = ——— or tan 200 = ———. 7)
B A
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2a
1

9.25 This triangle identifies
20 = cot™'(1/+/3) as n/3 (Example 2).

N m& 2x2+ BB3xy+y2—10=0
. :
7 N10 ¥
o xq{Q
kY
9
a:’g
X
-5 V5
o)
-\10
A0

9.26 The conic section in Example 2.

EXAMPLE 2 The coordinate axes are to be rotated through an angle o to
produce an equation for the curve

2x2+~/§xy+y2— 10=0
that has no cross product term. Find « and the new equation. Identify the curve.
Solution The equation 2x2 + «/gxy + y2 —10=0hasA=2,B =+/3,and C =
1. We substitute these values into Eq. (7) to find o:
0 A-C 2-1 1
cot2q = —— = —— = —.
B V33
From the right triangle in Fig. 9.25, we see that one appropriate choice of angle
is 2a = /3, so we take oo = /6. Substituting « =n/6,A =2, B = V3,C =
1,D=E =0, and F = —10 into Egs. (6) gives

5 1
A==z, B' =0, C'=-, D' =E =0, F'=-10.
2 2
Equation (5) then gives
5 5 1 5 le yIZ
Zy! —y'c = 10 = O, —_— — = 1.
¥ Ty o T
The curve is an ellipse with foci on the new y’-axis (Fig. 9.26). Q

Possible Graphs of Quadratic Equations

We now return to the graph of the general quadratic equation.

Since axes can always be rotated to eliminate the cross product term, there is
no loss of generality in assuming that this has been done and that our equation has
the form

Ax’ 4+ Cy*+Dx+Ey+F =0. (8)
Equation (8) represents

a) acircle if A = C # 0 (special cases: the graph is a point or there is no graph
at all);

b) a parabola if Eq. (8) is quadratic in one variable and linear in the other;

¢) an ellipse if A and C are both positive or both negative (special cases: circles,
a single point or no graph at all);

d) ahyperbola if A and C have opposite signs (special case: a pair of intersecting
lines);

e) a straight line if A and C are zero and at least one of D and E is different
from zero;

f) one or two straight lines if the left-hand side of Eq. (8) can be factored into
the product of two linear factors.

See Table 9.3 (on page 732) for examples.

The Discriminant Test

We do not need to eliminate the xy-term from the equation

Ax>+ Bxy+Cy*+ Dx+Ey+F =0 9
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to tell what kind of conic section the equation represents. If this is the only infor-
mation we want, we can apply the following test instead.

As we have seen, if B # 0, then rotating the coordinate axes through an angle
«a that satisfies the equation

A-C
cot 20 = ——— (10)
B

will change Eq. (9) into an equivalent form
A/x/2+C/y/2+D/x/+ /y/+F/=O (11)
without a cross product term.
Now, the graph of Eq. (11) is a (real or degenerate)
a) parabola if A’ or C' = 0; that is, if A’C' = 0;
b) ellipse if A’ and C’ have the same sign; that is, if A’C’ > 0;
¢) hyperbola if A’ and C’ have opposite signs; that is, if A’ C’ < 0.
It can also be verified from Egs. (6) that for any rotation of axes,
B> —4AC =B'*—-44A'C. (12)

This means that the quantity B> — 4AC is not changed by a rotation. But when we
rotate through the angle o given by Eq. (10), B’ becomes zero, so

B? —4AC = —4A'C'.

Since the curve is a parabola if A’ C’ =0, an ellipse if A’ C’ > 0, and a hyperbola
if A’C’ <0, the curve must be a parabola if B> —4AC =0, an ellipse if B> —
4AC < 0, and a hyperbola if B> —4AC > 0. The number B? — 4AC is called the
discriminant of Eq. (9).

The Discriminant Test

With the understanding that occasional degenerate cases may arise, the
quadratic curve Ax?> + Bxy +Cy>*+ Dx + Ey+ F =0 is

a) a parabola if B> —4AC =0,
b) an ellipse if B> —4AC <0,
¢) a hyperbola if B> —4AC > 0.

EXAMPLE 3
a) 3x?— 6xy+3y? +2x — 7 = 0 represents a parabola because
B> —4AC=(-6)"-4.3.3=36-36=0.
b) x?+4 xy+ y?>—1 =0 represents an ellipse because
B> —4AC=(1)*-4-1-1=-3<0.
¢) xy—y>—>5y+1=0 represents a hyperbola because
B? —4AC = (1) = 40)(-=1)=1> 0. d
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Table 9.3 Examples of quadratic curves

Ax> +Bxy+Cy* +Dx +Ey+F =0
A B c D E F Equation Remarks
Circle 1 1 —4 x24+y2=4 A=C;F<0
Parabola 1 -9 2 =9x Quadratic in y,
linear in x
Ellipse 4 9 -36 4x> +9y* =36 A, C have same
sign, A#C; F <0
Hyperbola 1 -1 -1 x2—yr=1 A, C have opposite
signs
One line (still a 1 x2=0 y-axis
conic section)
Intersecting lines 1 1 -1 -1 xy+x—y—1=0 Factors to
(still a conic x-Dy+1)=0,
section) sox=1,y=-1
Parallel lines 1 -3 2 x2—3x+2=0 Factors to
(not a conic x—-—Dx-2)=0,
section) sox=1,x=2
Point 1 1 x24+y2=0 The origin
No graph 1 1 x2=-1 No graph
= Technology How Calculators Use Rotations to Evaluate Sines and Cosines
Some calculators use rotations to calculate sines and cosines of arbitrary angles.
The procedure goes something like this: The calculator has, stored,
1. ten angles or so, say
oy =sin”'(107Y, @y =sinT'(107%), ..., @y =sin"'(10719),
(cos 6, sin 6) and
N\ )
NOTTO SCALE ’,kmﬂ}s 2. twenty numbers, the sines and cosines of the angles ay, &y, ..., g.

\\ myay’s
3

0 1 (1,0)

9.27 To calculate the sine and cosine of
an angle 6 between 0 and 27, the
calculator rotates the point (1, 0) to an
appropriate location on the unit circle
and displays the resulting coordinates.

To calculate the sine and cosine of an arbitrary angle 6, we enter 6 (in radians)
into the calculator. The calculator subtracts or adds multiples of 27 to 6 to
replace 6 by the angle between 0 and 2 7 that has the same sine and cosine as
6 (we continue to call the angle 6). The calculator then “writes” 8 as a sum of
multiples of «; (as many as possible without overshooting) plus multiples of
a; (again, as many as possible), and so on, working its way to ao. This gives

0 ~ myay + myoy + - - + mypQyo.

The calculator then rotates the point (1, 0) through m, copies of «; (through
ay, my times in succession), plus m, copies of a,, and so on, finishing off with
myq copies of g (Fig. 9.27). The coordinates of the final position of (1, 0) on
the unit circle are the values the calculator gives for (cos 0, sin 6).
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Exercises 9.3

Using the Discriminant

Use the discriminant B2 — 4AC to decide whether the equations in
Exercises 1-16 represent parabolas, ellipses, or hyperbolas.

1L x2=3xy+y>—x=0

. 3x2 — 18xy 4+ 27y —5x + Ty = —4
L 3x2—Txy + /17y =1

. 2x2 = 15xy +2y* +x4+y=0
X2 4+2xy+y*+2x—y+2=0
2x2 —y* +4xy—-2x+3y=6
x24+4xy+4y*-3x=6

. x>+ y24+3x -2y =10

- REC T~ NV R NI )

. xy+y*—-3x=5

. 3x2+6xy +3y*—4x+5y =12
. 3x2—5xy +2y*—Tx — 14y = —1
. 22 —49xy + 3y —4x =7
x2—=3xy+3y>+6y=7

p
SJJNHQ

14. 25x% +21xy +4y* —350x =0
15. 6x2+3xy +2y*+ 17y +2=0
16. 3x% + 12xy + 12y> +435x =9y +72 =0

Rotating Coordinate Axes

In Exercises 17-26, rotate the coordinate axes to change the given
equation into an equation that has no cross product (xy) term. Then
identify the graph of the equation. (The new equations will vary with
the size and direction of the rotation you use.)

17. xy =2 18. x>+ xy+y?=1
19. 3x24+2/3xy +y* - 8x +8/3y =0

20. x> —3xy+2y* =1

21, X2 —2xy+y* =2

22, 3x2 = 2/3xy+y2 =1

23. V2x24+2V2xy +42y*—8x+8y =0

4. xy—y—x+1=0

25. 3x% 4+ 2xy +3y* =19

26. 3x2+4/3xy —y* =7

27. Find the sine and cosine of an angle through which the coordinate
axes can be rotated to eliminate the cross product term from the
equation

14x* 4 16xy + 2y* — 10x 4+ 26,370y — 17 = 0.

Do not carry out the rotation.

28. Find the sine and cosine of an angle through which the coordinate
axes can be rotated to eliminate the cross product term from the
equation

4x* —4xy +y* —8+/5x —16+/5y = 0.

Do not carry out the rotation.

B Calculator

The conic sections in Exercises 17-26 were chosen to have rotation
angles that were “nice” in the sense that once we knew cot 2« or
tan 2« we could identify 2« and find sin « and cos « from familiar
triangles. The conic sections encountered in practice may not have
such nice rotation angles, and we may have to use a calculator to
determine « from the value of cot 2« or tan 2c.

In Exercises 29-34, use a calculator to find an angle « through
which the coordinate axes can be rotated to change the given equation
into a quadratic equation that has no cross product term. Then find
sin o and cos « to 2 decimal places and use Egs. (6) to find the
coefficients of the new equation to the nearest decimal place. In each
case, say whether the conic section is an ellipse, a hyperbola, or a
parabola.

29. x> —xy+3y’+x—-y—-3=0
30. 2x2 4+ xy -3y +3x—-7=0
31 x2 —4xy+4y>*—-5=0

32, 2x2—12xy +18y2 —49=0
33. 3x2 4+ 5xy+2y>—8y—1=0
34. 2x2 4+ Txy +9y*+20x — 86 =0

Theory and Examples

35. What effect does a 90° rotation about the origin have on the
equations of the following conic sections? Give the new equation
in each case.

a) The ellipse (x%/a?) + (y*/b*) =1 (a > b)
b) The hyperbola (x2/a?) — (y?/b*) =1

¢) The circle x> + y? = a?

d) The line y = mx

e) Theliney=mx+b

36. What effect does a 180° rotation about the origin have on the
equations of the following conic sections? Give the new equation
in each case.

a) The ellipse (x%/a®) + (y*/b*) =1 (a > b)
b) The hyperbola (x%/a?) — (y*/b*) =1

¢) The circle x2 4+ y? = a?

d) The line y = mx

e) Theliney=mx+5b
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37.

38.
39.

40.

41.
42.

43.

4.

9.28 The path traced by a particle
moving in the xy-plane is not always the

The Hyperbola xy = a. The hyperbola xy = 1 is one of many
hyperbolas of the form xy = a that appear in science and math-
ematics.

a) Rotate the coordinate axes through an angle of 45° to change
the equation xy = 1 into an equation with no xy-term. What
is the new equation?

b) Do the same for the equation xy = a.

Find the eccentricity of the hyperbola xy = 2.

Can anything be said about the graph of the equation Ax? +
Bxy+ Cy*+ Dx + Ey+ F =0 if AC < 0? Give reasons for
your answer.

Does any nondegenerate conic section Ax?> + Bxy + Cy? + Dx +
Ey + F = 0 have all of the following properties?

a) It is symmetric with respect to the origin.
b) It passes through the point (1, 0).
¢) It is tangent to the line y =1 at the point (-2, 1).

Give reasons for your answer.

Show that the equation x? + y?> = a? becomes x'? 4 y'2 = a? for
every choice of the angle « in the rotation equations (4).

Show that rotating the axes through an angle of = /4 radians will
eliminate the xy-term from Eq. (1) whenever A = C.

a) Decide whether the equation
x> +4xy +4y* +6x+12y+9=0

represents an ellipse, a parabola, or a hyperbola.
b) Show that the graph of the equation in (a) is the line 2y =
—x —3.

a) Decide whether the conic section with equation
9x2 +6xy+y>—12x —4y+4=0

represents a parabola, an ellipse, or a hyperbola.

Position of particle
at time ¢

(f(0), 8(0)

graph of a function of x or a function
of y.

- Definitions :
If x and y are given as continuous functions

45.

46.

47.

48.

49.

Parametrizations of Pla

When the path of a particle moving in the plane looks like the curve in Fig. 9.28,
we cannot hope to describe it with a Cartesian formula that expresses y directly in
terms of x or x directly in terms of y. Instead, we express each of the particle’s
coordinates as a function of time ¢ and describe the path with a pair of equations,
x = f(¢t) and y = g(t). For studying motion, equations like these are preferable to
a Cartesian formula because they tell us the particle’s position at any time ¢.

b) Show that the graph of the equation in (a) is the line y =
—=3x +2.

a) What kind of conic section is the curve xy 4+ 2x —y = 0?

b) Solve the equation xy + 2x — y = 0 for y and sketch the
curve as the graph of a rational function of x.

c¢) Find equations for the lines parallel to the line y = —2x
that are normal to the curve. Add the lines to your sketch.

Prove or find counterexamples to the following statements about
the graph of Ax?> + Bxy + Cy*+ Dx+ Ey+ F =0.

a) If AC > 0, the graph is an ellipse.

b) If AC > 0, the graph is a hyperbola.

¢) If AC <0, the graph is a hyperbola.

A nice area formula for ellipses. When B? — 4AC is negative,
the equation

Ax* +Bxy+Cy* =1

represents an ellipse. If the ellipse’s semi-axes are a and b, its area
is wab (a standard formula). Show that the area is also given by
the formula 27 //4AC — B2. (Hint: Rotate the coordinate axes
to eliminate the xy-term and apply Eq. (12) to the new equation.)

Other invariants. We describe the fact that B’ — 4A’C’ equals
B? —4AC after a rotation about the origin by saying that the
discriminant of a quadratic equation is an invariant of the equa-
tion. Use Egs. (6) to show that the numbers (a) A + C and (b)
D? + E? are also invariants, in the sense that

A+C =A+C and D?*+E'*=D*+E>

We can use these equalities to check against numerical errors
when we rotate axes. They can also be helpful in shortening the
work required to find values for the new coefficients.

A proof that B'2 — 4A'C' = B> — 4AC. Use Egs. (6) to show
that B’ — 4A’C’ = B? — 4AC for any rotation of axes about the
origin. The calculation works out nicely but requires patience.

i

e Curves

x=f@), y=g@



9.29 The equations x = cos t,y =sin t

describe motion on the circle x2 + y% = 1.

The arrow shows the direction of
increasing t (Example 1).

Start at
o1 =0

P(cost, —sint)

0,-1)

9.30 The point P(cos t, —sin t) moves
clockwise as t increases from 0 to =
(Example 2).

X

9.4 Parametrizations of Plane Curves 735

over an interval of t-values, then the set of points (x,y) = (f (), g(t))
defined by these equations is a curve in the coordinate plane. The equations
are parametric equations for the curve. The variable ¢ is a parameter for
the curve and its domain / is the parameter interval. If ] is a closed interval,
a <t <b, the point (f(a), g(a)) is the initial point of the curve and
(f (D), g(b)) is the terminal point of the curve. When we give parametric
equations and a parameter interval for a curve in the plane, we say that
we have parametrized the curve. The equations and interval constitute a
parametrization of the curve.

In many applications ¢ denotes time, but it might instead denote an angle (as
in some of the following examples) or the distance a particle has traveled along its
path from its starting point (as it sometimes will when we later study motion).

EXAMPLE 1  The circle x>+ y?> =1

The equations and parameter interval
X = Cos t, =sin ¢, 0<t<2m,

describe the position P(x, y) of a particle that moves counterclockwise around the
circle x2 + y?> =1 as ¢ increases (Fig. 9.29).
We know that the point lies on this circle for every value of ¢ because

x* +y* = cos’t +sin’*t = 1.

But how much of the circle does the point P(x, y) actually traverse?

To find out, we track the motion as ¢ runs from O to 2 . The parameter ¢ is
the radian measure of the angle that radius OP makes with the positive x-axis. The
particle starts at (1, 0), moves up and to the left as ¢t approaches /2, and continues
around the circle to stop again at (1, 0) when ¢ = 2. The particle traces the circle
exactly once. Q

EXAMPLE 2 A semicircle

The equations and parameter interval
X = cos t, y = —sin ¢, 0<t<m,

describe the position P(x, y) of a particle that moves clockwise around the circle
x2 4 y? =1 as t increases from 0 to 7.

We know that the point P lies on this circle for all ¢ because its coordinates
satisfy the circle’s equation. How much of the circle does the particle traverse? To
find out, we track the motion as ¢ runs from O to 7. As in Example 1, the particle
starts at (1, 0). But now as ¢ increases, y becomes negative, decreasing to —1 when
t = /2 and then increasing back to 0 as ¢ approaches m. The motion stops at
t = m with only the lower half of the circle covered (Fig. 9.30).

EXAMPLE 3  Half a parabola

The position P(x, y) of a particle moving in the xy-plane is given by the equations
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t=1

PNt 1)

S

Starts at
t=0

9.31 The equations x = +/t,y = t and
interval t > 0 describe the motion of a
particle that traces the right-hand half of
the parabola y = x? (Example 3).

9.32 The path defined by x = ¢,
y = t?, —o0 < t < is the entire parabola
y = x* (Example 4).

and parameter interval
X = \/17, y=t,

Identify the path traced by the particle and describe the motion.

t>0.

Solution We try to identify the path by eliminating ¢ between the equations x = /¢
and y = ¢. With any luck, this will produce a recognizable algebraic relation between
x and y. We find that

y=t=(x/;)2=x2.

This means that the particle’s position coordinates satisfy the equation y = x?, so
the particle moves along the parabola y = x2.

It would be a mistake, however, to conclude that the particle’s path is the entire
parabola y = x>— it is only half the parabola. The particle’s x-coordinate is never
negative. The particle starts at (0, 0) when ¢+ = 0 and rises into the first quadrant

as ¢ increases (Fig. 9.31). d

EXAMPLE 4  An entire parabola

The position P (x, y) of a particle moving in the xy-plane is given by the equations
and parameter interval

x=t  y=t>, —oo<t<oo.

Identify the particle’s path and describe the motion.
Solution We identify the path by eliminating ¢ between the equations x = ¢ and
y = t?, obtaining
y = (t)? = x%
The particle’s position coordinates satisfy the equation y = x2, so the particle moves
along this curve.
In contrast to Example 3, the particle now traverses the entire parabola. As

t increases from —oo to oo, the particle comes down the left-hand side, passes
through the origin, and moves up the right-hand side (Fig. 9.32).

0 a

As Example 4 illustrates, any curve y = f(x) has the parametrization x = ¢,
y = f(¢). This is so simple we usually do not use it, but the point of view is
occasionally helpful.



