Chapter 6

Application of Derivatives

Tangents at the Origin

B. Tangents at the Origin

[f a curve passing through the origin be given by a rational integral algebraic
equation, the equation of the tangent (or tangents) at the origin is obtained by
equating to zero the terms of the lowest degree in the equation.

e.g. if the equation of a curve be x? - 4y? + x* + 3x3y + 3x2 y2 + y* = 0, the tangents
at the origin are given by x2 - 4y2 =0 orx + 2y and x - 2y = 0.

In the curve x2 + y2 + ax + by = 0, ax + by = 0, is the equation of the tangent at the
origin; and in the curve (x2 + y2)Z= a? (x? - y2), x? - y2 = 0 is the equation of a pair of

tangents at the origin.

[f the equation of a curve be x2 + y2 4+ x3 + 3x2y - y3 = 0, the tangents at the origin
aregivenbyx2-y2=0ie.x+y=0andx-y=0

C. Angle of intersection

Angle of intersection between two curves is defined as the angle between the two
tangents drawn to the two curves at their point of intersection . If the angle between
two curves is 90° then they are called ORTHOGONAL curves.

Ex.10 Find the angle between curves y2 = 4xand y = e*/2

Sol.




Let the curves intersect at point (x1,y1)

2
for y? = 4x 4 _Y1

(x.¥1)

dy

a2 —— 1 —'K|l‘2
and fory = e™2 4

-—e
2

(x4.¥1)

= %:\ m,, m,= -1 Hence 8=90°¢

Note : here that we have not actually found the intersection point but geometrically

we can see that the curves intersect.

Ex.11 Show that the curves y = 2 sinZx and y = cos 2x intersect at /6. What is their

angle of intersection ?

Sol. Given curves are y = 2 sin?x ..(1)

and y = cos 2x «(2)

Solving (1) and (2), we get 2 sin? X = cos 2X
=>1cos2x=cos2x = cos2x=1/2 = cosn/3 =2x =1+ /3
X = +m/6 are the points of intersection

From (1), dy/dx = 4 sin X cos X = 2 sin 2x = m (say)

From (2) dy/dx = -2 sin 2x = m; (say)

| 4sin2x |
11— 4sin® 2x]|

tan & = I
[f angle of intersection is 6, then tan®

fas]
]
W =
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Ex.12 Show that the angle between the tangents at any point P and the line joining P

to the origin "0’ is the same at all points of the curve In (x2 + y2) = c tan! (y/x)
where c is constant.

Sol. Let the point P(X, y) on the curve In (x? + y?) = c tan! (y/x) where c is constant.

Differentiating both sides w.r.t. x, we get

2+ 2yy' _ c{xy' —Y) 2% +cy
(x2+y2)_{x2+y2) = Y'= cx_2y =m1 (SaY)

Slope of OP = y/x = mz2 (say)
Let the angle between the tangents at P and OP be 6

2x+cy y
|my—m,|_| ex-2y x
tan 8 = |1+ m,m,| 14 20 +cy?

cx® — 2xv
2
& = tan™ E

=2
c.

which is independent of x and y..

2 2 2

X Y - 4 ) b

s +—2 —Tland — g s
Ex.13 Show tht the curves & *¥: b7 +k, a“+k, b +k, jptersect
orthogonally.
Sol.
, S &
Given a2+k1 b3+k1 =1 ...(1)
d s« v
and =3 E, Wk, =1 (2)
of 1 1

{bZ+k, bZ+k,) ~ ©

X
Subtracting (2) from (1), we get

, kz_k']_ " 2 kz—k}_ ]
=% @ ke k)T (070 k) ) =°




2 (2% +ky)(2® +ky)

X
2

' R G D R l
1
1 2x . 2y dy II
I NOW ff‘Om (1), (33 +k1) (b=+k1)dx — 0 I
1
| s l|
dy - db k)
I dx yla+k,) — mi(sa) |I
i lI
i o d_y=_xcb‘ +k;) i
| Similarly from (2), s —y(a2+k2) =m, (say) I|
1
' x*(b? +kq)(b? +k3) [
I 2MMy = T ka2 rka) -1 [From (3)] :I
' Hence given curves intersect orthogonally. |I
1 1
1 Ex.14 Prove that the curves xy = 4 and x2 + y2 = 8 touch each other. y I
1
I Sol. ll
1 1
I Equation of the given curves are xy = 4 ....(1) and x% + y2= 8 ....(ii) II
1
! , N oY . !
: from (i), 1.y + X e — 0= B % «.. (i), from (ii), II
1
I dy X !
i 2x + Zya =0 = 4y y (V) |I
1
1 Putting the value fo y from (i) i (ii), we get x2 + 16/x2=8 oror x*+ 16 = 8x2 II
1 1
; or x*8x2+16=0or (x24)2=0o0rx24=0o0r x2=4 'I
1
§ from (i) ; whenx=2,y=2and whenx =2,y =-2 II
1 1
Hence points of intersection of the two curves are (2, 2) and (2, 2). ll
1
]
1 Slope of the tangent to the curve (i) at point (2,2) = m;=-2/2 = -1 ...(from iii) .l
' Slope of tangent to the curve (ii) at point (2,2) = mz=-2/2 =-1...(from iv) |I
] 1
I Since m3 = my, hence the two curves touch each other at (-2, -2). Thus curves (i) and '.
(ii) touch each other. ll
: 1
] ]
1
] ]



m=-(3)- 1

Slope of tangent to curve (i),

Slope of tangent to curve (ii), ™4~ -|=3)="1

Since m3 = my4, hence the two curves touch each other at (2, 2). Thus curves (i) and
(ii) touch each other.

Ex.15 The gradient of the common tangent to the two curvesy=x2-5x+ 6 &y =
x4 118

(A)-1/3

(B)-2/3

©-1

(D)-3

Sol. y = ax + b on solving with both curves and putting D = 0 gives
a2+ 10a+4b+1=0anda?-2a+4b-3=0=>a=-1/3&b=5/9
= 3x + 9y = 5; point of contact (7/3,-2/9) & (-2/3,7/9)

D. Length of Tangent

(a) Length of the tangent (PT) = M

£ {x)
(b) Subtangent (MT) = -~
£ixg)
3
(c) Length of Normal (PN) = y; {1+ (]

(d) Subnormal (MN) =y, f'(x,)

Ex.16 What should be the value of n in the equation of curve y = al -n. xn, so that the
sub-normal may be of constant length ?

Sol. Given curve isy =al-n, xn

Taking logarithm of both sides, we get, hy=(1-n) ha+nhx



i (L &F gy 5y
p 4

1
Differentiating both sides w.r.tx, we get ¥ dx dx  x skl

Lengths of sub-normal =y dy/dx =y .ny/x ...{from 1}

ﬂ}rl (al—mxn)E
= =1l.
o X
(.‘. y:al-n'xn) =n_a}!—2n.x2n—1

Since lengths of sub-normal is to be constant, so x should not appear in its value i.e.,
2nl=0.n=1)2

Ex.17 If the relation between sub-normal SN and sub-tangent ST at any point S on
the curve

by2 = (x + a)3is p(SN) = q(ST)?; then p/q is

(A) 8b/27

(B)b

)1

(D) none of these

Sol.
d 3 (x+a)

bx2y§=3(x+a}2 = :y—x=§( ;y}
p_(SeY | vo

T4 Sy (k)

Let a point by (Xo, yo) lying on the curve by = (xo + a)3....(1)

E_‘ Yo L 8ys xb® |_ 8
q

)
2 by

(from equation (i))



Ex.18 For the curve y = @ /N (X* = @) show that sum of lengths of tangent &

subtangent at any point is proportional to coordinates of point of tangency. 1 1
1
1
Sol. i
]
dy 2ax, ]
m= | = .2 '
; dx X —a
Let point of tangency be (x1,y1) = % T ll
1
|
1y (d-a’) _ yi(xi —a’) [
YI 1+F+m :1{1 1+ 432)(12 + 23)(1 1
tangent + subtangent = II
_yx{+a*+2a% L Yalxi -a%) |
=Y 2ax, 2ax, Il
II
Y|(X-j +d ) )‘1(!(1 —a ) ')l'.‘(X%}: Xq¥q |
2ax, 2ax, 2ax; 22 Hence proved. ||
1
Ex.19 Show that the segment of the tangent to the curve y i '
a, [a+va®-x* ;7 II
2 ! a—a? —x? i : : |
= \ contained between the y-axis and point of 1
tangency has a constant length. I I
II
Sol.
i
1
. a a-+acos é |
Let:-c:as:nq;theny:Efnla_awsé, acosé ]
g |
lI
ax dy a , acos? ¢ 1
d¢—acusq:and dé —Sm¢+sm-p— sind |I
i
A 1
Las) :
dy Lo, 1
Hence [d?‘] =-cot¢ |
de 1
1
1
—Ccos¢ . |
Equation of tangentat ‘¢’ yalncotg/2 +acosg= " siné G d) II
1
=y sin g a sing In cot g/2 + a sin @ cos @ - X cos@ + a sin @ cos @ II
|
1
]
1
]
- = - - - = - Page70f122 [ B BN | - - - . - - -I



=X cos ¢+ y sin g = asin g In cot g/2
Point on y-axis P = (0, aIn cot ¢/2) and point of tangency

Q= (asing a In cotg/2 a cos @)

PQ = .J(a’sin ¢ +acos?¢) = 4a° = a = constant.

E. Solving Equations

Ex.20 For what values of c does the equation /h x = cx? have exactly one solution ?
Sol.

Let's start by graphing y = In x and y = cx? for various values of c. We know that for
¢ * 0,y = cx?is a parabola that opens upward if ¢ > 0 and downward if ¢ < 0. Figure
1 shows the parabolas y = cx? for several positive values of c. Most of them don't
intersect y = In x at all and one intersect twice. We have the feeling that there must
be a value of ¢ (somewhere between 0.1 and 0.3) for which the curves intersect
exactly once, as in Figure 2.

To find that particular value of ¢, we let 'a’ be the x-coordinate of the single point of
intersection. In other words, In a = ca?, so 'a’ is the unique solution of the given
equation. We see from Figure 2 that the curves just touch, so they have a common
tangent line when x = a. That means the curves y = In x and y=cx? have the same
slope when x = a. Therefore 1/a = 2ca

TO M N X
length
I(— length of of

subtangent subnommal

Solving the equation Ina=caZzand 1/a = 2ca



For negative values of ¢ we have the situation illustrated in Figure 3: All parabolasy
= cxz with negative values of c intersect y = In x exactly once. And let's not forget

about ¢ = 0: The curve y = 0 x2 = 0 just he x-axis, which intersects y = In x exactly
once.

To summarize, the required values of c are c=1/(2¢) and c<0

AY

Figure 1 Figure 2 Figure 3

Ex.21 The set of values of p for which the equation px2 = hx possess a single root is

Sol.

for p <0, there is obvious one solution; for p > 0 one root
= the curves touch each.

2pri=1/x1= x2=1/2p;

Also pxi?2=Inxi1= p(1/2p)=Inx1=> x1=¢l/2

= 2p=1/e = p=1/2e. Hence p€e (-, 0] U {1/2¢}

F. Shortest distance



Shortest distance between two non-intersecting curves always along the common
normal (wherever defined)

Ex.22 Find the shortest distance between the line y = x - 2 and the parabola y = x2 +
3x+ 2.

L
Sol. Let P(x1, y1) be a point closest to the line y = x - 2 then Xl = slope of line
=2xX1+ 3=1=x =-1=y: =0 Hence point (-1, 0) is the closest and its

perpendicular distance from the

3
5 -
line y = x - 2 will give the shortest distance =¥p = V2

Ex.23 Let P be a point on the curve Ci: y = V2-x’ and Q be a point on the curve C3:
xy = 9, both P and Q lie in the first quadrant. If 'd' denotes the minimum value
between P and Q, find the value of d2.

Sol. Note that C; is a semicircle and C; is a rectangular hyperbola.

PQ will be minimum if the normal at P on the semicircle is also a normal at Q on xy
=9

Let the normal at P be y = mx...(1) (m > 0) solving it with xy =9

differentiating xy = 9

d Ty
x—y+y:D:> iz-l
.4

dx dx



dy| 3Jm m

tangent at P and Q must be parallel
-m=-"— = m=1 = m=1

~normalatPand Qisy =x
solving P(1, 1) and Q(3, 3)
(PQ)2=d2=4+4=8

G. Rate Measurement

Ex.24 Aladder 10 ft long rests against a vertical wall. If the bottom of the ladder
slides away from the wall at a rate of 1 ft/s, how fast is the top of the ladder sliding
down the wall when the bottom of the ladder is 6 ft from the wall ?

Sol. We first draw a diagram and label it as in Figure 1. Let x feet be the distance
from the bottom of the ladder to the wall and y feet the distance from the top of the
ladder to the ground. Note that x and y are both function of t (time). We are given
that dx/dt = 1 ft/s and we are asked to find dy/dt when x = 6 ft (see Figure 2). In
this problem, the relationship between x and y is given by the Pythagorean Theorem
: X2 +y2 =100

Differentiating each side with respect to t using the Chain Rule, we

2 = + 2 - 0
e T AT
Y .
and solving this equation for the desired rate, we obtain eyt

When x = 6, the Pythagorean Theorem gives y = 8 and so, substituting these values
and dx/dt=1,

dy 6 3
T=-2()=-% fifs
we have 4t B 4



wall

The fact that dy/dt is negative means thatthe distance from the top of the ladder to
the ground is decreasing at a rate of 3/4 ft/s In other words, the top of the ladder is
sliding down the wall at a rate of 3/4 ft/s.

Ex.25 A water tank has the shape of an inverted circular cone with base radius 2 m
and height 4 m. If water is being pumped into the tank at a rate of 2 m3/min, find the
rate at which the water level is rising when the water is 3 m deep.

Sol.

We first sketch the cone and label it as in Figure. Let V, r, and h be the volume of the
water, the radius of the surface, and the height at time t, where t is measured in
minutes.

We are given that dV/dt = 2m3/min and we are asked to find dh/dt when h is 3 m.

The quantities V and h are related by the equation V = 1/3przhBut it is the very
useful to express V as a function of h alone.

e
E |
h
Figure )

In order to eliminate r, we use the similar triangles in Figure to

Ha | 2

r=
V=
write and the expression for V becomes 3

Ca
(Y=o
_Il—-
,—‘:L-‘
ra| =
-
Il
~E
57



dV @, .dh dh 4 4V
—=—h"— 50 — =
dt 4 dt dt  7h? dt

dh 4 , 8

=— =—

Substituting h = 3 m and dV/dt = 2m3/min, we have 4t 73"  9n

The water level is rising at a rate of 8/(9p) ~ 0.28 m/min.

Ex.26 A man walks along a straight path at the speed of 4 ft/s. A searchlight is
located on the ground 20 ft from the path and is kept focused on the man. At what
rate is the searchlight rotating when the man is 15 ft from the point on the path
closest to the searchlight ?

Sol. We draw Figure and let x be the distance from the man to the point on the path
closest to the searchlight. We let 0 be the distance from the man to the point on the
path closest to the searchlight and the perpendicular to the path.

We are given that dx/dt = 4 ft/s and are asked to find dq/dt when x = 15. The
equation that relates

Differentiating each side with respect to t, we get dx/dt = 20sec? 6 d0/dt

S0 i

dg 1 ,_dx
—=——cos 0—
dt 20 dt

= l1:{.:‘51 6(4) = ECDS;! 3]
20 5

when x = 15, the length of the beam is 25, so cos0 = 4/5

g 2.1
and 4t 5.5

e —0.128

f‘4T 16
125

The searchlight is rotating at a rate of 0.128 rad/s.

Ex.27 Two men A and B start with velocities v at the same time from the junction of

two roads inclined at 452 to each other. If they travel by different roads, find the rate

at which they are being separated.

Page 1301122 mgmgmomom o e e



Sol.
Let L and M be the positions of men A and B at any time t,
LetOL=xand LM =y. Then OM =x
given, dx/dt = v; to find dy/dt from ALOM,
B/, ¥

45°
OA-—)X L

o OL? + OM? —LM?
WE4SR=""5 oL.om  °F

1 _x+x®-y? 2x-y?

2 2.x.x 2x°

o Jox? =22 -y

or (2-.2)x2=y?

differentiating w. r. t. we get %=J2ﬁ% =J2—w’§ v

e d_x'=v
Tt

= they are being separated from each other at the rate v2-+2 V-

Ex.28 A variable triangle ABC in the xy plane has its orthocentre at vertex 'B’, a fixed
vertex 'A' at the origin & the third vertex 'C' restricted to lie on the parabola y
o
1%

= 36 " The point B starts at the point (0, 1) at time t = 0 & moves upward
along the y axis at a constant velocity of 2 cm/sec. How fast is the area of the
triangle increasing whent=7/2 sec?

Sol.

- - - - - = - - - Page'|40f122 ----- - - - - - - ] -



_ C
N B y)
(0, 1)|B,
Al
XV -2 1 7 .1_.- d
a=E XXX rﬁ=(—+_r)_\
2 ) 36 dt 2 24 ) g
7 7
att=? ,Y=2x;=? — AB =
dA (L1 7 ']dx dx
= — —_— | T 3.6-—-—— —
when y =8 then x 6:‘»dt [\2 TG 11.dt
Moo W _p_ M & dx 366
W T T3 @ T @ 7
dA 6 66
-&i-_ll'?_ B

Ex.29 Find the approximate value of (1.999)s.

Sol.

Let f(x) = x6. Now, f(x + 6x) f(x) = f'(x) . 6x = 6x5 86x
We may write, 1.999 = 2 0.001

Taking x = 2 and éx = 0.001, we have f(1.999) f(2) = 6(2)5 x 0.001

= £(1.999) = f(2) 6 X 32 X 0.001 = 64 64 X 0.003 = 64 X 0.997 = 63.808 (approx).

Tangent and Normal
Definition

« The tangent line to the graph of f at the point P(a, f(a)) is
1. The line on P with slope f'(a) if f'(a) exists ;
f(x)—f(a)

Xx—a

lim
2. Thelinex = aif **

= 00,

- Page 15 of 122 SEm_m_m_ - _



+ Inneither (1) nor (2) holds, then the graph of does not have a tangent line at
the point P(a, f(a)).

« In case f(a) exists, then y - f(a) = f'(a) (x - a) is an equation of the tangent line

to the graph of f at the point P(a, f(a)).
» The normal line N to the graph of a function f at the point P(a, f(a)) is defined
to be the line through P perpendicular to the tangent line.

« It followsthatiff'(a) = O theslope of Nis-1/f'(a) and

1
¥ —al = - el equation of N.

« Iff'(a) =0, then N is the vertical line x = a; and if the tangent line is vertical,
then N is the horizontal line y = f(a).

Note:

1. The point P (x1,y1) will satisfy the equation of the curve & the equation of tangent

& normal line.

2. If the tangent at any point P on the curve is parallel to the axis of x then dy/dx =
0 at the point P.

3. If the tangent at any point on the curve is parallel to the axis of y, then dy/dx = oo
or dx/dy = 0.

4, If the tangent at any point on the curve is equally inclined to both the axes there
dy/dx = + 1.

X+ X,

5. For equation of tangent at (x1, y1), substitute xxi for x2, yyi fory2, 2 for
Yt+¥s Xy1 + Xq¥

X, 2 foryand 2 for xy and keep the constant as such. This method is

applicable only for second degree curves, i.e., axz + 2hxy + by2 + 2gx + 2fy +c =0

6. Method to find normal at (x1, y1) of second degree conics ax? + 2hxy + by? + 2gx
X—Xy _ ¥YY

)i ax, +hy,+g  hx, +by,+f

+ 2fy + ¢ = 0 The equation of normal at (X1, y1
Tangents at the Origin
« Ifa curve passing through the origin be given by a rational integral algebraic

equation, the equation of the tangent (or tangents) at the origin is obtained
by equating to zero the terms of the lowest degree in the equation.



e.g., if the equation of a curve be x2 - 4yZ 4+ x* 4+ 3x3y + 3x2 y2 + y* = 0, the
tangents at the origin are given by x2- 4y2=0orx + 2y and x - 2y = 0.

+ Inthe curve x2 + y% 4+ ax + by = 0, ax + by = 0, is the equation of the tangent
at the origin; and in the curve (x2 + y?)2=a? (x2 - y2),x2-y2 =0 is the
equation of a pair of tangents at the origin.

« Ifthe equation of a curve be x2 + yz + x3 + 3x2y - y3 = 0, the tangents at the
origin are givenby x2-y2=0ie.x+y=0andx-y=0

Angle of intersection

Angle of intersection between two curves is defined as the angle between the two
tangents drawn to the two curves at their point of intersection . If the angle between
two curves is 90° then they are called ORTHOGONAL curves.

Example 1. Find the equation of tangent to the ellipse 3x24+y2+x+2y = 0 which are
perpendicular to the line 4x - 2y = 1.

Sol. Since, tangent is the perpendicular to the line 4x - 2y = 1,

(slope of tangent) X (slope of normal) =1

dy dy 1 =
:dxx2——1 :dx——z....[l)

The given equation 3x2 + y2 + x + 2y = 0 ....(iii)

d
= 6X+2ng_x+1+2d_i:°

ay (6x +1)
= ax — 2Ay+1)

Let (x1, y1) be the point of contact of the tangent and the curve

From (i) and (iii), we get

(’d_'f) __(6xxh) 1 |
dx {:‘i-yij 2(?1 + 1) 2 l‘e" Yl = le L] v(IV)

Substituting this in (ii) [since the points lies on the curve] we get,

3x12+ 3612+ x1+12x1=0



ie,13x1(3x1 4+ 1)=0=>x,=0,1/3

Using (iv),x1=0=>y;=0andxi=1/3=>y; =2

Hence, the points where tangent has slope 1/2 are P(0, 0) and Q(1/3, 2).
Equation of tangents atP,Qarey =-1/2xi.e.x+2y =0

-

-_—

1
X+—
3,

N | -

andy+2 =-

LY

i.e, 3x + 6y + 13 = 0 respectively..

Example 2. Find the equation of normal to the curve x + y = x¥, where it cuts x-axis.

Sol.

Given curve isx +y = xV .....(1)

atxaxisy=0, x+0=x'=2x=1

Pointis A(1, 0)

Now to differentiation x + y = xv taking log of both sides

= log(x+y) =ylogx

1 dy 1 dy
13 _ 1 ay
X+v{ +dx} =v.5 tloax) g

dy
i - - =" =
Puttingx =1,y=0 {dex}_(]:)

B .
\_dx o)

slope of normal = 1

o

y—

.._:1

Equation of normal is, x-1

=2>y=x1



2 3 1 a2
= —X +—x"
Example 3. At what points on the curve Y= 3 2 ' the tangents make equal

angles with co-ordintae axes ?

Sol.

2
X
7

y = X+

WM
K| =

Given curve is

(1)

Differentiating both sides w.r.t.x, then dy/dx = 2x2 + 2

dy "
Sy odf | or Zx<+x==x1
dx

or2x2+2xx1=0o0r (2x1)(x+1)

1
= s =
2 (If 2x2+x + 1 = 0 then x is imaginary)
,o21,11.5
From (1), forx=1/2, 38 24 24
2 1 1
andforx=-1,y=- §+E=_E

1 5 1
Hence points are 2 a and —I'E L

Example 4. Show that the curve x = 1 - 3t2, y = t - 3t3 is symmetrical about x-axis
and has no real point for x > 1. If the tangent at the point t is inclined at an angle ¢
to OX. Prove that 3t = tan¢ + secq. If the tangent at P(-2, 2) meets the curve again
at Q, prove that the tangents at P and Q are at right angles.

Sol. Given curveisx =1-3t2 ..(1)

& y=t-36 ..(2)

“ra

From (1) and (2),y =tx or X/ = x3=x2-3y2

Since all powers of y are even, so curve is symmetrical about x-axis.



Forx>1=13t2> 1= 3t2> 0 Impossible

From (1) and (2),

(dy\
dy Ldtl 1- 99
dx) =tan ¢
[dt ] ..given (3)
2 ) -9 [(1:982Y)
sectdg=1+tan‘p=1+ 6t | ot
sac 4 = 1-9t%
-~ 6t

Adding (3) and (4) we get, tan g + secg = 3t
P(2.2)
13t2=2and 2 =t3t3thenwegett=1

dy| _1-9¢1° _ 4

axl,, -6(-1) 3

4
—2 === [X+2
Equation of tangent at (2, 2) is 5 ¢ )

4
= t-38-2=-7(1-32+2)
= o+ 122-3t-6=0

= 3t-9t' - 6 = -12 + 12¢2
= (t+1)2(3t-2)=0

e e e e e == Page 20 of 122



ay
Hence dic

L ay

pect i |
g Ox

t=m213

Hence the tangents at P and Q are at right angles.

Example 5. Tangent at P(2, 8) on the curve y = x3 meets the curve again at Q. Find
coordinates of Q.

Sol. Equation of tangentat (2,8) isy =12x- 16
Solving this withy = x3we getx3-12x+ 16 =0
this cubic must give all points of intersection of line and curve y = x3

i.e., point P and Q.

P(2, 8)

Q(h, ')

But, since line is tangent at P so x = 2 will be a repeated root of equation x3 -12x +
16 = 0 and another root will be x = h.

Using theory of equations sumofroots = 2+2+h=0 =h=-4
Hence coordinates of Q are (-4, -64)

Example 6. If the normal to the curve x2/3 + y2/3 = a2/3 makes an angle ¢ with the
axis of x, show that its equation is y cosg - x sing = a cos 2.

Sol. Given curve is x2/3 4 y2/3 = a2/3...(1)

Differentiating both sides w.r.t.x, we get

Eﬂqm+zyqnfz=0
3 3 dx



d flfa
E%=_}1H
dae xl:‘d
Slope of normal = -dx = @ = }’m = tan ¢ (given) ..

x=ytan®¢ ...(2)

From (1) and (2), y2/3 (1 + tan2@) = a2/3 b y2/3 = a2/3 cos2@
y=acos3@andx =asin3 @

Therefore equation of normal is y a cos3 @ = tan @ (x a sin3 @)
y cos @ acost@ =xsin@asint @

y cos@ x sin @ = a (cos* @ sin* @)

= a (cos? @ + sin2 @) (cos2 @-sin2 @) =a.1.cos 20

Hence y cos @ xsin@ =a cos 20

Example 7. (a) Find y' if x3 + y3 = 6xy.

(b) Find the tangent to the folium of Descartes x3 + y? = 6xy at the point (3, 3).

(c) At what points on the curve is the tangent line horizontal ?

Sol. (@) Differentiating both sides x3 + y3 = 6xy with respect to x, regarding y as a

function of x, and using the Chain Rule on the y3 term and the Product Rule on the

6xy term, we get
3x2+ 3y2y' = 6y + 6Xy' or X2 + y2y' = 2y + 2xy’
We now solve for y' :y2y' 2xy' = 2y x?

Dy —x*

¥y —-2x

y
(y?2 2x)y' = 2y X,
(b) Whenx=y=3

. 2.3-3
Y —

.58
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So, tangent to the folium of Descartes isy3 =1(x3) orx+y==6

(c) The tangent line is horizontal if y' = 0. Using the expression for y' from part (a),
we see that y' = 0 when 2y x2 = 0. Substituting y = 1/2x2, n the equation of the

33 + zef = 6x [%x]

which simplifies to x6 = 16x3. so either x =0 or x3=16.lf x = 161/3= 24/3, theny =
1/2(28/3) = 25/3- Thus, the tangent is horizontal at (0, 0) and at (24/3, 25/3).

curve, we get

Example 8. In the curve xayb = ka+b, (a b > 0) prove that the portion of the tangent
intercepted between the coordinate axes is divided at its point of contact into
segments which are in constant ratio.

Sol. Let P(x1, y1) be the point of contact of the tangent.

Here, xayb = ka+b

~alogx+blogy=(a+b)logk

Solving withy =0,
— 4y,
T Y1 = Tpx, (x —%;) or bx;=a(x-x);

(a+Db)x
X=—_—"
a



Solving (1) withx =0,y -y, =

s o M (HEDN,
or Y—Yl'i‘ b b

a+b_ a+b
A= T"v and= |0 ¥4

b

bx;

(_){1}

Let P divide AB in the ratio A : 1. Then

b , a+b

m+1_a; x, 2.2 0y 410

b

B= A+1 ' A+

_ a+b » Ma-s-b)y
a(b+1) "bL+1)

a+b T Al@a+b)
= e T b

= a(b+1)=a+bandb(L+1)=%x(a+b)

b . b
— A= andb = ia, i.e., r= P

P divides AB in the constant ratiob : a.

Example 9. Find the angle between curves y2 = 4x and y = e*/2

Sol.
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Let the curves intersect at point (x1,y1)

2
for v = 4% .| P
¥ Uiy Y
d f /2 (_j_z _:_I_ e—l’] i2
and fory = e-
Y ax (%4.51) 2

= %:\ m,, m,= -1 Hence 8=90°¢

Note: here that we have not actually found the intersection point but geometrically

we can see that the curves intersect.

Example 10. Show that the curves y = 2 sin?x and y = cos 2x intersect at /6. What

is their angle of intersection ?

Sol. Given curves are y = 2 sin?x ..(1)

and y = cos 2x «(2)

Solving (1) and (2), we get 2 sin? X = cos 2X
=>1cos2x=cos2x = cos2x=1/2 = cosn/3 =2x =1+ /3
X = +m/6 are the points of intersection

From (1), dy/dx = 4 sin X cos X = 2 sin 2x = m (say)

From (2) dy/dx = -2 sin 2x = m; (say)

| 4sin2x |
11— 4sin® 2x]|

tan & = I
[f angle of intersection is 6, then tan®

fas]
]
W =

Page250f 122 = m = e = = e - =]



Example 11. Show that the angle between the tangents at any point P and the line
joining P to the origin *0’ is the same at all points of the curve In (x2 + y2) = c tan

1 (y/x) where c is constant.

Sol. Let the point P(X, y) on the curve In (x% + y?) = c tan! (y/x) where c is constant.

Differentiating both sides w.r.t. x, we get

2+ 2yy' _ c{xy' —Y) 2% +cy
(x2+y2)_{x2+y2) = Y'= cx_2y =m1 (SaY)

Slope of OP = y/x = mz2 (say)
Let the angle between the tangents at P and OP be 6

2x+cy y
|my—m,|_| ex-2y x
tan 8 = |1+ m,m,| 14 20 +cy?

cx® — 2xv
2
& = tan™ E

Example 12. Show tht the

=2
c.

which is independent of x and y.

-
2 < =

X W X v

. +——=1and — pand ]
cifves * tki btk a”+k, b=k,  intersect orthogonally.
Sol.
, S &
Given e K, b3+k1 =1 ...(1)
d < v
and =3 L, TeE, = 1 (2)

of 1 1
1 = =
{bZ+k, bZ+k,) ~ ©

X
Subtracting (2) from (1), we get

, kz_k']_ " 2 kz—k}_ ]
=% @ ke k)T (070 k) ) =°




2 (2% +ky)(2® +ky)

X
2

YT TP k02 5Ky )

2x . 2y dy
NOW ff‘Om (1), (33 +k1) (b=+k1)dx — 0

dy __x(b’ +k,)
dx  ylai+k,) - miisa)

o dy  x(b®+k;)
Similarly from (2), §=—m =m, (say)

x2(b% +kq)(b® +k3)

y2@® +kq)@+ka) ~

=>m;m;= -1 [From (3)]

Hence given curves intersect orthogonally.

Example 13. Prove that the curves xy = 4 and x? + y? = 8 touch each other.
Sol.

Equation of the given curves are xy = 4 ....(1) and x% + y2= 8 ....(ii)

d d
from (i), 1.y + x W= 0= _5‘_'=__11

= = .....(iii), from (i),

v_2

dy )
2x + Zya =0 = 4y y (V)

Putting the value fo y from (i) i (ii), we get x2 + 16/x2=8 oror x*+ 16 = 8x2
or x*8x2+16=0or (x24)2=0o0rx24=0o0r x2=4

from (i) ; whenx=2,y=2and whenx =2,y =-2

Hence points of intersection of the two curves are (2, 2) and (2, 2).

Slope of the tangent to the curve (i) at point (2,2) = m;=-2/2 = -1 ...(from iii)
Slope of tangent to the curve (ii) at point (2,2) > mz2=-2/2 =-1...(fromiv)

Since m3 = my, hence the two curves touch each other at (-2, -2). Thus curves (i) and
(ii) touch each other.



m=-(3)- 1

Slope of tangent to curve (i),

Slope of tangent to curve (ii), ™4~ -|=3)="1

Since m3 = my4, hence the two curves touch each other at (2, 2). Thus curves (i) and
(ii) touch each other.

Example 14. The gradient of the common tangent to the two curvesy =x2-5x+ 6 &
y=x2+x+1is

(A)-1/3

(B)-2/3

©-1

(D)-3

Sol. y = ax + b on solving with both curves and putting D = 0 gives
a2+ 10a+4b+1=0anda?-2a+4b-3=0=>a=-1/3&b=5/9
= 3x + 9y = 5; point of contact (7/3,-2/9) & (-2/3,7/9)

Length of Tangent

(a) Length of the tangent (PT) = M

£ {x)
(b) Subtangent (MT) = -~
£ixg)
3
(c) Length of Normal (PN) = y; {1+ (]

(d) Subnormal (MN) =y, f'(x,)

Example 15. What should be the value of n in the equation of curve y = al-n, xn, so
that the sub-normal may be of constant length ?

Sol. Given curve isy =al-n, xn

Taking logarithm of both sides, we get, hy=(1-n) ha+nhx



i (L &F gy 5y
p 4

1
Differentiating both sides w.r.tx, we get ¥ dx dx  x skl

Lengths of sub-normal =y dy/dx =y .ny/x ...{from 1}

ﬂ}rl (al—mxn)E
= =1l.
o X
(.‘. y:al-n'xn) =n_a}!—2n.x2n—1

Since lengths of sub-normal is to be constant, so x should not appear in its value i.e.,
2nl=0.n=1)2

Example 16. If the relation between sub-normal SN and sub-tangent ST at any point
S on the curve

by2 = (x + a)3is p(SN) = q(ST)?; then p/q is

(A) 8b/27

(B)b

)1

(D) none of these

Sol.
d 3 (x+a)

bx2y§=3(x+a}2 = :y—x=§( ;y}
p_(SeY | vo

T4 Sy (k)

Let a point by (Xo, yo) lying on the curve by = (xo + a)3....(1)

E_‘ Yo L 8ys xb® |_ 8
q

)
2 by

(from equation (i))



Example 17. For the curvey = @ /N (%* = @) show that sum of lengths of tangent &

subtangent at any point is proportional to coordinates of point of tangency. 1 1
1
1
Sol. i
]
ayl _ 2ax 1
X m= gx| %2 B
Let point of tangency be (x1,y1) = Xbey X1 -3 ll
lI
1y (d-a’) _ yi(xi —a’) [
YI 1+F +m = 1{1 1+ 432)(12 + 23)(1 1
tangent + subtangent = II
- 1
~ g2 a2 +y1(x$—az} II
=Y 2ax, 2ax, Il
II
Y|(X-j +d ) )‘1(!(1 —a ) ')l'.‘(X%}: Xq¥q |
2ax, 2ax, 2ax; 22 Hence proved. ||
1
Example 18. Show that the segment of the tangent to the curve y I '
a,lat a+va®-x* ;7 II
g a—a? —x? i : : |
= \ contained between the y-axis and point of 1
tangency has a constant length. II
i
Sol. 1
i
1
R a a-+acos é |
Let:-c:as:nq;theny:Efnla_awsé, acosé ]
g |
lI
dax dy a , acos? ¢ 1
a—acusq:and dé m+sm¢= sind |I
lI
(%) -
dy Lo, 1
Hence [d?‘] =-cot¢ |
de 1
1
1
_ —cos¢ . |
Equation of tangent at ‘¢’ yalncotg/2 + acosg= " siné G d) II
1
=y sin g a sing In cot g/2 + a sin @ cos @ - X cos@ + a sin @ cos @ II
|
1
]
1
]



=X cos ¢+ y sin @ = asin g In cot g/2
Point on y-axis P = (0, aIn cot ¢/2) and point of tangency

Q= (asing a In cotg/2 a cos @)

PQ = J(az sin? p+a*cos? ) = 4/aZ = a = constant.
Solving Equations

Example 19. For what values of c does the equation /nh x = cx? have exactly one
solution ?

Sol.

Let's start by graphing y = In x and y = cx2 for various values of c. We know that for
c * 0,y = cx?is a parabola that opens upward if ¢ > 0 and downward if ¢ < 0. Figure
1 shows the parabolas y = cx? for several positive values of c. Most of them don't
intersect y = In x at all and one intersect twice. We have the feeling that there must
be a value of c (somewhere between 0.1 and 0.3) for which the curves intersect
exactly once, as in Figure 2.

To find that particular value of ¢, we let 'a’ be the x-coordinate of the single point of
intersection. In other words, In a = ca?, so 'a’ is the unique solution of the given
equation. We see from Figure 2 that the curves just touch, so they have a common
tangent line when x = a. That means the curves y = In x and y=cx? have the same
slope when x = a. Therefore 1/a = 2ca

N
|‘- l;nglh of —7@‘\ x

subtangent subnomnal

Solving the equation Ina =ca2and 1/a = 2ca



- > - B
we get/na =ca =C.5

Thus,a=eandc= —=——=—

For negative values of ¢ we have the situation illustrated in Figure 3: All parabolasy
= cxz with negative values of c intersect y = In x exactly once. And let's not forget
about ¢ = 0: The curve y = 0 x2 = 0 just he x-axis, which intersects y = In x exactly
once.

To summarize, the required values of c are c=1/(2€) and c<0

A AY
AY ¥

3y

x: -
D,?é xltx’

Figure 2 Figure 3

Figure 1

Example 20. The set of values of p for which the equation px2= /hx possess a single
rootis

Sol.

for p <0, there is obvious one solution ; for p> 0 one root
= the curves touch each .

2pxi=1/x1=> x12=1/2p;

Also pxi2=Inxi= p(1/2p)=Inx1= x; =el/?

= 2p=1/e = p=1/2e. Hence p € (-, 0] U {1/2¢}

- - - - - = - - - P896320f122 ----- - - - - - - ] -



Shortest distance

Shortest distance between two non-intersecting curves always along the common
normal (wherever defined)

Example 21. Find the shortest distance between the line y = x - 2 and the parabola y

=x2+43x+ 2.

dy

Sol. Let P(x1, y1) be a point closest to the line y = x - 2 then X (x1¥1) = slope of line

= 2x1+3=1=x1=-1=y1 =0 Hence point (-1, 0) is the closest and its
perpendicular distance from the

&

line y = x - 2 will give the shortest distance =>p= V2 °

by 3
Example 22. Let P be a point on the curve Ci:y = V 2-%" andQbea point on the
curve Cz: xy = 9, both P and Q lie in the first quadrant. If 'd' denotes the minimum
value between P and Q, find the value of d2.

Sol. Note that C1 is a semicircle and C; is a rectangular hyperbola.

PQ will be minimum if the normal at P on the semicircle is also a normal at Q on xy
=9

Let the normal at P be y = mx...(1) (m > 0) solving it with xy =9

differentiating xy = 9



dy _ dy ¥
xdx+y—0:> dx  x
% 3Jm -ym
T

~normalatPand Qisy =x
solving P(1, 1) and Q(3, 3)
(PQ)2=d?=4+4=8
Rate Measurement

Example 23. A ladder 10 ft long rests against a vertical wall. If the bottom of the
ladder slides away from the wall at a rate of 1 ft/s, how fast is the top of the ladder
sliding down the wall when the bottom of the ladder is 6 ft from the wall ?

Sol. We first draw a diagram and label it as in Figure 1. Let x feet be the distance
from the bottom of the ladder to the wall and y feet the distance from the top of the
ladder to the ground. Note that x and y are both function of t (time). We are given
that dx/dt = 1 ft/s and we are asked to find dy/dt when x = 6 ft (see Figure 2). In
this problem, the relationship between x and y is given by the Pythagorean Theorem
X2 +y2=100

Differentiating each side with respect to t using the Chain Rule, we
dx dy
24— P =

have dt dt

dy  xdx

and solving this equation for the desired rate, we obtain dc [yt

When x = 6, the Pythagorean Theorem gives y = 8 and so, substituting these values
and dx/dt =1,

dy [ 3
~ =g =—7 ft/s
we have dt B 4



wall

The fact that dy/dt is negative means thatthe distance from the top of the ladder to
the ground is decreasing at a rate of 3/4 ft/s In other words, the top of the ladder is
sliding down the wall at a rate of 3/4 ft/s.

Example 24. A water tank has the shape of an inverted circular cone with base
radius 2 m and height 4 m. If water is being pumped into the tank at a rate of 2
m3/min, find the rate at which the water level is rising when the water is 3 m deep.

Sol.

We first sketch the cone and label it as in Figure. Let V, r, and h be the volume of the
water, the radius of the surface, and the height at time t, where t is measured in
minutes.

We are given that dV/dt = 2m3/min and we are asked to find dh/dt when h is 3 m.

The quantities V and h are related by the equation V = 1/3przhBut it is the very
useful to express V as a function of h alone.

e
E |
h
Figure )

In order to eliminate r, we use the similar triangles in Figure to

Ha | 2

r=
V=
write and the expression for V becomes 3

Ca
(Y=o
_Il—-
,—‘:L-‘
ra| =
-
Il
~E
57



; dv_x,.dh dh_ 4 av ;

\ dt 4 at =0 dt  7h? dt "
1

: d_ 4 , 8 I

I Substitutingh = 3 m and dV/dt = 2m?/min, we have 4 w3)°  9n I

1 1
The water level is rising at a rate of 8/(9p) = 0.28 m/min. I

] ]

1 Example 25. A man walks along a straight path at the speed of 4 ft/s. A searchlight is 1 1

i located on the ground 20 ft from the path and is kept focused on the man. At what ! )
rate is the searchlight rotating when the man is 15 ft from the point on the path 1

! closest to the searchlight ? o

1 I

Sol. We draw Figure and let x be the distance from the man to the point on the path |I
§ closest to the searchlight. We let 0 be the distance from the man to the point on the 1

1 path closest to the searchlight and the perpendicular to the path. I I

1 |
We are given that dx/dt = 4 ft/s and are asked to find dq/dt when x = 15. The 1

! equation that relates I '

1 I
1

I I
1

1 |
1

1 - - I
1

| V |
5 1

1 I
1

! Differentiating each side with respect to t, we get dx/dt = 20sec? 6 d0/dt |I

i |
1

I 46 1 . dx 1 . 1 . !

e f—=— B(4)=— 6

| © 3 20" Vg™ W !
1

I when x = 15, the length of the beam is 25, so cos0 = 4/5 .'

1 1

y B B "
! and 4~ 5l5) T15 ~ 0128 I

i 1

I The searchlight is rotating at a rate of 0.128 rad/s. '.
1

! Example 26. Two men A and B start with velocities v at the same time from the ' N

I junction of two roads inclined at 452 to each other. If they travel by different roads, I

find the rate at which they are being separated.



Sol.
Let L and M be the positions of men A and B at any time t,
LetOL=xand LM =y. Then OM = x
given, dx/dt = v; to find dy/dt from ALOM,
B/, ¥

45°
OA-—)X L

o OL? + OM? —LM?
WE4SR=""5 oL.om  °F

1 _x+x®-y? 2x-y?

2 2.x.x 2x°

o Jox? =22 -y

or (2-.2)x2=y?

differentiating w. r. t. we get %=J2ﬁ% =J2—w’§ v

e d_x'=v
Tt

= they are being separated from each other at the rate v2-+2 V-

Example 27. A variable triangle ABC in the xy plane has its orthocentre at vertex 'B’,
a fixed vertex 'A’ at the origin & the third vertex 'C' restricted to lie on the parabola y
o
1%

= 36 " The point B starts at the point (0, 1) at time t = 0 & moves upward
along the y axis at a constant velocity of 2 cm/sec. How fast is the area of the
triangle increasing whent=7/2 sec?

Sol.

- - - - - = - - - P3993?0f122 ----- - - - - - - ] -



_ C
N B y)
(0, 1)|B,
Al
Xy X 7 3)(]\
A 2 1[ J 2 24 7
7 7
att=;;y=2x;—? = AB=28
dA (L1 7 ']dx dx
= = — _+_3.6-—-——-—— _—
when y =8 then x 6:‘»dt [\2 TR 11.dt
Meo B _,_ M & dx 36 _6
W T T3 @ T @ 7
dA 6 66
-a-l——ll.?—

Example 28. Find the approximate value of (1.999)¢.
Sol.

Let f(x) = x6. Now, f(x + 6x) f(x) = f'(x) . 6x = 6x5 86x
We may write, 1.999 = 2 0.001

Taking x = 2 and éx = 0.001, we have f(1.999) f(2) =
= f(1.999) =
Maxima and Minima of a Function
MAXIMA AND MINIMA

A. Classification of Maxima & Minima

A function f(x) is said to have a local maximum at x =

6(2)5 x 0.001

f(2) 6 X 32 X 0.001 = 64 64 X 0.003 = 6

aiff(a) is greater than every

other value assumed by f(x) in the immediate neighbourhood of x = a. Symbolically
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f(a) > f(a+h)

f(a) > f(a—h‘J = X = a gives local maxima for a sufficiently small positive h.

Similarly, a function f(x) is said to have a local minimum value at x = b if f(b) is least
than every other value assumed by f(x) in the immediate neighbourhoodatx=b.
Symbolically if

£(b) < f(b+h)

f(b) < f(b_hJ = X = b gives local minima for a sufficiently small positive h.

Note that:

(i) The local maximum & minimum values of a function are also known as relative
maxima or relative minima as these are the greatest & least values of the function
relative to some neighbourhood of the point in question.

(ii) The term 'extremum’ or 'turning point' is used both for local maximum or
minimum values.

(iii) A local maximum (minimum) value of a function may not be the greatest (least)
value in a finite interval.

(iv) A function can have several local maximum & minimum values & a local
minimum value may even be greater than a local maximum value.

B. Fermat's Theorem
[f f(x) has a local maximum or minimum at x = cand if f' (c) exists, thenf'(c) =0.

(i) The set of values of x for which f' (x) = 0 are often called as stationary points.
The rate of change of function is zero at a stationary point.

(ii) In case f' (c) does not exist, f(c) may be a maximum or a minimum.

C. The First Derivative Test

Suppose that c is a critical number of a continuous function f.

(a) If f changes from positive to negative at c, then f has a local maximum at c.

(b) If f' changes from negative to positive at c, then f has a local minimum at c.



(¢) If f does not change sign at c (for example, if f' is positive on both sides of c or
negative on both sides), then f has no local maximum or minimum at c.

In part (a), since the sign of f'(x) change from positive to negative at ¢, fis increasing
to the left of c and decreasing to the right of c. It follows that f has local maximum at
3

[t is easy to remember the First Derivative Test by visualizing the following
diagrams.

a b/
f(x) =0 \ f'[?(} <0
I
I
: Fx)<0 fix)>0
I ]
I T 1 s
ol g 1 ° * 3 c e
(a) Local maximum (b) Local minimum
a T
f(x)>0
i) >0 £(x) <0
1 F(x)<0 I
I I
1 3% 1 3
of ! c 0 c !

) No maximum or minimum  (d) No maximum or minimum
Sufficient conditions for an extremum

If xo is a critical point of the function f(x) and the inequalities f'(xo - h) > 0, f'(xo + h)
< 0 are satisfied for an arbitrary, sufficiently small h > 0, then the function f(x)
possesses a maximum at the point xo; now if f'(x0 + h) <0, f'(x0 + h) > 0, then the
function f(x) possesses a minimum at the point xo. If the signs of f'(xo + h) and

f'(xo0 + h) are the same, then the function f(x) does not possess an extremum at the
point Xo.

Ex.1 Test the functiony = (x - 2)2/3 (2x + 1) for extremum.

10 x-1

Sol. We findy' = 3 Ux-2- The critical points are x = 1 (the derivative is zero) and
X = 2 (the derivative does not exist). The inequalities y'(1 -h) > 0,y'(1 + h) <0,
y'(2-h) <0,y' (2 +h) >0 hold at a sufficiently small h > 0. Consequently, at the

- - - - - = - - - Page400f122 ----- - - - - - - ] -



point x = 1 the function possesses a maximum ymax = 3 and at the pointx = 2 it
possesses a minimum Ymin = 0.

|Ix-2]+a*-9a-9, ifx<2

Ex.2 Let f(x) = | 2x=3, TX=2" Then find the value of *a’ for which
f(x) has local minimum at x=2.

Ix-2]+a*-%a-9, ifx<2
Sol. We have f(x) = 1 2x -3, ifx=2

f(x) has local minima at x = 2. Since, f(x) = 2x - 3 for x 25 (is strictly increasing)
M f(x) = f(2) or Mf(2-h) 2f(2) {- f(2)=2x2-3=1}

+ - +
-1 10

Im f2-h-2]+22-9a-9|21
az29a10=>0 = (a+1)(@10)=0=> a<lora=10

Ex.3 Find the local maximum and minimum values of the
function 90¥) =x +2sinx 0Zx<2x

Sol. To find the critical number of g, we differentiate : g'(x) =1 + 2 cos x

1
Sog'(x) =0whencosx = ~ 2" The solutions of this equation are 2m/3 and 41/3.

Because g is differentiable everywhere, the only critical numbers are 2m/3 and 41/3

and so we analyze g in the following table.

Interval g'(x)=1+2cosx g
D<x<2n/3 - increasing on (0,21 /3)
2n/3<x<4n/3 - decreasing on(2n/3,41/3)
dn/3<x<2n - increasing on(47/3,2m)

Because g'(x) changes from positive to negative at 2m/3, the First Derivative Test
tells us that there is a local maximum at 21t/3 and the local maximum value is



+43 =3.83

- PO W PR
g(2x/3) = 3 t2sinp~ =5 +2-" 2

w|"°

Likewise, g'(x) changes from negative to positive at 41t/3 and so

47 4
9(441/3)—— +:zsm?jI —? +2 [_£ -%T._JE 2.46

Ex.4 Find the values of a for which all roots of the equation 3x* + 4x3- 12x24+a =0
are real and distinct.

Sol. Consider the function f(x) = 3x* + 4x3 - 12x2 + a.
Then f'(x) =12(x3 + x2-2x) = 12x (x-1) (x+ 2).

From the sign scheme for f'(x), we can see that the shape of the curve will be as
shown alongside.

For four real and distinct roots, the two minima must lie below the X-axis and the
maxima must lie above the x-axis.

-ve , *ve  -ve tve
-2 0 1
x=0
\ X .
\\/’ X
x=—2 x=1

Thus, we have f(2) < 0i.e. 483248 +a<0..(i) i.e.a< 32

andf(1) <0 ie.3+412+a<0..

(i) ie. a<5

and f(0) > 0 i.e. a> 0..(iii)

Taking intersection of inequalities (1), (2) and (3) we have a € (0, 5).

Ex5Iff(x) =x3+ 3(a-7) x2+ 3(a%- 9) x - 1. If f(x) attains maxima at some positive
value of x, then find the possible values of a.

Sol. Wehave f(x) =x3+3 (a-7)x2+ 3(a2-9)x-1andf'(x) =3x2+6(a-7)x+ 3
(2%-9)



which shows that there are two critical points (real or imaginary). According to the
given condition, there is one real critical point (maxima), then the other critical
point must also be real (minima).

Also, we have f(-00) = -00 and f(00) = oo

From the above facts, the graph of the curve y = f(x) can be drawn as shown
alongside. Thus, if maxima occurs at some +ve value of x, then the minima must also
occur at some +ve value of x(see fig.).

Thus, the roots of equation f'(x) = 0 are +ve and distinct, which is possible if

discriminant > 0

maxima

\_//ﬂre div,
minima of x-axis

27

A)(!l
s

:,_; ,
ie.(a7)2>az9ie.14a+58>0

ie.a<29/7..(1)

and product of the roots > 0

ie.az 9>0

ile.a<3ora>3..(2)

and sum of the roots > 0

iieea7<0ie.a<7..(3)

Drawing the number line for inequalities (1), (2), (3) and taking intersection, gives

(o 29
ae (- -3)u L3=7].
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Ex.6 For what real values of a and b are all the extrema of the function; f(x) = a2x3 -
0.5 ax?- 2x - b, is positive and the minimum is at the point xo = 1/3.

Sol. For extrema, f'(x) =0 =

1
3a’x*—-ax-2=0atx= 3 (as at x =— function is minimum)

3

= f—i—z—ﬂcr
3 3 77

aza6=0=a=273
So their arises two cases as :

Case I: at a = 3, if function attains minimum and is positive,

P

ofg) ~en@fz] (3] -»

{sime minimum at x =%whena=3 = f{%) >0whena= 3}

b i 2
= “3° 9 3
bee o
ar <_2

Case Il : ata = -2, if function attains minimum and is positive,

W3

.-.{—2)=|:%3] —(o.s)(—z)(%T—z(%}—bm

s

!
{ since minimum at x = %when a=-2= r';r1 [> 0whena =-2}

L%
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4 1 2 1
— b —+—==2 or b<-—=

271 9 3 27

11

1
whena=3=b<—5 andwhena=-2=>b<—5.

Ex.7 For what values of "a' the point of local minima of f(x) = x3 - 3ax? + 3(a2- 1)x +
1 is less than 4 and point of local maxima is greater than -2.

Sol. f'(x) = 3(x2-2ax +az-1)

Clearly roots of the equation f'(x) = 0 must be distinct and lie in the interval (-2, 4)
D>0=a€R..(1)

f(2Q)>2=a2+4a+3>0=>a<3ora>1..(2)

f(4)>0=>a28a+15>0=>a>50ra<3..(3)

B
and—2{—ﬁ <4=-2<a<4

From (1),(2)and (3)-1<a<3

Alternate: f(x) =3(x-(a-1)) (x-(a+ 1))
clearly-2<a+1<4and-2<a-1<4=-1<a<3
D. Extremum at End-points

A point (¢, f(c)) is called an endpoint of the graph of the function fif there exists an
interval (a, b) containing c such that the domain of f contains every number of the
interval (a, ¢) and no number of the interval (c, b), or vice versa.

If (¢, f(c)) is an endpoint of the graph of f such that f(c) is the maximum or minimum
value of in some interval containing c, then f(c) is called an endpoint extremum of f.
Note the difference between this definition and that of a relative extremum, in
which it is assumed that some open interval containing c is contained in the domain
of the function.

%
Consider f(x) = V4—x" _Clearly, f(-2) = 0 and f(2) = 0 are endpoint extrema of f.
Also, f(0) = 2 is a (relative) maximum value of f.



E. Second-Derivative Test For Extremum

Let c be a critical point of f in an open interval (a, b); that is, assume a < ¢ < b and
f'(c) = 0. Assume also that the second derivative f" exists in (a, b). Then we have the
following :

(a) If f" is negative in (a, b), f has a relative maximum at c.
(b) If " is positive in (a, b), f has a relative minimum at c.
The two cases are illustrated in Figure

Proof. Consider case (a), " < 0in (a, b). The function f is strictly decreasing in (a,
b). Butf'(c) = 0, so f' changes its sign from positive to negative at c, as shown in
Figure (a). Hence, f has a relative maximum at c. The proof in case (b) is entirely
analogous.

[f " is continuous at ¢, and if f''(c) = O, there will be a neighbourhood of ¢ in which
f'" has the same sign as f''(c). Therefore, if f'(¢) = 0, the function f has a relative
maximum at c if f''(c) is negative, and a relative minimum if f"'(c) is positive. This
test suffices for many examples that occur in practice.

a b c a B £

(a) Relative maximum atc (b) Relative minimum atc

Figure : An extremum occurs when the derivative changes sign.

Ex.8 Find all possible values of ' a' for which the cubic f (x) = x3+ ax + 2 is non
monotonic and has exactly one real root.

Sol. Note that

(i) for 3 real and distinct roots we have or f (x1) . f (xz2) < 0 = f (x) is non monotonic
in this case

(ii) for exactly one real root and monotonic the graph will be as shown. Here f'

x) =0



(iii) for exactly one real root and non monotonic the graph will be as shown. Here f
(x1).f(x2) >0

Nowf(x)=x3+ax+2 =f (x)=3x2+a

ifa = 0, f(x) is always increasing .

iv—i = :l:u"E where b = -
Nowleta<0 f'(x)=0=x= 3

| &

>0

~

LI

f'"(x) =6x;f" > 0= minima and f" < 0 = maxima

for exactly one real root and non monotonic (case iii)

fr (x):ﬁx;f”(‘\f;} >0 =minima and

£ (- o)

< 0=maxima o exactly one real root and non monotonic (case iii)
f(vo) . f(-+®) > 0
= (b* +ab? +2) (-b** -ab¥? +2) > 0

or (b¥? + ab?)2 -4 <0

a
urb’+azb+2ab2—4<0;n0wsub5titutingb=—§
wegeta’+27>0. Buta<0=ae(-3,0)

Note that

(@ fora=-3,f(x) =x3-3x+2=(x+2) (x-1)?i.e. f(x) has two coincident roots .

(ii) fora < - 3, f(x) has 3 real and distinct roots

(iii) for a =0 , f(x) is exactly real root and is always monotonic increasing find (xz -
X1)2 from (1) and get V as a function of y

Ex.9 Let 'p' & 'q' be real numbers. Prove that the cubic y = x3 + px + q has three
distinct real roots, if 4 p3 + 2792 < 0.



1
1
1
1
Sol. ll
1
1
1
I\ ’ )
/ i ; / 1
]
L : |
AN .
1
]
Letf(x)=x3+px+q=>f(x)=3x2+p '
1
[f p> 0 = no root ( f (x) is monotonic) II
]
Ifp<O0=x=% I___ ((a-— ll
1
1
3 distinct real roots f (x) must have exactly one maxima & minima. ll
1
rJ;m ‘ = II
§ (x)=5x;f'l. 3J >0:>m|n.atx=J; '
1
s i
and I’"{—J" <0:>max.atx=—\/g I|
L) 3 I
II
‘B (R
o] | Al i
II
{'3:+pJE+q _[_}31_1,‘};_(1 '
1
\ .l
f
(a} " I
= 11(5] \!7‘”‘1‘ [b w‘”q I
3 \ 0
1
',a,la:z a"-l lI
= “.E.f' *"\EJ S0 ;
: : .
o P 'l
(2 a (2"
= (5 +piranll) -a>0 |
= a*+9pla+6pal-27q>0 1
1
>  —p-9p+6p-27@¢>0 .'
- 4p'+27¢°<0 l|
i
1
]
1
]



Ex.10 Suppose f(x) is real valued polynomial function of degree 6 satisfying the

following conditions ;

(a) fhas minimum value atx = 0 and 2

(b) fhas maximum value atx =1

f(x)
ricndid | %
Limit — | ¢
=0 x
1
(c) forall x,
Sol.
; f(x)
Determine f(x). D =1+ <
T ll(- f(K).\ o
> Limit |14 —5| =2

=

A= — O

= f(x) have co-efficient of x3, x2, X or constant term zero in order that the limit may

exist.

T 1 f(x)
ezt xS _Limit I8 _

2
50 x4

“

 Limit ax® 4+ bx* + ex’

=P =
—+ 4
b X

2.

Hence f(x) =ax6 + bx> + cx¢= f(x) =x3 (6 ax2+ 5 bx + 8)

f(1)=0andf(2) =0gives6a+5b+8=0and24a+10b+8=0

2
=) =3

"

12
-? W+ 2y

F. GLOBAL MAXIMUM AND MINIMUM

Definition A function f has an absolute maximum (or global maximum) at cif f (¢) >
f(x) for all x in D, where D is the domain of f. The number f(c) is called the maximum
value of f on D. Similarly, f has an absolute minimum at c if f(c) < f(x) for allxin D
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and the number f(c) is called the mini mum value of f on D. The maximum and
minimum values of f are called the extreme values of f

T
-+

-]

P o -
[ [

1
I
|
1
|
|
1
|
b
Figure

Minimum value f(a), Maximum value f(d)

Figure shows the graph of a function f with absolute maximum at d and absolute

minimum at a. Note that (d, f(d)) is the highest point on the graph and (a, f(a)) is the

lowest point.
The Extreme Value Theorem - Application Of Derivatives, Class 12, Maths
The Extreme Value Theorem

[f f is continuous on a closed interval [a, b], then f attains an absolute maximum

value f(c) and an absolute minimum value of f(d) at some numbers c and d in [a, b].

The Extreme Value Theorem is illustrated in Figure 1. Note that an extreme value
can be attained at more than one point. Although the Extreme Value Theorem is
intuitively very plausible, it is difficult to prove and so we omit the proof.

L ; A v

f M

I
1 3 :X | :
0 a ¢ d-b U . o d g b X
Figure 1

Conditions of Extreme Value Theorem

Figure 2, 3 show that a function need not possess extreme values if either
hypothesis (continuity or closed interval) is omitted from the Extreme Value
Theorem. The function f whose graph is shown in Figure 2 is defined on the closed



1 1
1

1 1

i interval [0, 2] but has no maximum value. (Notice that the range of fis [0, 3). The '.
function takes on values arbitrarily close to 3, but never actually attains the value 3.) 1

' This does not contradict the extreme value theorem. i '

1 1

1
] ]
1
| 1
Figue 2 1
] Thae functon has mdnirarem waloue ]
£2) =0, but no madouam value. |
i ]
% . I
1 i 1
: 1
1 | 1
: "
1 .
1 : I
1 H— |
2 1
| Figure 3 |
This contimous function g has |
I NO maxinmmn o mindearm I
1
) The function f shown in Figure 3 is continuous on the open interval (0, 2) but has ||
1 neither a maximum nor a minimum value. The range of g is (1, ). The function II
. takes on arbitrarily large values.] This does not contradict the Extreme Value I
Theorem because the interval (0, 2) is not closed. II
1
1
1 In each case, explain why the given function does not contradict the extreme value II
’ theorem. |
1
I [2x i 0sx<1 !
1 a. =11 # 1<x22 i
| ]
: b. gx)=x2on0D<x=2 II
1
i v |
A 1 :
1 it
* [
I 3+ 1
|
1 2r I
14 S 1
] |
>y 1
0 05 1 15 2 |
i Does not have a maximum value 1 I
1
] ]
1
] ]



i “ . = .
_] 05 1 15 2
g does not have a minimum value
(but it does have a maximum value.)

a. The function f has no maximum. It takes on all values arbitrarily close to 2, but it
never reaches the value 2. The extreme value theorem is not violated because fis
not continuous on [0, 2].

b. Although the functional values of g(x) become arbitrarily small as x approaches 0,
it never reaches the value 0, so g has no minimum. The function g is continuous on
the interval (0, 2], but the extreme value theorem is not violated because the
interval is not closed.

Procedure for Finding the Extrema of a Continuous Function

Suppose a continuous function f is differentiable at all except a finite number of
values of X in its domain, the closed interval @ = x < b.

1. Find all x in a < x < b that satisfy the equation f'(x) = 0 or at which f'(x) does not
exist;letx=r,x=s5,x=t,.. be such x. The numbersr, s, t,...are often
called critical points of f.

2. Evaluate f at each critical point; that is, find f(r), f(s), f(t),......
3. Evaluate f(a) and f(b).

4, The largest of the numbers computed in Step 2 and Step 3 is the maximum of f(x)
for a £ X £ b, and the smallest number is the minimum.

Ex.11 Let f(x) = 2x3 - 9x2 + 12x + 6. discuss the global maxima and global minima of
f(x) in (1, 3).

Sol.
f(x) =2x3 9x2+ 12x+ 6= (x) =6x2 18x+ 12=F(x) =6 (x1) (x2)

letf(x)=0=>x=1,2.~f(1) =11and f(2) = 10 ..(i)



let us consider the open interval (1, 3). Clearly x = 2 is the only point in (1, 3) and
f(2)=10 [from (i)

Now lIM f(x) = 11.and IM f(x) = 15

Thus, x = 2 is the point of global minima in (1, 3) and global maxima does not exist
in (1, 3).

1 3
Ex.12 Let w(x) = 4x2- 3x20on -+ <Xx < 4. Discuss the extrema of w.

Sol. w(x) has a maximum at x = 0 and a minimum atx = 1/2 , and these two values
are in the given interval.

Ex.13 The greatest value of the function f(x) = 2.3 - 3* . 4 + 2.3" in the interval
[-1,1] is

Sol. f(x) =2.3x.1n3 [3.32x-43x+ 2]

=3.2.3/n 3[‘:“ -3 +%} >0in[-1,1]

Hence f(x) is greatest whenx =1 & f(1) = 24

Ex.14 Let f(X) = ax? - 4ax + b (a > 0) be defined in 1 = X = 5. Suppose the average of
the maximum value and the minimum value of the function is 14, and the difference
between the maximum value and minimum value is 18. Find the value of a2 + b2,

Sol.

Mii:::ﬁ:x




f(x)=ax? 4ax+b(@a>0) =f'(x) =2ax4a=0
atx=2also,f'(x)=2a(x2)=>forxe(1,2)fis
Hence minimum occurs as x = 2
f(2)=4a8a+b

f(2) =b4a

maximum will occur at f (5) and

f(5)=25a—-20a+b=>b+5a
M=b+5a
m=b-4a

Mm=9a=18=a=2 alsoM+m/2=14 = M+m=28=2b+a = b=13
Hencea=2and b =13
aZ+b2=44+169=173

(x-a) (x-b) —\"a—;b "
Ex.15 If f(X)= |
,_(asbf

prove that 2

" and f(x) = 0 has both non-negative roots, then

|I. a-+ b "
Sol. Given that f(x) = (x-a) (x-b) - 2
Sum of the root of the equation f(x) = 0, will be positive = (a + b) >0

The product of the roots of the equation will be greater than and equal to zero

ra-l-b\"l
== -ab'_ \ 2 =2 0.

4

Now f(x) will be minimum, when f'(X) = 0 = x =a+b/2

; \2 B =
> ron.={2) B (0]



_—(a+b)y’ +ab_!f'a+b“;

\ ,:r

—{a+b)> —4ab+4ab _{a+b)’

4 4

Ex.16 If x > 0, let f(x) = 5x% + Ax -5, where A is a positive constant . Find the
smallest A such that f(X) = 24 forallx > 0.

Sol.

f'(x)=10x-5Ax%andf" (x) =10+ 30Ax7>0 ie.f' (x) =0 gives a minima

)

Ix.l|3a-

e

aulw»

Since A> 0 = we get only one minima and no maxima . Hence smallest value of f(x)

will be at

or 5[%) +2{-h .

= A= 2[::3—-”
T

Ex.17 Find the sum of the local maximum and local minimum values of the

tan .Z‘-'"{

function £(x) —tan’ x

Sol.

tan 3x Jtanx —tan’ x
Y= 3 = 3 3
tan’x  tan” x(l—-3tan” x)

3—tan’x 53—t

~ tan? x(1-3tan? x)

on interval (0, w/2).

i -
=10-31) wheretanx =t >0
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—1

0 {lT—i:ﬁ) {17+'12~4§)

—

= (t3t)y=3t,3yt2 (1+y)t+3=0

T

t>0=D>0;Sum of roots > 0 ; Product of roots > 0y

; 1
I+_3}0 and; >0hencey >0

hence (1 +y)?% 36y = 0; 4

il 2 _ ,_"'
=>y234y1>0 = (y17)2> 288 > (y =172 -(12/2} 20

= (y1712V2)(y17 +12vV2) >0
= [y (17 + 12v2)] [y (17 12v2)] =0
Hence Ymax = 17 12V2, Ymin = 17 + 12V2 = Yimax + Ymin = 34 which is rational

R
d-y

Ex.18 For a certain curve ™ = 6x - 4 and y has a local maximum value 5 whenx = 1
. Find the equation and the global maximum and minimum values of y, given
that 0 £x 2.

Sol.

_dy dy
Integrating, - = 3 —4x + A

;E =0=A=1

Bl

d
Hence—y =3x2-4x+1;
dx

Integrating again, y=x3-2x24+x+B;y]x=1=B=5.
Thusy =x3-2x24+x + 5.
givenx =1/3andz=1f(1/3) =139/27;f(1) =5

alsof(0) =5;f(2)=7.Hence GMV =7 ;gmv=>5

- - - - - = - - - P399560f122 ----- - - - - - - ] -



Ex.19 Find the least and the greatest value of f(x, y) = x2 + y2? - xy where x and y are
connected by the relation x2 + 4y2 = 4.

Sol.
Here x2 + 4y2 =4

2

X
aidl 2 — ichi i
su + y? = 1 (which is clearly an ellipse)

= Letx =2 cos 6, y = sinf

Hence, f(X, y) = x2 + y2 Xy = 4 c0s20 + sin20 2 sinB cos@ =2 (1 + cos 20) + 1/2 (1 -
cos 20) - sin26

[' 1 . 5
=|2-=| cos 28 - sin 28 + —
\ r 2

—E cos 28 — s5in 26 + -5—
T2 2

o B 3 =z 2 2 to 2 2
Since we know a sin® + b cos0 lies between Va’+b Va®+b

-———413 +§S~:.1 cos 26 — sin 29 +—5-S~—~JE+§

2 2 2 2 2 2
5+413 =5"-{E
2 2

Thus, greatest value of f(x,y) = and least value of f(x, y)

G. Geometrical Problems
Working Rule

1. When possible , draw a figure to illustrate the problem & label those parts that are
important in the problem . Constants & variables should be clearly distinguished.

2. Write an equation for the quantity that is to be maximized or minimized . If this
quantity is denoted by 'y', it must be expressed in terms of a single independent
variable x . This may require some algebraic manipulations.



3. If y = f(x) is a quantity to be maximum or minimum, find those values of x for
which f'(x) = 0 or f'(x) does not exist.

4, Test each value of x to determine whether it provides a maximum or minimum or
neither. The usual tests are:

(a) If d®y/dx? is positive when dy/dx = 0 = y is minimum.
If d®y/dx?* is negative when dy/dx = 0 = y is maximum.
If d’y/dx* = 0 when dy/dx = 0, the test fails.

positive for =< x
If— iszero for x=x
dx

(b) negative for x>%;| = 3 maximum occurs at x = Xo.

But if dy/dx changes sign from negative to zero to positive as x advances through
X, there is a minimum. If dy/dx does not change sign, neither a maximum nor a
minimum.

5. If the function y = f (x) is defined for only a limited range of values a@ <x <b then
examine x = a & x = b for possible extreme values.

Useful Formulae Of Mensuration

Volume of a cuboid = |bh .

Surface area of a cuboid = 2 (Ib + bh + hl).

Volume of a prism = area of the base x height .

Lateral surface of a prism = perimeter of the base x height .

Total surface of a prism = lateral surface + 2 area of the base (Note that
lateral surfaces of a prism are all rectangles) .

Volume of a pyramid = 1/3 area of the base x height.

Curved surface of a pyramid = 1/2 (perimeter of the base) x slant height .
(Note that slant surfaces of a pyramid are triangles) .

9. Volume ofa cone =1/3nrzh

10. Curved surface of a cylinder = 2 rrh..

11.Total surface of a cylinder = 2nrh + 21mr?

12.Volume of a sphere = 4/3mr3

13.Surface area of a sphere = 4mnr?

14.Area of a circular sector = 1/2r2 6, when 0 is in radians.

Ao BN =

L



Ex.20 A trapezium ABCD is inscribed into a semicircle of radius /so that the base AD
of the trapezium is a diameter and the vertices B & C lie on the circumference . Find
the base angle q of the trapezium ABCD which has the greatest perimeter.

Sol. Hint: P=AB + BC + CD + DA = (AB + CD) + BC + DA
CD=AB=2lcosB;AD=2land
X=ABcosO8=BC=21-2x=21-2ABcosO =21-41cos20

Hence P=41+41cosB-41cos20

= g = 0 gives B = 0 (not possible)

_1 _x
c:rl::mse—2 ::>B—3

Ex.21 A bus contractor agrees to run special buses for the employees of ABC Co. Ltd .

He agrees to run the buses if atleast 200 persons travel by his buses . The fare per
person is to be Rs. 10/- per day if 200 travel and will be decreased for everybody by
2 praise per person over 200 that travels . How many passengers will give the
contractor maximum daily revenue ?

Sol. Let number of passengers be x, which will yield maximum profit

[ . 1
f(x) = x 110-{.\:—200)@} for x = 200

= F(X) =0 =x=350; f(X)]max = 2450

Ex.22 Find the radius of the smallest circular disk large enough to cover every
isosceles triangle of a given perimeter L.

Sol.

9
AB:(R+Rm59)sec;;

8 «
Hence L =2AB + BC =2 R[(I + cosf) sec— + sinf
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= ] ] __] ) _J _ = ] - _J - _] _] - _J _J - - L_J _ ] _] _J L} _J ] -
I - - - ] - - - - - L - - - - - - - - - - - L} - ikt - L - - I
1
1 1
1
1 1
L, 8 .6 8 '
| = 2R l_E cosE + lsmE cosﬂ ; ]
1 1
1
1 L 1
= : 1
I 4cos8 1+ 5:11,9,] 1
3\ 2, I
1 1
1
] ]
1
| 1
1
] |
= 1
1 I g |
1
' " [
II
]
“Rsino 1
1 I
1
§ Let f(8) = E(-1+smE‘J ll
l ( ) - COSE ; 2 I
1
1 ) i
‘ 1 8 (1 cain®) 41 oo ® I
1 ::>1’(9:1=—_—2 cosy |57 +E cos? 5 |I
1 II
1 1 B 1
fr{e) =5 cosb-7 sing =0 [
1 - T I
1
1 it X i
=8 = E Butd <8< i |
1 B |
II
1 7 ]
f(%] = 0.2071f0 = = 1
I 3 2 I
1
] 1
=R=73ate=0 is the required radius 1 )
]
1
1 Ex.23 Through a point A on the circumference of a circle of radius r, two straight |'
i lines are drawn enclosing an angle f. If the straight lines meet the circle again at B & i !
1 C, find the maximum area of triangle ABC . 1
1
1
' Sol. 1
] 1
1
1 1
1
1 1
1
] ]
1
] ]
- - - - ] - - _} - - - - - - Ll - - - - - _] - I



a b c

sing sin® sin(®+ )

—

A= 3 bc sin ¢
A = 2rZsin ¢ sin g sin (0 +¢) = r2 sing [ cosg- cos (20 +¢) |
dA %
i
Ans.:rZsin g (1 + cosg) sq. units
Ex.24 Anisosceles triangle is inscribed in a circle of radius r. If the angle 2 a at the
I
apex is restricted to lie between 0and7  find the largest and the smallest value of
the perimeter of the triangle . Give sufficient details of your reasoning .
Sol.
-
B
o]
rsin 2a

0«2 d 0 2
< a{E::» {a{;

P=2x+2rsin2o

- - - - - = - - - Pages-l 0f122 ----- - - - - - - ] -



2r(1+ cos 2c) .
=—— +2rsin 2ua
Cos o

i 1+ cos2o + sin2o coso
cos o

P=f(a)=4r(1+sina)cosa

f(a)=4r[cos2a-(1+sina)cosa] =4r(1-2sina) (1+ sina)

1
= sinao= 5 OF sin o = — 1 (not possible)

uJ-

o ()
HenceP =4 r| | | —"f—g =
max \ J ! 2 .

2|

th = 4 rwhen a«=0

J_+1
W2

%=2r [«E+ 1]

P(u=—j—4r

Ex.25 The plan view of a swimming pool consists of a semicircle of radius r attached
to a rectangle of length '2r' and width 's' . If the surface area A of the pool is fixed, for
what value of 'r' and 's' the perimeter 'P' of the pool is minimum .

Sol.
7N
s
e
A:KTTJ"'sz P=2s+2r+mr
p:[%+?_s:t+2r+%f P—%+2r+¥
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dP 2A [2a
Nowcl.r =0=r= i :5_],1+4

Ex.26 Find the altitude of a cone of the least volume that can be drawn around a
hemisphere of radius R (the centre of the base of the cone falls on the centre of the
sphere).

Sol.

Let AO = H, BO = r = radius of the base of the cone

R = radius of the hemisphere, ZOAC =0 (6 €(0, /2))

1 =tanég l:IE =sin @
H = negan H = sin
R R
= ——.tanf =
=T sing cos6

2, \
" R 1 1 1

Vv(e) = —7{[—1 {.—]=—TER3-—2—-,—

3 lcosd) \sing) 3 cos- 6 sind

1 4 1

~ 3 sinf-sin®6

3
sinﬁ-:-i {Sinﬁ——l

2N J3)

_ TR cos6 '
Now V'(8) = (sina _sin*6)2 |
Clearly V(8) has only one critical point namely 8 = sin-! 1/\/3 .Using sign scheme for
V'(0)

we get, 8 = sin'! 1/v/3 to be the point of maxima. Hence corresponding altitude H
R/sinf = RV3.



Ex.27 What normal to the curve y = x2 forms the shortest chord.

Sol. Let (t, t2) be any point on the parabola y = x2

ay (dy

LR = 2t, which is slope of tangent.
Now =M=y f‘_dx w2 P g

dx

So, the slope of the normal to y = x2 at (t, t2) is (-1/2t)

The equation of the normal to y = x2 at (t, t2) is y t2 =(-1/2t) (x-t)....(1)

Suppose equation (i) meets the curve again at B(ty, t12), then,

2—2:—l - = +t=—-
Gt = - (6 - 1) o+t

Let L be the length of the chord AB (as normal)

L=AB2=(tt)2+ (2 t:2)2= (tt1)2 [1 + (t + t1)?]

:|{l +1 +l.]2€

4t2

db . 1V oo
= E=B[“_1+F_J”2tl1

= dL 2[1

dL

; 2 5 . 3
=|‘.2t+%,} [.1+-—-J 4tz|\1+%.]

4- ( 43
2t Ih"\_t” 2_J 1 (using (ii))

2

4FJ {_%J

] [‘"‘11 4t2J _}

= Eﬂ[_ MQHMT—] 4“—?”21__]

Page 64 of 122

=—=t=—=

2t

ceene(ii)



y=x

dL
For extremum Ieta =0

1

oA 1Y 1Y V(
Again, Ei‘=a{\1+:(2')[\."2-ti"ﬁk.2t d“‘—ti‘” tz]

5] . 50

1
E

1
~ minimumwhent == ﬁ

1 1)
Thus, points areAz(i—E,EJ and B ((F4/2,2)
= equation of normal ABis V2x+2y2=0and V2x2y+2=0

Ex.28 The circle x2 + y2 = 1 cuts the x-axis at P and Q. Another circle with centre at
Q and variable radius intersects the first circle at R above the x-axis and the line
segment PQ at S. Find the maximum area of the triangle QSR.

Sol. The centre of the circle x2 + y2=1 ...(i) is (0, 0) and radius OP=1=0Q so, co-
ordinates of Q are (1, 0)

Let the radius of the variable circle be r. Hence, its equation is (x - 1)2 = (y)z =

2. (ii)

e 2"2
Now, RT = OR?-0T? = 1—|1—%J



e

Mow, the area of A QSR s,

Wherer—z\{g
- "13

(1.0)

A? =% (Qs?) . (RTY)

:% (4r* - 1) [using (i) and (iv)]

- 6r*) = 0 (for extremum)

2 4
. ) r= 21’— and === sq. units.
Hence, area is maximum at 3 Arsx 33 4

H. Maximum and Minimum for Discrete Valued Functions

Ex.29 Find the largest term in the sequence a, = n*+10

Sol.

Consider the functionf{x) =

X
X
x% +10

> 0.
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(%% +10)-2x%?

Then f"{)() = (xi +10)2

_ —(x+310)(x~/10)

(x% =107 >0v0<x< 10

= f(x) strictly increases in (0, vV10) strictly decreases in ( 10, )
= f(x) has greatest value at x = V10
Hence, the given sequence has greatest value atn = 3 or n = 4.

Now, we have az = 3/19 and as = 4/26. Hence, as = 3/19. is the largest term of the
given sequence.

I. Concavity and Point of Inflection

The graph of the function y = f(x) is said to be concave down on the interval (a, b) if
it lies below the tangent drawn at any point of that interval (Fig. 1).

The graph of the function y = f(x) is said to be concave up on the interval (a, b) if it
lies above the tangent drawn at any point of that interval (Fig. 2).

The sufficient condition for the concavity of the graph of a function.
If f'(x) < 0 on the open interval (a, b) then the graph of the function is concave

down on that interval; now if f'(x) > 0, then on the open interval (a, b) the graph of
the function is concave up.

Fig. 3

The point (xo; f(x0)) of the graph of the function separating its concave down part
from the concave up part is called a point of inflection (Fig. 3).

If Xo is the abscissa of the inflection point of the graph of the function y = f(x), then
the second derivative is equal to zero or does not exist. The points at which f"'(x) =
0 or f'(x) does not exist are called critical points of the 2nd kind.



If xo is a critical point of the 2nd kind and the inequalities f"(xo - h) < 0, f'(x0 + h) >
0 (or inequalities f''(x0 - h) > 0, f"(xo + h) < 0) hold for an arbitrary sufficiently
small h > 0, then the point of the curve y = f(x) with the abscissa xo is a point of
inflection.

If f'(xo - h) and f'(xo + h) are of the same sign, then the point of the curve y = f(x)
with the abscissa xo is not a point of inflection.

Ex.30 Find the intervals of concavity of the graph of the function y = x5 + 5x - 6.

Sol. We have y' = 5x%+ 5, y" = 20x3. If x < 0, then y" < 0 and the curve is concave

down ; now if x > 0, then y" > 0 and the curve is concave up. Thus we see that the

curve is concave down on the interval (-oo, 0) and concave up on the interval (0, +
).

Ex.31 Find the inflection points of the curve y = (x - 5)5/3 + 2.
10

5
= [x—5)%% "= 9sf{w_F) -
Sol. We find ¥=73 X ) ¥'= 93/(x-5)

The second derivative does not vanish for any value of x and does not exist at x = 5.

The value x = 5 is the abscissa of the inflection point since y" (5-h) <0,y"(5 + h)
djy

> 0. Thus, (5, 2) is the inflection point. Inflection points can also occur if dx” fails to

exist.

Cusp:

A point on a graph where the curve makes an abrupt change in direction is called
a cusp. Our next example features a graph with such a point.

Find the first and second derivatives and write them in factored form.

Let f(x) = 2x5/3 4+ 5x2/3,

fi(x) = 2|E| X234+ Sf —2“‘ gt — o e o O
(3 L3 3

Note that the graph is concave down on both sides of x = 0 and that the slope f'(x)
decreases without bound to the left of x = 0 and increases without bound to the



right. This means the graph changes direction abruptly at x = 0, and we have a cusp

at the origin.

22y =%5

e +e' o

Ex.32 Prove that for any two numbers x; & x; 3

Sol.

Assume f(x) = exand let x1 & X2 be two points on the curve y = ex,
Let R be another point which divides P and Q in ratio 1 : 2.

e2:|i| +e*2 Diy+xg

y coordinate of point R is 3 andy coordinate of point S is
= ex is always concave up, hence point R will always be above point S

e et 2’%;‘:
= — e
3

(above inequality could also be easily proved using AM and GM.)

" Since f(x)
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Ex.331f0 <x1<x:<x3< " then prove that

(X, +X, +X5 | SINX, +8iNX, +5inX,

sin 3 '. 3 . Hence or otherwise prove thatif A, B, C

3.3
are angles of triangle then maximum value of sinA + sinB+sinCis 2

Sol.

SinX; +SiNX; +SiNX,
3

Let point A, B, C form a triangle y coordinate of centroid G is and

i "X1+K2+X3"‘
sin L—_S J
y coordinate of point F is

(%X + X3+ X3 | _ SINX; +SINX; +SiNXy
Hence sin 3 1:’ 3
LS _.l

”A-:-B-c-C“;)sinAa.isinB-.-sinC

IfA+B+C=1T,thensmk 3 | 3

0 X, Xy Mtdgriy Xy T
a

. m_ SinA +sinB +sinC
= sin 7 *

3 3

33

:T >sinA+sinB+sinC



33

= maximum value of (sin A+ sin B + sin C) -2
Increasing and Decreasing Functions & Monotonicity

Increasing and Decreasing Functions

Before explaining the increasing and decreasing function along with monotonicity,
let us understand what functions are. A function is basically a relation between
input and output such that, each input is related to exactly one output.

Functions can increase, decrease or can remain constant for intervals throughout
their entire domain. Functions are continuous and differentiable in the given
intervals.

An interval in Maths is defined as a continuous/connected portion on the real line.
Since it is a “portion of a line”, it basically is a line segment which has two endpoints.
So, an interval has two endpoints. Easy to keep track, let's name our interval and the
endpoints and in an interval, assume any two points viz.

X1 and Xz such that x; < x2. Now, there can be a total of four different cases:

If f(x1) < f(x2), the function is said to be non-decreasing in |
If f(x1) = f(x2), the function is said to be non-increasing in |
[f f(x1) > f(x2), the function is said to be decreasing (strictly) in |
If f(x1) < f(x2), the function is said to be increasing (strictly) in1

This increasing or decreasing behaviour of functions is commonly referred to as
monotonicity of the function. A monotonic function is defined as any function which
follows one of the four cases mentioned above. Monotonic basically has two terms in
it. Mono means one and tonic means tone. Together, it means, “in one tone”. When
we tell that a function is non-decreasing, does it mean that it is increasing? No. It can
also mean the function not varying at all! In other words, function having a constant
value for some interval. Never confuse non-decreasing with increasing. That was the
definition of increasing and decreasing functions. Let us now see how to know
where and in which way the function is behaving.

Test for increasing and decreasing functions

Let us now use derivative of a function to determine the behaviour of a function. To
test the monotonicity of a function f, we first calculate it’s derivative f'. There is a
small catch here. Before starting the test, make sure that is continuous in the
interval [a, b] and differentiable in (a, b). So, for all of the four cases discussed in



previous heading, we have tests as:

For function to be non-decreasing in ], f'(x) = 0,V x€(a, b)

For function to be non-increasing in |, f'(x) < 0,V x€(a, b)

For function to be decreasing/strictly decreasing in ], f'(x)< 0,V x€(a, b)
For function to be increasing/strictly increasing in Lf'(x) > 0,V x€(a, b)<

Let us see examples of each case.

Nature of graph of f Cases Behaviour Test
{x)
fix1) Non - decreasing fx)20, VXE(a,
=f(x2) b
2
f(x1) 2 _ ; fi(X) =0, ¥XE
f(x2) Non - increasing (a, b)
%
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1
1
1
1
1
i
1
i) i |
1
1
f(x1) > Decreasing/ Strictly f'(x)<0, ¥XE(a, 1 !
f(x2) decreasing h) ]
1
]
- ‘ l
i
1
|
1
]
i) | ;
§>0_ 1
{50 # . II
7 : f(x1) < Increasing/ Strictly f(x)>0 vxE(a 1
‘ ! f(x2) Increasing b) q 1
: i !
s - ’_ I
1
i
I 1
That was increasing and decreasing functions, monotonic functions and 1
monotonicity explained. This concept is particularly very useful for drawing graphs II
of functions. II
1
A. Definitions | I
The function f(x) is called strictly increasing on the open interval (a, b) if for any ! 1
two points x; and x» belonging to the indicated interval and satisfying the inequality ||
X1 < X2 the inequality f(x1) < f(x2) holds true. 1
1
1
The function f(x) is called strictly decreasing on the open interval (a, b) if for any 1
points x1 and x2 belonging to the indicated interval and satisfying the inequality x1 < 'I
xz the inequality f(x1) > f(x2) holds true. 1
i
A function f is said to be non-decreasing in an interval | contained in the domain of f '.
]
< - '
it Fx;) < f(x;) whenever X, =X, g1 a1l numbers x, xz in L. 1
1
1
Iff(x1) <f(x2) whenever x1 < x; for all numbers x3, xz2 in I, 1
1
1
1
i
1
]
1
]
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1
1
1
1
then f is said to be strictly increasing in the interval 1. Non-increasing and strictly ll
decreasing functions are defined in a similar way. If f is strictly increasing in I, then 1
the graph of f is rising as we traverse it from left to right; if f is strictly decreasing in i ¥
[, the graph of f is falling in I. Some examples are show in Figure. II
]
¥
A ¥ "] 1 0
1
— ]
P 1 i
| - '
i , | = 1
! - L
E i " i i a b % 1
a b = a b ok INon-increasing in [a, b] 1
Stricdly decreasing in[a,b] ~ Non-decreasing in [a, b] " 1
" 1
If a function fis either non-decreasing in an interval I or non-increasing in I, then fis 1
said to be monotonic in I. Similarly, fis said to be strictly monotonic in I if f is either Il
strictly increasing in I or strictly decreasing in L. 1
|
Basic definition test : ! I
1
The function f(x) is said to be strictly increasing at a point xo if for a sufficiently II
small h > 0 the condition (Fig. 1) f(xo - h) < f(x0) < f(xo0 + h) is fulfilled. II
The function f(x) is said to be strictly decreasing at a point xp if for a sufficiently 1
small h > 0 the condition (Fig. 2) f(xo - h) > f(x0) > f(xo + h) is fulfilled. II
" i
Ya Y
i
1
] | !
|
Y P I
P o "
T R R I
T Lo !
Vilko- )l £x) |t + 1) lfc-B) | £ [+ ) 1 |
I I ! an v
o xp=h Xp xa+h > 0 xnl_h :Ig, g“:-h A ll
Fig.1 Fig. 2 1 1
1
A differentiable function is called increasing in an interval (a, b) if it is increasing at 1 '
every point within the interval (but not necessarily at the end points). A function i
decreasing in an interval (a, b) is similarly defined. ! i
1
i
1
]
1
]



Sufficiency Test :

If the derivative function f'(x) in an interval (a, b) is every where positive, then the
function f(x) in this interval is Increasing ; If f'(x) is every where negative,

then f(x) is Decreasing.

Note : The test (criterion) also holds true when the derivative takes on zero values
in the interval (a, b) so long as f(x) does not identically become zero throughout the
interval (a,b) or in some interval (a', b") comprising a part of (a,b). The function

f (x) would be a constant on such an interval.

If f'(a) = 0 then examine the sign of f'(a*) and f'(a°)

(@) If f(a*) > 0 and f'(a’) > 0 then strictly increasing

(b) Iff'(at) < 0 and f'(a-) < 0 then strictly decreasing

Note : If a function is invertible it has to be either increasing or decreasing.

If a function is continuous in the intervals in which it rises and falls may be
separated by points at which its derivative is zero or it fails to exist.

B. Critical Point

A critical point of a function fis a number c in the domain of f such the either f'(c) =
0 or f'(c) does not exist.

Ex.1 Find the critical points of f(x) = x3/5 (4 - x).

Sol.
3
f'(x) = gx‘zﬁ (4 — x) + %35 (-1)

Mg s H--x 170y

B2/ 5 a2/ 5 - 5ac2/ B

Therefore, f(x) = 0if 12 8x = 0, that is, x = 3/2. and f'(x) does not exist when x = 0.
Thus, the critical points are 3/2 and 0.

x

e

f(x) =
Ex.2 Find the critical numbers for the function x—2



Sol.

: (x—Z)Ex—e‘(l)_Ex(X—g)
X =" oF @ G-

The derivative is not defined at x = 2, but f is not defined at 2 either, sox = 2 isnota
critical number. The actual critical numbers are found by solving f'(x) =0 :

e'(x-3)
(x _2)2 =0

X = 3 This is the only critical number since ex > 0.

Ex.3 Find all possible values of the parameter 'b ' for which the function,
f(x)=sin2x-8(b+2)cosx-(4b2+ 16b + 6)x

is monotonic decreasing throughout the number line and has no critical points.
SoL.f'(x)=2cos2x+8(b+2)sinx-(4b2+16b+6)

=2(1-2sin2x) +8(b+2) sinx - (4b2+16b+ 6)
=-4[sin?2x-2(b+2)sinx+(b2+4b+1)]

for monotonic decreasing and no critical points f' (X) > 0% x = R

Now,D =4 (b+2)2-4(b2+4b+1)=4[3]=12 which is always positive .
Now letsinx=y;ye|[-1,1]

gy)=y2-2(b+2)y+(b2+4b+1)

we have to find those values of 'b' for whichg(y) > 0  forall ¥ gif=1, 1)

b b
g(-1) >0 &—% <-1org(l) >0 apd —o— >1
Conditions are Za 2a

First condition gives1+ 2 (b+2)+b2+4b+1 >0

2(b+2)
b24+6b+6>0..(1)& 2 <-lorb<-3...(2)



Similarly second condition gives b > J? -1
(1) & (2) = b < - [3+43]
Hence b = t- 0o, - (3 + JT)| [:\.E -1. :t:]
f(x) = ———; glx) = ———
Ex.4 If 2 —2cosx 6x — 6sinx where 0 < x < 1, then

Sol. Put x =m/6 & m/3 and observe the behavior of f(x) & g(x) . Alternatively

(1 - cosx)2x - x* sinx |
(1- cosx)l

£(x) = %[

consider =2 (1-cosx)-xsinx

= X
= int — in— =
4 sin 2% 5In B Cos B

B X tan§ o )
=2xsins cosy |—x —!| = fisincreasing.
Fa L 2

{x — sinx) M — x’ (1 - cosx)
(= - siux):

g'(x)=H

consider x-2sinx+ xcosx

= 2xco0s2x -4 sin X cos X

tan¥ |
= 2% cos?x {1— X'J = g is decreasing.

=

Ex.5 Find possible values of a such that f(x) = e2x- (a + 1) ex + 2x is strictly

increasing for x e R.
Sol. f(x) = e2x-(a+ 1) ex+ 2x
f'(x) =2e2x-(a+1)ex+2

Now, f(X) = e2x-(a+ 1) ex+ 2x > 0 forx €ER
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- 2
L\

4
e*+e—,}—(a+1)zo ¥ xeR

fxl 1}
(a+1)i2le *x| VxeR > a+1s4

e

1 .
. X
= a3<3 { e” + —-has minimum value 2

A

Aliter: 2e2x (a+1)ex+2>0forx €R

puttingex=t; t € (0,0x)

2t2 (a+1)t+2= 0 forte (0, x)

\__J

\_,/|‘

Hence either

()D<3 = (a+1)24<0= (a+5)@3)<0= a€l5,3]

(ii) both roots are negative

D>0&-b/2a<0&f(0) =0

= a e (—x, -5]uv[3, =)
= a € (~x, -5] v [3, =)
= ae (-=, -5]

Taking union of (i) and (ii), we get a € (<, 3].
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Ex. 6 Prove that the function f(x) = X is strictly decreasing in (e, o). Hence,
Prove that 303202 < 202303,

Sol.

nx

Wehavef(x) = X x>0,

1-£fnx
Then f(x)= 2 <0vx>e

= f(x) strictly decreases in (e,o) Thus, we have f(303) < f(202)

(n (303) _ £n(202)
303 202

i.e.2021In(303) <3031In (202)
= 303202 < 202303 which is the desired result.

Ex.7 Let f(x) = x3 + 2x2 + x + 5. Show that f(x) has only one real root a such that [a]
= -3.

Sol. We have f(x) =x3+ 2x2+ x+ 5,x€R and f'(X) =3x2+4x+1=(x+1) 3x+
1),x€R

Drawing the number line for f'(x), we have f(x) strictly increases in (e, 1) strictly
decreases in (1, 1/3) strictly increases in (1/3, )

+ve -ve +ve

4
=—t——— - -
27 g 3+5—S 27,—4.85

-1 -1 2 1
(3
Also,wehavef(1)=1+21+5=5and ‘3.

The graph of f(x) (see fig.) shows that f(x) cuts the X-axis only once.

Now, we havef(3) =27+ 123+ 5=13andf(2)=8+82+5=3.



Which are of opposite signs. This proves that the curve cuts the X-axis somewhere

between 2 and 3.

A A =8
= f(x) = 0 has aroot a lying between 2 and 3. Hence [a] = 3

o

n

Ex.8 Find the number of real roots of the equation =X cwhereb; <bz<

<bn.
Sol.
i aiz — L= a + ag dn —c
i i i x-bl x-b, x-Db X-b
Consider the function f(x) = ™ 1 2 .
aj . a3 .. a?
and f(x)= b m=bF T =b ¥

{D"‘:’XERN{bI,bz, ------- ’bﬂ}

= f(x) strictly decreases in (&, b1) U (by,b2) U... U (bn1, bn)

Now, we have

SNEN-
T




BB L BB B I ey T
| 1
1 1
1 1
| i
g ! f(~) = —c = f(x) "
1 f(b,”) = - = and f(b,*) = = 1
. f(b,”) = - @ and f(b,*) = o f
I asseessssss 1
1 1
I ------------- I
II f(b,") = ~= and f(b_*) = = |I
1 1
'l The plot of the curve y = f(x) is shown alongside. 'l
| 1
1 Ex9Iff: R = R and f is a polynomial with f(x) = 0 has real and distinct roots, show 1
1 ! that the equation, [f' (x) ]2 - f(x) . f" (x) = 0 cannot have real roots. 1 N
i ]
II Sol. Let f(x) = ¢ (X - X1) (X - X2) ... (X - Xn) :I
|
1 ' ' ' 1
1 h(x):f(‘x)z[-'l + - 1. Faedie 1'1 1
'I Again Let f(x) i-% X-EK K —XEy/ Il
|. 2 II
fx) . £"(x) - | x)|
II he (x) = =) Six)[ (\)] |I
1 i
|' ) II
1 = : — + 1 e L = 1
! W(x-m)  (x-x) (x-x%.)) |
1 ‘ ' II
]
II >h'(x)<0 =2f(x).f"X)-[f' x)]? <0 II
1 1
.I Alternatively : a function f(x) satisfying the equation [f' (x)]2- f(x) .f" (x) =0 II
'l is f(x) = €. " \hich can't have any root. I|
1 §
1 C. Intervals of Monotonocity II
1
| 1
" Ex.10 Find the intervals of monotonocity of the following functions : . |
1
i
i [x-1] I
2 ]
i @f®= X |
1
1 - 1
! () ) = 2~ n x| |
1 1
[ X "
]
|I (c) f(o) = X" +27 lI
1 1
1 1
1 1
] ]
1 1
i ]
= - ------------------ Pages-l 0f122 ----------------- - - 1



1
1
1
1
Sol. ll
1
1-x X1 !
= 5 . = e 1
f(x)= —5,x<1;f{x)=—35",%x21 I
(a) We have X X .
]
JHve, -ve | tve  -ve |I
0 1 2 1
]
R ey e B "
and f'(x) = —3 T ML 1
|
L 2-x "
fi(x) = 2 x>1 1
II
Now, from the sign scheme for f'(x), we have = f(x) strictly increasesi (-c0, 0) II
1
strictly decreases in (0, 1) ; strictly increases in (1, 2) ; strictly decreases in (2, o) 1
1
Ans. : Increases in (-o0, 0), (1, 2); Decreases in (0, 1), (2, o) I|
1
4rx+ L )(x _ ] } |I
. XA 2 1
(b) We have f(x)=2x2 In|x|]and f'(x) =4x1/x= X II
1
Ve tve  -ve  +ve II
-1/2 0 1/2 i
II
Now, from the sign scheme for f'(x), we have = f(x) strictly decreases in (-o0, -1/2) II
1
strictly increases in (-1/2, 0) ; strictly decreases in (0, 1/2) ; strictly increases in (- I|
1/2, o0) I
1
(1) (1 1N 1) 1
| ; - 1
Increases in l ‘?0 | 5% | i Decreases in ’ Ty ‘ O=§l I
Ans.: : S j o J 1
i
1
5 I
© We have f(x) = 227 and |l
1
1
. (* +27)(3x%%) - x3(4x?) 1
]
1
i
1
]
1
]



i |
1

| l|

I =X -81)  xT(x”+9)(x +3)(x-3) I

" (x*+277° (x*+27) '.
[

! _ -ve \ +ve , Ve N II

1 N : : ! 1
-3 3 .

| |

I = f(x) strictly decreases in (-o0, -3) ; strictly increases in (-3, 3) ; strictly decreases 'I
in (3, o). 1

| II

I Ans : Increases in (-3, 3) ; Decreases in (-, -3), (3, ) I
1

| |

: Ex.11 A function f (%) is given by the equation, x2 f'(x) + 2xf(x) -x+1=0(x = 0). ll
If f(1) = 0, then find the intervals of monotonocity of f. 1

1 1
1
1

1 i[xz ] = x-1 = x*y = [{)(—1) dx ll

1 ax VT =1 |
1

! wherey = f (x) II

1 i
t 11 1

1 This gives y =5~ *73 Il

1 1
dy !

. Find — and solve II

dx

1 i

I dy ¥ I|
@ 0 & P <0 |

1 lI

I Ans.:1in (-, 0) U (1,«) ; D in (0,1) i

] ]

' D. Operations on Monotonous Functions ' I
1

0 L. (@) Negative : If f is an increasing function then its negative i.e. h = fis a decreasing lI

I function. 1
1

I By derivative h'(x) =f(x),f(x) >0 ~h'(x) <0 .'

1 1

. = his a decreasing function II
1

| In short (an increasing function) = a decreasing functioni.e. 1 =D Similarly D =1 II

i i
[

| |
[

] ]



(b) Reciprocal : Reciprocal of an increasing function is a decreasing function

By Graph
"
/_%u:reasing
function
»X

decreasing

~ Mfunction
fr\f

1
an increasing function

In short = a decreasing function

T
i.e. (i) ] =D & (ii) D =1

II.(a) Sum: If fis an increasing function and g is also an increasing function their h =
f + gis an increasing function.

By derivative

h'(x) = f'(x) + g'(x) f & g are increasing function, = f'(x) & g'(x) are positive = f
"(x) + g'(x) is positive = f(x) + g(x) increases

In short, An increasing function + An increasing function = An increasing function

By Graph
Y h{x} = f(x) + gix)

i g

X

ie.(i)I+1=I1(ii)[+D=can’tsay (iii) D+D=D

(b) Difference : Monotonocity of the difference of two function can be predicted
using I(a) and II(a)

[-I=1+ () =1+ D =can'tsay

[-D=1+ (-D) =1+ I = increasing



D-1=D+ (-I) =D + D = decreasing
D-D=D+ (-D) =D + I = can't say
IIL. (a) Product: Considerh=fx g

Case I : Both the function involved in the product i.e. f & g are positive

If f & g both are increasing function then h = f X g is also an increasing function.

Inshortl X I=11XD=can'tsay,D XD =D.

Case II: If any of the function takes negative values then we can predict the
monotonocity by using [(a) & case | of I1I(a). If a function fis increasing & takes
negative values & another function g is decreasing & takes positive values.

p(x) = g(x)

—_ e —

then h(x) = f(x) X g(x) = (-f(x)) X g(x) = - Loecmeasing Decmeasing | — jncreasing

(b) Division : Monotonocity of division of two functions can be predicted by using

I(b) & I1I(a).
L
D

IV. Composition :

MID=1
(D) I(D) =D
amDp ) =D
(IV) D(D) =1

Let h(x) = D(D(x)) x increases = D(x) decreases = D(D(x)) increases
E. Inequalities
General Approach to prove Inequalities :

To prove f(x) = g(x) for x = a, we Assume h(x) = f(x) g(x)

I
D =1 xI=1 (assuming that both the functions I & D take positive values).



Find h'(x) = f(x) g'(x)

If h'(x) = 0 Apply increasing function h on x = a to get h(x) = h(a).
[fh(a) = 0 then h(x) = 0 for x = a i.e. then given inequality is true.
Ifh'(x) < 0 Apply decreasing function h on x > a to get h(x) < h(a).
If h(a) < 0 then h(x) < 0 for x = a i.e. the given inequality is false

Note : If the sign of h'(x) is not obvious then to determine its sign assume g(x) =
h'(x) & apply the above procedure on g(x).

Ex.12 Prove that, 2xsecx+x>3tanx for0<x< T /2.

Sol. f(x) = 2xsecx + x-3 tanx

f'(x) =2secx+ 2xsecxtanx + 1 - 3 sec2x = sec2x [2 cos X + 2x sin X + cos2x - 3]
Consider g(x) = 2 cos X + 2x sin X + cos?x - 3
g'(x)=-2sinx+2xcosx+2sinx-2sinx cosx=2cosx (x-sinx) >0forxe

©, 7 /2)

' [f {]E ‘
Ex.13 Prove thattanx>x+ 3 forallxe' =

Sol.

x>
Letf(x) tan x - % — —

3 ..(1)

Clearly, f(x) is defined at all x € (0, m/2).

Now, f'(x) =sec2x 1 xx2 ...(2)

f'(x) = 2 sec2x.tan x 2x...(3)

f"(x) =2 sectx + 4 sec2x.tan2x 2 = 2 (1 + tan2x)2 + 4 sec2x . tan2x 2
= 2tan*x + 4 tan?x + 4 sec2x . tan?x > 0 for all x € (0, /2)

= f'"'(x) > 0 in the interval (0, p/2) = f''(x) is monotonic increasing in (0, /2)



f'(x) > f"'(0) when x € (0, m/2).

But from (3), f'(0) = 0. Thus, f'(x) > 0 forallx € (0, m/2)

~f'(x) is monotonic increasing in (0, m/2)

~f(x) >f(0) whenx € (0, 1/2)
But from (2),f(0)=110=0.

Thus, f'(x) > 0 forallx € (0, p/2)

~f(x) is monotonic increasing in (0, t/2)

~f(x) > f(0) whenx € (0, t/2)
But from (1), f(0) =0.
Thus, f(x) > 0 for all x € (0, ™/2)

3

X
tanx—x= 3 > 0 forall x (0, =/2)

3
X
or fanx > x + 3 for all x = (0,

=/2)

| » s -
Ex.14 Show that » X109 (x + yx® £ 1) 2 142 forallx=0.

Sol.

Let f(x) = 1 +3xlog (x + /x2 = 1) = Y1+ x°

X (2%
FOO= ko1l 2dx2 +1

or
X P +14x)
FOO= (x| 24 21 |

or

+log(x + vx% +1).1

+log(x + VxZ +1)—
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X Llog(x+ O 1) = —=

Fea = Vx? 41 Vi x? .I
1

1

F(x) = =log (x £vx% +1) !
]

1

1

so, log (x++4/x?+1) 20 1
]

; 1

Since, f(x) is increasing for, x = 0 = f(x) = f(0) 1
1

|

_, 1+xlog (x+4x? +1) = Y14 %7 2140- 1 v
lI

= 1+xlog(x+ 2,12 J1:x2 ., forxzo. |l
1

Ex.15 Examine which is greater sin x tan x or x2. Hence i I
. [sinxtanx (&} |

l'ﬂ — 2 |, wherex = D-E‘ 1
evaluate - X d ' I|
Sol. Let f(x) = sinx. tan x - x? |I
i

f'(x) =cosx.tan x + sin x. sec?x - 2x = sin X + sin x secZ x - 2x Il
1

= f"(X) =cosx+ cos xsec?x + 2 sec2xsinxtanx -2 II
i

=f"(x) = (cosx+ secx-2) + 2 sec?xsinx tan x ll
1

e el |

Now cos x 4+ secx 2 = (YEOSX—vSELX)" 342 sec2 x tan X . sin x > 0 1
- !

X = fO’E! [ |

because R II
1

= f'(x) > 0= f(x)is M.L l|
i

Hence f'(x) > f(0) 1
]

=2fX)>0=2f(x)isML=2f(x)>0=>sinxtanxx2> 0 '.
1

Hence sin x tan x x2 .'
1

sin x tan x !

= S —— i |
X 1

1

1

]

1

]



™ Iim[

sinxfanx
x—0 =1

X2

X
lt+cotx<c<cot = v¥xell =
Ex.16 Prove: 2 0 =

Sol. Consider the function f(x) = cot (x/2) 1 cotx,x € (0,p)

-1 X
Then f(x) = = csc? {El + csc? X

1 1 _ 1 1 _11
T osin’x  2sin®(x/2)  2sin’(x/2)|2cos?(x/2) |

_ -cosX —CDSX
4sin2{x / 2)00520( /2) T sin®x

<0V xe(0,n/2)
= f(x) strictly decreases in (0, m/2) strictly increases in (1t/2, )
= f(x) has least value atx = t/2 = f(x) > f(n/2) =0

i x il
.e. cot' Al 21+ catx X i
\2 J which proves the desired result.

{141 | >- ! ~, x>0.
Ex.17 Provethat - X/ 1-X Hence, show that the function f(x)=
/ 9
L1+ k|

X strictly increases in (0, o).
Sol.
é‘n{ 1+ i} > ¥x>0
Consider the fucntion g(x) = x) A=x
= Lo =ux®
en g'(x)= e 1 T2
X



-
T x(1+x) (1+x)F _ x(1+X)

<0v¥x>0

_ ) > M g(y) =
= g(x) strictly decreases in (0, ) = x=m g

ie. f"[:1+—}>i (1)

Now, we have f(x)

Fx) = f1+_} fn{1¢—}+x|1+ ] [;—ﬂ

% i
1 1
]|:l ;—m}:-ovx}o

[using result (1)] = f(x) strictly increases in
(O, °C)

(T
sinxtan x > x* ¥ x = UE‘
Ex.18 Prove that \:

Sol.
Let f(x) = sin x tan x x2 = f'(X) = sin x sec2x + sin x 2x

= f'(x) =2sinxsec2 xtanx + cosx 2 + secx

W7
: 0Vxe 0*_\[
=2sinxtanxsec2 X+ (cosx +secx2) ~ [ 2)

= f'(x) is an increasing function.
=f(x) >f(0) =>sinxsec2Xx+sinx2x>0

= f(x) is an increasing function = f(x) > f(0) sinxtanxx2>0 = sinxtanx > x2



Ex.19 Prove that sin 1 > cos (sin 1). Also show that the equation sin (cos (sin x)) =

cos (sin (cos x)) has only one solution in [

Sol. sin 1 > cos (sin 1) if

: |

=if--1<sinl= ifsinl > 2

2

T 1
: = o N
and sin 1 > sin l r-2 %

7 % _2

'J

0=
2_'

n’ﬁ "\
cos l§_11 > cos (sin 1)

Hence (1) is true = sin 1 > cos (sin 1).

Now let f(x) = sin (cos (sin x)) cos (sin (cos X))

T

=5 F(x) < 0¥ xe [0751

T
=  f(x) is decreasing in [05}

and f(0) =sin 1 cos (sin1) >

P

rr} )
f‘.‘f,; =sin(cos{1))-1>0

0

T
Since f(0) is positive and f(x) = 0 has one solution in [ '2} '

Ex.20 Using calculus establish the inequality, (x + y?)1/» < (%2 + y?)1/2, where x > 0

,¥ >0 and b>a>0.

e
Sol. (Xb o YI])lfh < (xa + ya)lja & L J

or TPT(th+1)/» < tat+1

Let f(t) = (to+ 1)/b-ta-1
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- B
> fr(t) = = (®+1)" . be-t - ap-t

2
b

= f'(t) = ate-? [tb‘“[t°+1_)%_]—1:|

. 1 a
Now since 1+r_b > 1 & E_1<0

-1

. |
13b
therefore {1 - ?’-] < 1

Hence f'(t) <Oi.e. f(t) is decreasing function

Sof(t) < f(0) but f(0) =0= (b +1)*»<t2+1 Hence proved

Ex.21 Prove that the function f(x) = 2x3 + 21x2 - 60x + 41 is strictly positive in the

interval (-co, 1).
Sol.
f(x) = 2x3 + 21x2 60x + 41

f(x) =6x2+42x 60 =6(x2 7x+ 10) = 6(x5) (x 2)

S =) )
2 5

X€(2,5)=Ffx)>0,ie, f(x) is m..

andx1(2,5) = f(x) <0ie, f(x)ismd. - x € (x,1) = f(x) is m.d.

Whenx € (, 1), x < 1; so, f(x) > f(1).
But f(1) =2 + 21 60 + 41 = 0.
~XE(x,1)=>f(x)>f(1)=0

=~ f(x) is strictly positive in the interval (o, 1).
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F. Rolle's Theorem

Let fbe a function that satisfies the following three hypotheses :

1. fis continuous on the closed interval [a, b].

2. fis differentiable on the open interval (a, b).

3.f(a) = f(b)

Then there is a number cin (a, b) such that f'(c) =0

Before given the prooflet's take a look at the graphs of some typical functions that
satisfy the three hypotheses. Figure 1 shows the graph of four such functions. In

each case it appears that there is atleast one point (c, f(c)) on the graph where the
tangent is horizontal and therefore f'(c) = 0. Thus, Rolle's Theorem is plausible.

(a) (b)
4 3
N v
0 a g cl1 b X ol a c b i
ic) (d)

Proof: There are three cases :

Case I: f(x) = k, a constant. Then f'(x) = 0, so the number c can taken to be any
number in (a, b).

Case I : f(x) > f(a) for some x in (a, b) [as in Figure 1(b) or (c)]

By the Extreme Value Theorem (which we can apply by hypothesis 1), f has a
maximum value somewhere in [a, b]. Since f(a) = f(b), it must attain this maximum

- - - - - = - - - Pagegsof122 ----- - - - - - - ] -



value at a number c in the open interval (a, b). Then f has a local maximum at c and,
by hypothesis 2, f is differentiable at c. Therefore, f'(c) = 0 by Fermat's Theorem.

Case III : f(x) < f(a) for some x in (a, b) [as in Figure 1(c) or (d)]

By the Extreme Value Theorem, f has minimum value in [a, b] and, since f(a) = f(b),
it attains this minimum value at a number c in (a, b). Again f'(c) = 0 by Fermat's
Theorem.

Ex.22 Prove that the equation x3 + x - 1 = 0 has exactly one real root.

Sol. First we use the Intermediate Value Theorem to show that a root exists. Let f(x)
=x3+x-1.Thenf(0) =-1<0andf(1) =1> 0. Since fis a polynomial, it is
continuous, so the Intermediate Value Theorem states that there is a number ¢
between 0 and 1 such that f(c) = 0. Thus, the given equation has a root.

To show that the equation has no other real root, we use Rolle's Theorem and argue
by contradiction. Suppose that it had two roots a and b. Then f(a) = 0 = f(b) and,
since fis a polynomial, it is differentiable on (a, b) and continuous on [a, b]. Thus, by
Rolle's Theorem, there is a number c between a and b such that f'(c) = 0.

But f'(x) = 3x* +1 21 forallx

(since x2 = 0) so f'(x) can never be 0. This gives a contradiction. Therefore, the
equation can't have two real roots.

Ex.23 Let f (x) & g (x) be differentiable for 0 = x = 1, such that f (0) =2, g (0) =0,
f(1) = 6. Let there exist a real number cin [0, 1] such thatf' (c) =2 g' (c), then the
value of g (1)

Sol. Consider @(x) = f(x) - 2g(x) defined on [0, 1] since f (x) and g(x) are
differentiable for 0 =X =1, therefore f (x) is differentiable on (0, 1) and continuous
on [0, 1]

8(0)=9(0)-2g(0)=2-0=21)=f(1)-2g(1)=6-2g(1)
Nowf'x)=f'x)-2g'x)=f'(c) =f"(c) -2 g'(x) =0 (given)

= f (x) satisfies Rolle's theoremon [0, 1] -~ g (0) =g(1) = 2-6-2g(1)=>g(1) =2

Our main use of Rolle's Theorem is in proving the following important theorem,
which was first stated by another French mathematician, Joseph-Louis Lagrange.



Ex.24 If f(x) is continuous in [a, b] and differentiable in (3, b), prove that there is
f'(c) _1(b)-f(a)

atleast one c £(a, b), such that et B -

Sol. Let us consider a function, h(x) = f(x) - f(a) + A (x3 - a3)
Where A is obtained from the relation h(b) = 0.

So that, 0 = h(b) = f(b) - f(a) + A(b3 - a3) w1}
also,h(a) =0

Since, (1) h(x) is continuous in [a, b] (2) h(x) is differentiable in (a, b) and (3) h(a)
=0 = h(b)

hence, all the three condition of Rolle's theorem. Then there must existsa'c' € (a, b)
such that f'(c) = 0.

=>f(c)+A@Bc2)=0 or

f(b)-f(a) f'(c) _f(b)-f(a)

fc) = 3¢ — 35 {using )y = T S

G. The Mean Value Theorem

Let f be a function that satisfies the following hypotheses :
1. fis continuous on the closed interval [a, b].

2. fis differentiable on the open interval (a, b).

Then there is a number cin (a, b) such that

f(b)—f
M o=

(I  f(b) - f(a) = F(c)(b - a)

or, equivalently,

Before proving this theorem, we can see that it is reasonable by interpreting it
geometrically. Figures (a) and (b) show that points A(a, f(a)) and B(b(b, f(b)) on the
graphs of two differentiable functions. The slope of the secant line AB is



- o
e
o

(IT) myg=

f(b) — £(a)
b-a

which is the same expression as on the roght side od eq. 1. Since f'(c) is the slope of
the tangent line at the point (¢, f(c)), the Mean Value Theorem, in the form given by
Equation 1, says that there is at least one point P(c, f(c)) on the graph where the
slope of the tangent line is the same as the slope of the secant line AB. In other
words, there is a point P where the tangent line is parallel to the secant line AB.

it

P(c, ()

Ala, £(a)
B(b, £(5)

g

|

|

i %
+ - — x
a c b

(a)

(2] O ——"

N

"

s 8
W
e

C;

Proof We apply Rolle’s Theorem to a new function h defined as the difference
between fand the function whose graph is the secant line AB. Using Equation 3, we

see that the equation of the line AB can be written as
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]

oim f(x)

T

fcx}e; B
N
0 x 7
1( J-f(b) f(a]( —a)
f f(a
y =100 = T g)
oras y=f(a)+ - f(a)( - a)
f(b) f(a)

(1v) h(x) = f(x) - f(a) - (x —a)

First we must verify that h satisfies the three hypotheses of Rolle's Theorem.

1. The function h is continuous on [a, b] because it is the sum of f and a first-degree
polynomial, both of which are continuous.

2. The function h is differentiable on (a, b) because both f and the first-degree
polynomial are differentiable. In fact we can compute h' directly from Equation 4 :

f(b)-f(a)

h'(x) = F(x)- b-a  (Note thatf(a) and [f(b) - f(a)]/(b - a) are constants.)

fb)-fa)
h(a) = f(a) f(a) - Pb-a Ll
f(b)-f(a)

h(b) = f(b) f(a) - b-a 2

Since h satisfies the hypotheses of Rolle's Theorem, that theorem says there is a
number c in (a, b) such that h'(c) = 0. Therefore



0 = h'(c) = F(c) - %
and so f(c) = 71'{?:;(3}

Ex.25 To illustrate the Mean Value Theorem with a specific function, let's consider
f(x) =x3-x a=0,b = 2. since f is a polynomial, it is continuous and differentiable
for x, so it is certainly continuous on [0, 2] and differentiable on (0, 2) such that f(2)
-f(0) =f(c)(2-0)

Sol.

Now f(2) = 6, f(0) = 0, and f'(x) 3x? - 1, so this equation becomes
6=(3c?-1)2 =6c*-2

4 "
which gives ¢? = Y thais, c =% 2//3.

But ¢ must lie in (0, 2), soc = 2/./3.

The tangent line at this value of c is parallel to the secant line OB.

3

Figure

fi(x)

Ex.26 If ~ 1+x* forallxand f(0) = 0, show that 0.4 < f(2) < 2

Sol.

1
Given f'(x) = T forall x 1)

f(x) >0forallx[~1+x2> 0]

Also given f(0) = 0 ..(2)
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From (1), it follows that f(x) is differentiable at all x, therefore f(x) is also

continuous at all x

~ by Lagrange’s mean value theorem in [0, 2]

f(2)-1(0) B
o0 - f(c) =

or, 2

2-0 1+¢C

2
or f(2) = 1

+C2

Now 0<c<2

z . 2
" 12c¢? 1+0°

or

From (3), (4) and (5) it follows that 0.4 < f(2) < 2.

i(2)-0 1

1

1+ 2

H. Curve Sketching

-{3)

,where0<c<?2

The following checklist is intended as a guide to sketching a curve y = f(x). Not

every item is relevant to every function. (For instance, a given curve might not have
an asymptote or possess symmetry.) But the guidelines provide all the information
you need to make a sketch that displays the most important aspects of the function.

I. Domain It's often useful to start by determining the domain D of f, that is, the set of
values of x for which f(x) is defined.

II. Intercepts The y-intercept is f(0) and this tells us where the curve intersect the y-
axis. To find the x-intercepts, we set y = 0 and solve for x. (You can omit this step if
the equation is difficult to solve.)

III. Symmetry
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(@) If f(-x) = f(x) for all x in D, that is, the equation of the curve is unchanged when x
is replaced by -x, then fis an even function and the curve is symmetric about the y-
axis. This means that out work is cut in half. If we know what the curve looks like
for X = 0, then we need only reflect about the y-axis to obtain the complete curve
[see Figure (a)]. Here are some examples :y = x2, y =x% y = |x|,and y = cos x.

(b) If f(-x) = -f(x) for all x in D, then f is an odd function and the curve is symmetric
about the origin. Again we can obtain the complete curve if we know what it looks
like for X = 0, [Rotate 1802 about the origin; see Figure (b).] Some simple examples
of odd functionsarey =x,y = x3,y = x% and y = sin x.

NVAADN
L {7

0

(a) Even function : reflectional symmetry

\ P
M \

(b) Odd function rotational symmetry

Figure

(c) If f(x + p) = f(x) for all x in D, where p is positive constant, then f is called
a periodic function and the smallest such number p is called the period. For

instance, y = sin x has period 2 * and y = tan x has period 7 .If we know what the
graph looks like in an interval of length p, then we can use translation to sketch the
entire graph (see Figure ).

- - - - - = - - - Page1000f122 ----- - - - - - - ] -



AV
I I I ]
I I [ 1
I [ 1 1
a-p 0 a atp a+2p %
Figure Periodic Function : translational syoumetry

IV. Asypmtotes

li li
(a) Horizontal Asymptotes. If either e f(x) =Lor e f(x) =L, thentheliney =L

Lim
is a horizontal asymptote of the curve y = f(x). If it turns out that P f(x) = oo (or -
), then we do not have an asymptote to the right, but that is still useful information
for sketching the curve.

(b) Vertical Asymptotes. The line x = a is a vertical asymptote if at least one of the
following statements is true :

lgn f(x) = = E‘- f(x) = =
Lm f(y) = - Em f(x) = -

(For rational functions you can locate the vertical asymptotes by equating the
denominator to 0 after canceling any common factors. But for other functions this
method does not apply.) Furthermore, in sketching the curve it is very useful to
know exactly which of the statements in (ii) is true. If f(a) is not defined but a is an

: ; im f(x) Lm
endpoint of the domain of f, then you should compute x—a or *=2 f(x), whether
or not this limit is infinite,

V. Interval of Increase / Decrease Use the /D Test. Compute f'(x) and find the
intervals on which f'(x) is positive (fis increasing) and the intervals on which f'(x) is
negative (f is decreasing).

VI. Local Maximum and Minimum Value Find the critical numbers of f [the number c
where f'(c) = 0 or f'(c) does not exist|. Then use the First Derivative Test. If f
changes from positive to negative at a critical number c, then f(c) is a local
maximum. If f changes from negative to positive at ¢, then f(c) is a local minimum.
Although it is usually preferable to use the First Derivative Test, you can use the
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Second Derivative Test if c is a critical number such that f''(c) = 0. Then f'(c) >0
implies that f(c) is a local minimum, whereas f"'(c) < 0 implies that f(c) is a local
maximum.

VIL Concavity and Points of Inflection Compute f'(x) and use the Concavity Test. The
curve is concave upward where f'(x) > 0 and concave downward where f'(x) < 0.
Inflection points occur where the direction of concavity changes.

VIII. Sketch the Curve Using the information in items A - G, draw the graph. Sketch
the asymptotes as dashed lines, Plot the intercepts, maximum and minimum points,
and inflection points. Then make the curve pass through these points, rising and
falling according to E, with concavity according to G, and approaching the
asymptotes. If additional accuracy is desired near any point, you can compute the
value of the derivative there. The tangent indicates the direction in which the curve
proceeds.

*

2x”
Ex.27 Use the guidelines to sketch the curvey = =,

Sol.
[. The domainis{x|x? 1 #0}={x|x#+1}=(«,1)U(1,1) U (1. x)
II. The x-and y-intercepts are both 0.

I11. Since f(-x) = f(x), the function f is even. The curve is symmetric about the y-axis.

2
Iim i: lim % =2

v, =t =1 ssm]-1/x Therefore, the line y = 2 is a horizontal

asymptote.

Since the Denominator is 0 when x = +1, we compute the following limits :

i ] 2
) 2x° : 2x%°
lim — =w, lim =wm,
¥—=1" x° -1 x-=1" x -1
]
2%~ 2%~
|I|'TI = — lim 5 = —
X=p=1" X" =1 -1 x~ -1
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Therefore, the lines x = 1 and x = -1 are vertical asymptotes. This information about
limits and asymptotes enables us to draw the preliminary sketch in Figure, showing
the parts of the curve near the aymptotes.

Bix) = dx(x* — 1)- 2x? 2x o —dx
V. (x) = (x2—1)? (x-1)2

Since f(x) > 0whenx <0 (x# -1) and f(x) < 0 whenx > 0whenx >0 (x # 1), fis
increasing on (-c¢, -1) and (-1, 0) and decreasing on (0, 1) and (1, x).

VI. The only critical number is x = 0. Since f' changes from positive to negative at 0,
f(0) = 0 is local maximum by the First Derivative Test.

—4(x® ~1) ~4x2( ~1)2x _ 12x° +4
(x*-1)* (x> -1)°

Fr(x) =
i, |

Since 12x2 + 4 > 0 for all x, we have
f'x)>0ex21>0x>1

VIIL Using the information in V VI, we finish the sketch in Figure.

2 2
Finished sketch of y = —-"‘—1
x”—

-

52

Ex.28 Sketch the graph of f(x) = Vx+1

Sol.

[ Domain={x|x+1>0}={x|x>1} = (1, x)
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[I. The x- and y-intercepts are both 0.
[II. Symmetry : None

3{2

IV.Since **Vx+1 "~ there is no horizontal asymptote.

xZ

5 m ———=2
Since x+1 038X =17 4,4 f(x) is always positive, we have Vx+1  andso
the line x = 1 is a vertical asymptote.

Zxx+1=>21/(24x +1) _ x(3x+4)
v, T= x+1 " 2(x+ 1)

We see that f'(x) = 0 when x = 0 (notice that - 4/3 is not in the domain of f), so the
only critical number is 0. Since f'(x) <0 when -1 <x<0and f'(x) > 0whenx> 0, f
is decreasing on (-1, 0) and increasing on (0, o)

VI. Since f'(0) = Oand f' changes from negative to positive at 0, f(0) = 0 is a local
(and absolute) minimum by the first derivative.

' 2x+1)*"2(6x+4) - (3x* + 4x)3(x+1)** _3x* +8x+8
viL T = Ax+1)° a(x+1)°7

Note that the denominator is always positive. The numerator is the quadratic 3x2 +
8x + 8, which is always positive because its discriminant is b2 4ac = 32, which is
negative, and the coefficient of x2 is positive. Thus, f'(x) > 0 for all x in the domain of
f, which means that f is concave upward on (-1, to) and there is no point of
inflection.

[l VA

|

I

I

I

I

] 2

I y= X

: e |

1

]

i =

I X
x=-1j "

]

Figure

VIIIL. The curve is sketched in Figure.



Ex.29 Sketch the graph of f(x) = xex
Sol. I. The domain is R.

II. The x- and y-intercepts are both 0.
III. Symmetry : None

IV. Because both x and ex become large as x — «, we

lim ps _ . .
have x—= X& = ®- AS X === h,wever, ex — 0 and so we have an indeterminate

product that requires the use of L'Hospital’s Rule :

lim xe* = lim —— = lim = lim (-e*)=0

K== x—m g Y xm—g ¢ X

‘Thus, the x-axis is horizontal asymptote.

f(x) = xe* + e = (x + 1)e". Since e" is always positive, we see that
f(x) >0whenx+1>0,and f(X) <c0Owhenx+1<0.S50fis
y increasing on (-1, «) and decreasing on (- =, -1).

VI. Because f'(1) = 0 and f changes from negative to positiveatx =1, f(1) =elisa
local (and absolute) minimum.

YJ\

y= xe
1 .-
-1 -2
+ 1 >
(-1,-1/¢)
Figure

VILf'(x) =(x+ 1)ex+ex=(x+ 2)exSince f"(x) > 0ifx>2and f'(xX) < 0ifx< 2, f
is concave upward on (2, o) and concave downward on ( o, 2). The inflection points
in (2, 2e?)

VIII. We use this information to sketch the curve in Figure.

Ex.30 Sketch the graph of the function f(x) = x2/3(6 - x)1/3.

Sol. You can use the differentiation rules to check that the first two derivatives are
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Interval | 4-x | x® | (6-x)Y7 | F(x)

£

x=0 - - + - | decreasing on(-w«,0)
O<x<d| + + + + increasing on(04)
4<x<b| - + + — | decreasing on (4,6)
x>0 - + + — | decreasing on (6, )
4-—x -8

P00 = 75675 + 100 = TG s

Ya

A4
2

3u

2.

0 1 2 3 4 5 7
y=x"(6-%"

Since f'(x) = 0 when x = 4 and f'(x) does not exist when x = 0 or x = 6, the critical
numbers are 0, 4 and 6.To find the local extreme values we use the First Derivative
Test. Since f' changes from negative to positive at 0, f(0) = 0 is a local minimum.
Since f' changes from positive to negative at 4, f(4) = 25/3 is a local maximum. The
sign of ' does not change at 6, so there is no minimum or maximum there Looking at
the expression for f''(x) and noting that x4/3 > 0 for all x, we have f"'(x) <0 forx <0
and for0 <x< 6 and f''(x) > 0 for x > 6. So fis concave downward on (-x, 0) and (0,
6) and concave upward on (6, x), and the only inflection pointis (6, 0). The graph is
sketched in Figure. Note that the curve has vertical tangents at (0, 0) and (6, 0)
because |f'(x)| > xasx— 0 and as x— 6

Ex.31 Plot the following curves :

3 2
X 3x
= ——-— +2%+6
E ¥ x
.
M) v=nx

(c) y=xinx
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nx

() y=—

X+1
@ v¥= -1

H 20y + 2=t =g,

Sol.

x* 3x?
= ——— +2X+6
2

Y
(a) We have 3 whose domain is x € R, and

y=x23x+2=(x1)(x2)>0forxe(cx,1)U (2,%) <0forxe(1,2)

= y strictly increases in (¢, 1) strictly decreasesin (1, 2) ; strictly increases in (2,

)

g 2+6 i 2 s 6+4+6 =1
——+2+6=— =— - =—
2 6 YA =3 3

[4L0 Y

y(1) =

Now we have

y () «, y(x) = «
e

/A\/

6 B

) /._1 0
A
B

The curve cuts the Y-axis at (0, 6).

»X

2
(1, 41/6)
(2, 20/3)

mw =t

The cure cuts the ve X-axis somewhere between land 2, since

3 8 12
y(-1) = ?"5 -2+6>0andy (-2)=—F7"——F - 4+6<0

along side.

" The plot of the curve is shown
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(b) We have y = x/In x Whose domain is x € (0, «) ~ {1}, and

nx-1
Y= m?x <09xe(0,1)u(l,e)

> 0% x = (g =)

= y strictly decreases in (0, 1) U (1, e) ; strictly increases in (e, «)

Y‘I
e \/
N e "X

lim — _ -
Now, we have s FAX = 0,y(e)=e
. oy .1
lim L(— =lim—=wx
—=efnX\o) ==1/X

The plot of the curve is shown alongside.

(c) We have y = x In x whose domain is x € (0, ), and = y strictly decreases in (0,

el) ; strictly increases in (el, «).

ix

le's)
IIIHan.‘( IIIT} [— = -0
X\ x-»ﬂ 'U):

x—0

Now, we have
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1/e

-1/e /1

xlr

lim xfnx =, y(e™") = =t
X=+1 e

The curve cuts the X-axis at (1, 0). The plot of the curve is shown above.

(d) We have y = Inx/x whose domain is x € (0, ), and

1-4nx
y' = “RE >0Dvxe(0,e)

<0¥xe(e =)

1/e m

= y strictly increases in (0, e); strictly decreases in (e, x).

Mmx{ o) 1%

Now, we have lim ——| — | =lim —
x—m X loo) x-5w 1

n x 1
=0, lim——-m,y(e)=—
0, fim == - ,y(e)=

The curve cuts the X-axis at (1, 0). The plot of the curve is shown above.

X+1

Y= (x-1)(x-7)

(e) We have whose domainis x € R ~ {1.7}, and
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j (x2-8x+7)—(2x - 8)(x+1
r= (x-12(x -7y

_—(x*+2x-15) - (x+5)(x-3)
X=X =T T (x=1(x-T7)

-1 -4

Now, we have

. Xx+1 . X+1
im —— M8 —=w, lim —M7M8MM=—x
=1 (X =1)x -7) =1 (X =1)(x-7)

- X+1 y X+1
im———— =—2, liM———— =
=7 (X-T1)(x-7) =7 (X =N(x-7)

_ X+ ooimX+1
w (X=1)(X=7) == (x-1)(x-7)

Y
75 1:1_/ S - X
— T 7 i
B A=(3, -1/2)
B=(=5, =1/18)

1
Y= x4y~ 2 YOS = ex2) T 18

The curve cuts the Y-axis at (0, 1/7). The curve cuts the X-axis at (1, 0). The plot of

the curve is shown below.
(f) We have 20 |y + 2l -1 = 1 je.

lyl = 2-Ixl - L
2
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1/2

The curve is symmetrical about the X-axis as well as the Y-axis. In the first quadrant
the equation of the curve reduces toy = 2x-1/2

YII

=112

whose plot is shown above.
The complete curve is drawn by taking the mirror image of the above shown curve
in the X-axis and the Y-axis as shown alongside

Ex.32 Sketch a possible graph of a function f that satisfies the following conditions :
() f(x) > 0o0n (-0, 1), f'(x) < 0n (1, =)

(ii) f'(x) > 0 on (-0, -2) and (2, @), f'(x) < 0 on (-2, 2)

lim lim
(iii) === f(x) =-2,>= f(x) =0

Sol. Condition (i) tells us that fis increasing on (- e, 1) and decreasing on (1, ).
Condition (ii) says that f is concave upward on (-c0, -2) and (2, «), and concave
downward on (-2, 2). From condition (iii) we know that the graph of f has two
horizontal asymptotes: y = -2 and y = 0.
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Figure

We first draw the horizontal asymptote y = -2 as a dashed line (see Figure). We then
draw the graph of f approaching this asymptote at the far left, increasing to its
maximum point at x = 1 and decreasing toward the x-axis at the far right. We also
make sure that the graph has inflection points when x = -2 and 2. Notice that we
made the curve bend upward for x < -2 and x > 2. and bend downward when x is
between -2 and 2.

Application of Derivatives Formulas
Things To Remember :

(i) The value of the derivative at P (x1, y1) gives the slope of the tangent to the curve

(iii) Equation of normal at (x1, y1) is ;
Note :

1.The point P (x1, y1) will satisfy the equation of the curve & the eqation of tangent
& normal line.

2. If the tangent at any point P on the curve is // to the axis of x then dy/dx = 0 at
the point P.

3. If the tangent at any point on the curve is parallel to the axis of y, then dy/dx = o



or dx/dy = 0.

4, If the tangent at any point on the curve is equally inclined to both the axes then
dy/dx =+ 1.

5. If the tangent at any point makes equal intercept on the coordinate axes then
dy/dx = 1.

6. Tangent to a curve at the point P (X1, y1) can be drawn even through dy/dx at P
does not exist. e.g. x =0 is a tangent to y = x2/3 at (0, 0).

7. If a curve passing through the origin be given by a rational integral algebraic
equation, the equation of the tangent (or tangents) at the origin is obtained by
equating to zero the terms of the lowest degree in the equation. e.g. If the equation
of a curve be x? y2 + x3 + 3 X2y — y3 = 0, the tangents at the origin are given

by x2 y2=0ie.x+y=0andx—y=0.

(iv) Angle of intersection between two curves is defined as the angle between the 2

tangents drawn to the 2 curves at their point of intersection. If the angle between
two curves is 90° every where then they are called ORTHOGONAL curves.

y L+
f£'(x,)

(v) (a) Length of the tangent (PT) =

iz}
(b) Length of Subtangent (MT) = 1

1+ [F'(x) [
(c) Length of Normal (PN) = yl‘j [ (Xl)]

(d) Length of Subnormal (MN) =y1 f' (x1)

(vi) Differentials :

The differential of a function is equal to its derivative multiplied by the differential
of the independent variable. Thus if, y = tan x then dy = sec?x dx.

In general dy =f' (x) d x.

Note that: d (c) = 0 where 'c'is a constant.
d(u+v—w)=du+dv—dwd(uv)=udv+vdu

Note :

1. For the independent variable 'x', increment A x and differential d x are equal but
this is not the case with the dependent variable 'y' i.e. Ay #d y.



dy
— =F (X) .
2. The relationd y = f’ (x) d x can be written as dx

quotient of
the differentials of 'y' and 'x' is equal to the derivative of 'y w.r.t. 'x".

(%) ; thus the

Monotonocity

(Significance of the sign of the first order derivative)

Definitions :

1. A function f (x) is called an Increasing Function at a point x = a if in a sufficiently
small neighbourhood

f(a+h) > f(a) and

around x=a we have
f(a—h) < f(a)

} increasing;

fa+h) < f(a) and]d _
fla—l) > F ) f ecreasing.

2. A differentiable function is called increasing in an interval (a, b) if it is increasing
at every point within the interval (but not necessarily at the end points). A function
decreasing in an interval (a, b) is similarly defined.

3. A function which in a given interval is increasing or decreasing is called
“Monotonic” in that interval.

4, Tests for increasing and decreasing of a function at a point :

If the derivative f'(x) is positive at a point x = a, then the function f (x) at this point
is increasing. If it is negative, then the function is decreasing. Even if f' (@) is not
defined, f can still be increasing or decreasing.

f'<0 £1<0 l/ i
AO increasing at x =10

ol ¢ decreasingatx=c

Note : If f'(a) = 0, then for x = a the function may be still increasing or it may be
decreasing as shown. It has to be identified by a seperate rule. e.g. f (x) = x3 is
increasing at every point. Note that, dy/dx = 3 x°.

Similarly decreasing if

M RN
L £(e)=0
f'<0
ol x== *X Ol x=a_ %
5. Tests for Increasing & Decreasing of a function in an interval :

Sufficiency Test:
[f the derivative function f’(x) in an interval (a, b) is every where positive, then the



function f (x) in this interval is Increasing ; If f '(x) is every where negative, then f
(x) is Decreasing.

General Note :

(1) If a function is invertible it has to be either increasing or decreasing.

(2) If a function is continuous the intervals in which it rises and falls may be
separated by points at which its derivative fails to exist.

(3) If fis increasing in [a, b] and is continuous then f (b) is the greatest and f (c) is
the least value of f in [a, b]. Similarly if f is decreasing in [a, b] then f (a) is the
greatest value and f (b) is the least value.

6. (a) ROLLE'S THEOREM :

Let f(x) be a function of x subject to the following conditions :

(i) f(x) is a continuous function of x in the closed interval ofa <x <b.

(ii) f' (x) exists for every point in the open interval a < x < b.

(iii) f (a) = f (b). Then there exists at least one point x = c¢ such that a<c < b where f
Lley=0,

Note that if f is not continuous in closed [a, b] then it may lead to the adjacent graph
where all the 3 conditions of Rolles will be valid but the assertion will not be true in
(a, b).

(b) LMVT THEOREM :

Let f(x) be a function of x subject to the following conditions :

(i) f(x) is a continuous function of x in the closed interval ofa < x <b.

(ii) f’ (x) exists for every point in the open interval a < x < b.

(iii) f(a) # f(b).

Then there exists at least one point x = ¢ such that a < ¢ < b where f'

_ f(b) — f(a)
© b-a

Geometrically, the slope of the secant line joining the curve at x =a & x = b is equal
to the slope of the tangent line drawn to the curve at x = c. Note the following :

« Rolles theorem is a special case of LMVT

f@)=f(b) = £ () =2 =T@ _
since b—a

Note :

Now [f (b) f (a)] is the change in the function f as x changes from a to b so that [f (b)

f (a)] / (b a) is the average rate of change of the function over the interval [a, b]. Also

f'(c) is the actual rate of change of the function for x = c. Thus, the theorem states

that the average rate of change of a function over an interval is also the actual rate of



change of the function at some point of the interval. In particular, for instance, the
average velocity of a particle over an interval of time is equal to the velocity at some
instant belonging to the interval. This interpretation of the theorem justifies the
name "Mean Value" for the theorem.

(c) Application Of Rolles Theorem For Isolating The Real Roots Of An Equation F
(X)=0

Suppose a & b are two real numbers such that;

(i) f(x) & its first derivative f' (x) are continuous fora <x <b.

(ii) f(a) & f(b) have opposite signs.

(iii) f ' (x) is different from zero for all values of x between a & b.

Then there is one & only one real root of the equation f(x) = 0 between a & b.

Maxima - Minima

Functions Of A Single Variable
How Maxima & Minima Are Classified

Ay
/2

w

=

—x/2
‘

1. A function f(x) is said to have a maximum at x = a if f(a) is greater than every
other value assumed by f(x) in the immediate neighbourhood of x = a.

f(a) > f(a+h)]
XxX=4a

gives maxima for a sufficiently small

Symbolically f(a)>f(a—h)

positive h.
Similarly, a function f(x) is said to have a minimum value at x = b if f(b) is least than
every other value assumed by f(x) in the immediate neighbourhood at x = b.

f(b) < f(b+h)

Symbolically if f(b) < f(b— h)} = b gives minima for a sufficiently small
positive h.



Note that:

=X

—1t/2
g

(i) the maximum & minimum values of a function are also known as local/relative
maxima or local/relative minima as these are the greatest & least values of the
function relative to some neighbourhood of the point in question.

(ii) the t erm 'extremum’ or (extremal) or 'turning value' is used both for maximum
or a minimum value.

(iii) a maximum (minimum) value of a function may not be the greatest (least)
value in a finite interval.

(iv) a function can have several maximum & minimum values & a minimum value
may even be greater than a maximum value.

(v) maximum & minimum values of a continuous function occur alternately &
between two consecutive maximum values there is a minimum value & vice versa.

2. A Necessary Condition For Maximum & Minimum :



If f(x) is a maximum or minimum atx = ¢ & if f () exists then f’ (c) = 0.
¥a
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b

Note:

(i) The set of values of x for which f’ (x) = 0 are often called as stationary points or

critical points. The rate of change of function is zero at a stationary point.

(ii) In case f' (¢) does not exist f(c) may be a maximum or a minimum & in this case
left hand and right hand derivatives are of opposite signs.

(iii) The greatest (global maxima) and the least (global minima) values of a function
fin an interval [a, b] are f(a) or f(b) or are given by the values of x for which f’ (x) =
0.

dy
(iv) Critical points are those where dx =0, if it exists ,or it fails to exist either by
virtue of a vertical tangent or by virtue of a geometrical sharp corner but not
because of discontinuity of function.



3. Sufficient Condition For Extreme Values :

f'(c-h)>0
fe+hy<o] 7€
(c+h) < is a point of local maxima, where f' (¢) = 0.
f'(c-h) < 0]
Similarly F'(c+h)>0 = X = c is a point of local minima, where f'(c) = 0.

Note : If f " (x) does not change sign i.e. has the same sign in a certain complete
neighbourhood of ¢, then f(x) is either strictly increasing or decreasing throughout
this neighbourhood implying that f(c) is not an extreme value of f.

4, Use Of Second Order Derivative In Ascertaining The Maxima Or Minima:
(a) f(c) is a minimum value of the function f,if f' (¢) =0 &f" (c¢) > 0.
(b) f(c) is a maximum value of the functionf, f' (¢) =0&f" (c) <0.

Note : if f " (c) = O then the test fails. Revert back to the first order derivative check
for ascertaning the maxima or minima.

5. SUMMARY-WORKING RULE :
FIRST :

When possible , draw a figure to illustrate the problem & label those parts that are
important in the problem. Constants & variables should be clearly distinguished.

SECOND:

Write an equation for the quantity that is to be maximised or minimised. If this
quantity is denoted by ‘y’, it must be expressed in terms of a single independent
variable x. his may require some algebraic manipulations.

THIRD :

Ify = f (X) is a quantity to be maximum or minimum, find those values of x for which
dy/dx=f'(x) = 0.

FOURTH :

Test each values of x for which f'(x) = 0 to determine whether it provides a
maximum or minimum or neither. The usual tests are :

(a) If d2y/dx? is positive when dy/dx = 0 = y is minimum.



[f d2y/dx? is negative when dy/dx = 0 = y is maximum.

If d2y/dx2 = 0 when dy/dx = 0, the test fails.

positive for x <x,

IfSY is zero
dx .
negative for Xx > X,

for x=x,

(b) = a maximum occurs at X = Xo.

But if dy/dx changes sign from negative to zero to positive as x advances through
Xo there is a minimum. If dy/dx does not change sign, neither a maximum nor a
minimum. Such points are called INFLECTION POINTS.

FIFTH :

If the function y = f (x) is defined for only a limited range of values a < x < b then
examine x = a & x = b for possible extreme values.

SIXTH :

[f the derivative fails to exist at some point, examine this point as possible maximum

or minimum.

Important Note :

Given a fixed point A(x1, y1) and a moving point P(x, f (x)) on the curve y = f(x).
Then AP will be maximum or minimum if it is normal to the curve at P.

If the sum of two positive numbers x and y is constant than their product is
maximum if they are equal,i.e. x+y=c¢,x>0,y >0, then

1
Xy=7 [(x+y)P?-(x-y)?]

If the product of two positive numbers is constant then their sum is least if they are

equal. i.e. (X +y)2 = (xy)? + 4xy
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6. Useful Formulae Of Mensuration To Remember :

Hy
7t
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\ i/
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Volume of a cuboid = lbh.

Surface area of a cuboid = 2 (Ib + bh + hl).

Volume of a prism = area of the base x height.

Lateral surface of a prism = perimeter of the base x height.
Total surface of a prism = lateral surface + 2 area of the base
(Note that lateral surfaces of a prism are all rectangles).
Volume of a pyramid = 1/3 area of the base x height.

Curved surface of a pyramid = 1/2 (perimeter of the base) x slant height.

(Note that slant surfaces of a pyramid are triangles).

L en,
Volume of a cone =
Curved surface of a cylinder = 2 m rh.
Total surface of a cylinder =2 nrh + 2 rz

4 3
- I,
Volume of a sphere = 3
Surface area of a sphere =4 mr2.
1
) ]'2 4]

. , - Il -
Area of a circular sector = 2 when 0 is in radians.

7. Significance Of The Sign Of 2nd Order Derivative And Points Of Inflection :
The sign of the 2nd order derivative determines the concavity of the curve. Such
points such as C & E on the graph where the concavity of the curve changes are
called the points of inflection. From the graph we find that if:
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je— Length of Subtangent

Length of
Subnormal

—= =)
(1) dx? = concave upwards
d?y
—a ) =
(ii) dx? concave downwards.
d’y
—= =0&
At the point of inflection we find thatdx®
d’y

2
dx” changes sign.

dy

Inflection points can also occur if dx? fails to exist. For example, consider the graph

of the function defined as,
i for xe(—co, 1)

fx)=1 2—x2 for xe(l, )

Note that the graph exhibits two critical points one is a point of local maximum &

the other a point of inflection.
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