
PB 115

Learning Objectives
After the completion of this chapter, the
student will be able to
•	 Understand the basic building blocks of

C++ programming language
•	 Able to construct simple C++ programs
•	 Execute and debug C++programs

CHAPTER 9Introduction to C++

Introduction to C++

Unit III

9.1 Introduction

	 C++ is one of the most popular
programming language which supports
both procedural and Object Oriented
Programming paradigms. Thus, C++
is called as a hybrid language. C++ is a
superset (extension) of its predecessor C
language. Bjarne Stroustrup named his
new language as “C with Classes”. The
name C++ was coined by Rick Mascitti
where ++ is the C language increment
operator.

	 Bjarne is a Danish Computer Scientist born on 30th
December 1950. He has a Master degree in Mathematics and
Computer Science in 1975 from Aarhus University, Denmark
and Ph.D in Computer Science in 1979 from the University of
Cambridge, England.

Bjarne Stroustrup
Inventor of C++ Programming Language

History of C++
	 C++ was developed by Bjarne
Stroustrup at AT & T Bell Laboratory
during 1979. C++ is originally derived
from C language and influenced by many
languages like Simula, BCPL, Ada, ML,
CLU and ALGOL 68. Till 1983, it was
referred “New C” and “C with Classes”. In
1983, the name was changed as C++ by
Rick Mascitti.
Benefits of learning C++
•	 C++ is a highly portable language and is

often the language of choice for multi-
device, multi-platform app development.

•	 C++ is an object-oriented programming
language and includes classes,
inheritance, polymorphism, data
abstraction and encapsulation.

•	 C++ has a rich function library.
•	 C++ allows exception handling,

inheritance and function overloading
which are not possible in C.

•	 C++ is a powerful, efficient and fast
language. It finds a wide range of
applications – from GUI applications
to 3D graphics for games to real-time
mathematical simulations.

Chapter 9 Page 115-151.indd 115 3/24/2020 9:21:03 AM

116 117

9.2 Character set

	 Character set is a set of characters
which are used to write a C++ program. A
character represents any alphabet, number
or any other symbol (special characters)
mostly available in the keyboard. C++
accepts the following characters.

Alphabets A …. Z, a ….. z

Numeric 0 …. 9

Special
Characters

+ - * / ~ ! @ # $ % ^& [] () { } = ><
_ \ | ? . , : ‘ “ ;

White space
Blank space, Horizontal tab (→),
Carriage return (), Newline,
Form feed

Other
characters

C++ can process any of the 256
ASCII characters as data.

9.3 Lexical Units (Tokens):

	 C++ program statements are
constructed by many different small
elements such as commands, variables,
constants and many more symbols called
as operators and punctuators. These
individual elements are collectively called
as Lexical units or Lexical elements or
Tokens. C++ has the following tokens:

•	 Keywords •	 Identifiers
•	 Literals •	 Operators
•	 Punctuators

TOKEN:

The smallest individual unit in a program
is known as a Token or a Lexical unit

9.3.1 Keywords
	 Keywords are the reserved words
which convey specific meaning to the C++
compiler. They are the essential elements
to construct C++ programs. Most of the
keywords are common to C, C++ and Java.

C++ is a case sensitive programming
language so, all the keywords must be in
lowercase.

Table 9.1 C++ Keywords

asm auto break case catch
char class const continue default
delete do double else enum
extern float for friend goto
if inline int long new
operator private protected public register
return short signed sizeof static
struct switch template this throw
try typedef union unsigned virtual
void volatile while

•	 With revisions and additions, the recent
list of keywords also includes:

	 using, namespace, bal, static_cast,
const_cast, dynamic_cast, true, false
•	 Identifiers containing a double

underscore are reserved for use by C++
implementations and standard libraries
and should be avoided by users.

9.3.2 Identifiers
	 Identifiers are the user-defined
names given to different parts of the C++
program viz. variables, functions, arrays,
classes etc., These are the fundamental
building blocks of a program. Every
language has specific rules for naming the
identifiers.
Rules for naming an identifier:
•	 The first character of an identifier must

be an alphabet or an underscore (_).
•	 Only alphabets, digits and underscore

are permitted. Other special characters
are not allowed as part of an identifier.

•	 C++ is case sensitive as it treats upper
and lower-case characters differently.

•	 Reserved words or keywords cannot be
used as an identifier name.

Chapter 9 Page 115-151.indd 116 3/24/2020 9:21:03 AM

116 117

As per ANSI standards, C++ places no
limit on its length and therefore all the
characters are significant.

Identifiers Valid /
Invalid Reason for invalid

Num Valid
NUM Valid
_add Valid
total_sales Valid
tamilMark Valid

num-add Invalid Contains special
character (-)

this Invalid

This is one of
the keyword.
Keyword cannot
be used as
identifier names.

2myfile Invalid

Name must start
begins with an
alphabet or an
underscore

•	 You may use an underscore in variable
names to separate different parts of the
name (eg: total_sales is a valid identifier
where as the variable called total sales is
an invalid identifier).

•	 You may use capital style notation, such
as tamilMark ie. capitalizing the first
letter of the second word.

9.3.3 Literals (Constants)
	 Literals are data items whose values
do not change during the execution of a
program. Therefore Literals are called
as Constants. C++ has several kinds of
literals:

	

Numeric Constants

Integer constants

Boolean Constants

Literals (Constants)

Real Constants

Character Constants

String Literals

Figure 9.1 Types of Constants

Numeric Constants:
As the name indicates, the numeric
constants are numeric values, which are
used as constants. Numeric constants are
further classified as:
1.	 Integer Constants (or) Fixed point

constants.
2.	 Real constants (or) Floating point

constants.
(1) Integer Constants (or) Fixed point

constants
	 Integers are whole numbers without
any fractions. An integer constant must
have at least one digit without a decimal
point. It may be signed or unsigned.
Signed integers are considered as negative,
commas and blank spaces are not allowed
as part of it. In C++, there are three types
of integer constants: (i) Decimal (ii) Octal
(iii) Hexadecimal
(i) Decimal
	 Any sequence of one or more digits (0 …. 9)

Valid Invalid
725 7,500 (Comma is not allowed)
-27 66 5(Blank space is not allowed)
4.56 9$ (Special Character not allowed)

	 If you assign 4.56 as an integer decimal
constant, the compiler will accept only the integer
portion of 4.56 ie. 4. It will simply ignore .56.

Notes

	 If a Decimal constant declared
with fractions, then the compiler will
take only the integer part of the value
and it will ignore its fractional part. This
is called as “Implicit Conversion”. It will
be discussed later.

(ii) Octal
	 Any sequence of one or more octal values
(0 …. 7) that begins with 0 is considered as an Octal
constant.

Chapter 9 Page 115-151.indd 117 3/24/2020 9:21:03 AM

118 119

Valid Invalid
012 05,600(Commas is not allowed)
-027 04.56 (Decimal point is not allowed)**

+0231 0158 (8 is not a permissible digit in
octal system)

Notes

** When you use a fractional number
that begins with 0, C++ considers the
number as an integer not an Octal.

(iii) Hexadecimal
	 Any sequence of one or more
Hexadecimal values (0 …. 9, A …. F) that
starts with 0x or 0Xis considered as an
Hexadecimal constant.

Valid Invalid
0x123 0x1,A5 (Commas is not allowed)

0X568 0x.14E (Decimal point is not allowed
like this)

	 The suffix L or l and U or u
added with any constant forces it to be
represented as a long or unsigned constant
resp ec t ive ly.
(2) Real Constants (or) Floating point

constants
	 A real or floating point constant
is a numeric constant having a fractional
component. These constants may be
written in fractional form or in exponent
form.
	 Fractional form of a real constant
is a signed or unsigned sequence of
digits including a decimal point between
the digits. It must have at least one digit
before and after a decimal point. It may be
prefixed with + or - sign. A real constant
without any sign will be considered as
positive.
	 Exponent form of real constants
consists of two parts: (1) Mantissa and

(2) Exponent. The mantissa must be
either an integer or a real constant. The
mantissa followed by a letter E or e and
the exponent, should also be an integer.
	 For example, 58000000.00 may be
written as 0.58 × 108 or 0.58E8.

Mantissa
(Before E)

Exponent
(After E)

0.58 8

Example:
5.864 E1 	 101 × 5.864  	 58.64 
5864 E-2 	 10-2 × 5864  	 58.64 
0.5864 E2	 102 × 0.5864 	 58.64 
Boolean Literals
	 Boolean literals are used to
represent one of the Boolean values (True
or false). Internally true has value 1 and
false has value 0.
Character constant
	 A character constant in C++ is any
valid single character enclosed within
single quotes.
Valid character constants	 : ‘A’, ‘2’, ‘$’
Invalid character constants	 : “A”
	 The value of a single character
constant has an equivalent ASCII value.
For example, the value of ‘A’ is 65.
Escape sequences (or) Non-graphic
characters
	 C++ allows certain non-printable
characters represented as character
constants. Non-printable characters are
also called as non-graphic characters.
Non-printable characters are those
characters that cannot be typed directly
from a keyboard during the execution
of a program in C++, for example:
backspace, tabs etc. These non-printable
characters can be represented by using
escape sequences. An escape sequence is
represented by a backslash followed by
one or two characters.

Chapter 9 Page 115-151.indd 118 3/24/2020 9:21:03 AM

118 119

Table 9.2 Escape Sequences
Escape

sequence Non-graphical character

\a Audible or alert bell
\b Backspace
\f Form feed
\n Newline or linefeed
\r Carriage return
\t Horizontal tab
\v Vertical tab
\\ Backslash
\’ Single quote
\” Double quote
\? Question Mark

\On Octal number
\xHn Hexadecimal number

\0 Null
	 Even though an escape sequence
contains two characters, they should be
enclosed within single quotes because,
C++ consider escape sequences as
character constants and allocates one byte
in ASCII representation.

ASCII (American Standard
Code for Information
Interchange) was first developed
and published in 1963 by the

X3 committee, a part of the American
Standards Association (ASA).

1.	 What is meant by literals? How many types
of integer literals are available in C++?

2.	 What kind of constants are following?	
i) 26 ii) 015 iii) 0xF iv) 014.9

3.	 What is character constant in C++?
4.	 How are non graphic characters represented

in C++?
5.	 Write the following real constants into

exponent form:
i) 32.179	 ii) 8.124 iii) 0.00007

6.	 Write the following real constants in
fractional form:
i) 0.23E4	 ii) 0.517E-3 iii) 0.5E-5

7.	 What is the significance of null (\0)
character in a string?

?Evaluate Yourself

String Literals
	 Sequence of characters enclosed
within double quotes are called as
String literals. By default, string literals
are automatically added with a special
character ‘\0’ (Null) at the end. Therefore,
the string “welcome” will actually be
represented as “welcome\0” in memory
and the size of this string is not 7 but
8 characters i.e., inclusive of the last
character \0.
Valid string Literals : “A”, “Welcome”
“1234”
Invalid String Literals : ‘Welcome’, ‘1234’

9.3.4 Operators
The symbols which are used to do some
mathematical or logical operations are
called as “Operators”. The data items or
values that the oper ators act upon are
called as “Operands”.

5 + 6

b

Operator

Operands

-a

In C++, The operators are classified on
the basis of the number of operands.

(i)	 Unary Operators - Require only one
operand

(ii)	 Binary Operators - Require two
operands

(iii)	 Ternary Operators - Require three
operands

Chapter 9 Page 115-151.indd 119 3/24/2020 9:21:03 AM

120 121

C++ Binary Operators are classified as:
(1) Arithmetic Operators
(2) Relational Operators
(3) Logical Operators
(4) Assignment Operators
(5) Conditional Operator

(1) Arithmetic Operators

	 Arithmetic operators perform
simple arithmetic operations like addition,
subtraction, multiplication, division etc.,

Operator Operation Example
+ Addition 10 + 5 = 15
- Subtraction 10 – 5 = 5
* Multiplication 10 * 5 = 50

/ Division
10 / 5 = 2
(Quotient of the
division)

%
Modulus (To
find the remind-
er of a division)

10 % 3 =
1(Remainder of
the division)

•	 The above mentioned arithmetic
operators are binary operators which
requires minimum of two operands.

Increment and Decrement Operators
++ (Plus, Plus) Increment operator
-- (Minus, Minus) Decrement operator
	 An increment or decrement operator
acts upon a single operand and returns a
new value. Thus, these operators are unary
operators. The increment operator adds 1
to its operand and the decrement operator
subtracts 1 from its operand. For example,
•	 x++ or ++ x is the same as x = x+1;
	 It adds 1 to the present value of x
•	 x -- or -- x is the same as to x = x–1;
	 It subtracts 1 from the present value of x

	 The ++ or -- operators can be placed
either as prefix (before) or as postfix (after)
to a variable. With the prefix version, C++
performs the increment / decrement before
using the operand.
(2) Relational Operators
	 Relational operators are used to
determine the relationship between its
operands. When the relational operators
are applied on two operands, the result will
be a Boolean value i.e 1 or 0 to represents
True or False respectively. C++ provides
six relational operators. They are,

Operator Operation Example
> Greater than a > b
< Less than a < b

>= Greater than or
equal to a >= b

<= Less than or equal
to a <= b

== Equal to a == b
!= Not equal a != b

•	 In the above examples, the operand a is
compared with b and depending on the
relation, the result will be either 1 or 0.
i.e., 1 for true, 0 for false.

•	 All six relational operators are binary
operators.

(3)Logical Operators

	 A logical operator is used to evaluate
logical and relational expressions. The
logical operators act upon the operands that
are themselves called as logical expressions.
C++ provides three logical operators.

Table 9.3 Logical Operators

Operator Operation Description

&& AND
The logical AND combines two different relational expressions
in to one. It returns 1 (True), if both expression are true,
otherwise it returns 0 (false).

Chapter 9 Page 115-151.indd 120 3/24/2020 9:21:03 AM

120 121

|| OR
The logical OR combines two different relational expressions
in to one. It returns 1 (True), if either one of the expression is
true. It returns 0 (false), if both the expressions are false.

! NOT
NOT works on a single expression / operand. It simply negates
or inverts the truth value. i.e., if an operand / expression is 1
(true) then this operator returns 0 (false) and vice versa

•	 AND, OR both are binary operators
where as NOT is an unary operator.

Example:	 a = 5, b = 6, c = 7;

Expression Result
(a<b) && (b<c) 1 (True)
(a>b) && (b<c) 0 (False)

(a<b) || (b>c) 1 (True)

!(a>b) 1 (True)

(4)Assignment Operator:
	 Assignment operator is used to
assign a value to a variable which is
on the left hand side of an assignment
statement. = (equal to) is commonly used
as the assignment operator in all computer
programming languages. This operator
copies the value at the right side of the
operator to the left side variable. It is also
a binary operator.

A = 32

	 C++ uses different types of
assignment operators. They are called as
Shorthand assignment operators.

Operator Name of
Operator Example

+= Addition
Assignment

a = 10;
c = a += 5;
(ie, a = a + 5)
c = 15

-= Subtraction
Assignment

a = 10;
c = a -= 5;
(ie. a = a – 5)
c = 5

*= Multiplication
Assignment

a = 10;
c = a *= 5;
(ie. a = a * 5)
c = 50

/= Division
Assignment

a = 10;
c = a /= 5;
(ie. a = a / 5)
c = 2

%= Modulus
Assignment

a = 10;
c = a %= 5;
(ie. a = a % 5)
c = 0

Discuss the differences between = and ==
operators

(5) Conditional Operator:
	 In C++, there is only one conditional
operator. ?: is a conditional Operator which
is also known as Ternary Operator. This
operator is used as an alternate to if … else
control statement. We will learn more about
this operator in later chapters along with if
…. else structure.

Other Operators:

The Comma
operator

Comma (,) is an
operator in C++ used to
string together several
expressions. The group of
expression separated by
comma is evaluated from
left to right.

Sizeof
This is called as compile
time operator. It returns
the size of a variable in
bytes.

Pointer *	 Pointer to a variable
&	 Address of

Chapter 9 Page 115-151.indd 121 3/24/2020 9:21:04 AM

122 123

The order of precedence:

() [] Operators within parenthesis are performed first Higher
++, -- Postfix increment / decrement
++, -- Prefix increment / decrement
*, /, % Multiplication, Division, Modulus

+, - Addition, Subtraction

<, <=, >, >= Less than, Less than or equal to, Greater than, Greater
than or equal to

==, != Equal to, Not equal to
&& Logical AND
|| Logical OR
?: Conditional Operator
= Simple Assignment

+=, -=, *=, /= Shorthand operators
, Comma operator Lower

9.3.5 Punctuators
	 Punctuators are symbols, which are used as delimiters, while constructing a C++
program. They are also called as “Separators”. The following punctuators are used in
C++; most of these symbols are very similar to C and Java.

Separator Description Example

Curly braces { }

Opening and closing curly braces indicate
the start and end of a block of code. A block
of code containing more than one executable
statement. These statements together are
called as “compound statement”

int main ()
{
 int x=10, y=20, sum;
 sum = x + y;
 cout << sum;
}

Parenthesis () Opening and closing parenthesis indicate
function calls and function parameters.

clrscr();
int main ()

Square brackets
[]

It indicates single and multidimensional
arrays.

int num[5];
char name[50];

Comma , It is used as a separator in an expression int x=10, y=20, sum;

Component
selection

.	 Direct component
s e l e c t o r
->	 Indirect component
selector

C l a s s
m e m b e r
o p e r a t o r s

:: 	 Scope access /
r e s o l u t i o n
.* 	 Dereference
->*	 Dereference pointer
to class member

Precedence of Operators:
	 Operators are executed in the order
of precedence. The operands and the
operators are grouped in a specific logical
way for evaluation. This logical grouping
is called as an Association.

Chapter 9 Page 115-151.indd 122 3/24/2020 9:21:04 AM

122 123

Semicolon ; Every executable statement in C++ should
terminate with a semicolon

int main ()
{
 int x=10, y=20, sum;
 sum = x + y;
 cout << sum;
}

Colon : It is used to label a statement. private:

Comments
//
/* */

Any statement that begins with // are
considered as comments. Comments are
simply ignored by compilers. i.e., compiler
does not execute any statement that begins
with a //
// Single line comment
/* ……….. */ Multiline comment

/* This is written by me
to learn CPP */
int main ()
{
 int x=10, y=20, sum;
// to sum x and y
 sum = x + y;
 cout << sum;
}

In C++, one or two operators
may be used in different places
with different meaning.

For example: Asterisk (*) is used for
multiplication as well as for pointer to a
variable.

1.	 What is the use of operators?
2.	 What are binary operators? Give

examples of arithmetic binary operators.
3.	 What does the modulus operator % do?
4.	 What will be the result of 8.5 % 2?
5.	 Give that i = 8, j = 10, k = 8, What will

be result of the following expressions? 	
	 (i) i < k	 (ii) i < j	 (iii) i > =
k	 (iv) i = = j	 (v) j ! = k

6.	 What will be the order of evaluation for
the following expressions?			
(i) i + 3 >= j - 9		 (ii) a +10 < p - 3
+ 2 q

7.	 Write an expression involving a logical
operator to test, if marks are 75 and grade
is 'A'.

?Evaluate Yourself

9.4 I/O Operators
9.4.1 Input operator
	 C++ provides the operator >> to
get input. It extracts the value through
the keyboard and assigns it to the variable

on its right; hence, it is called as “Stream
extraction” or “get from” operator.
	 It is a binary operator i.e., it requires
two operands. The first operand is the
pre-defined identifier cin (pronounced as
C-In) that identifies keyboard as the input
device. The second operand must be a
variable.

cin

>>

Variable

Figure 9.4 Working process of cin

	 To receive or extract more than one
value at a time, >> operator should be used
for each variable. This is called cascading of
operator.
Example:

cin >>
n u m ;

Pre-defined object cin
extracts a value typed on
keyboard and stores it in
variable num.

Chapter 9 Page 115-151.indd 123 3/24/2020 9:21:04 AM

124 125

cin >>x
>> y;

This is used to extract two
values. cin reads the first value
and immediately assigns that
to variable x; next, it reads the
second value which is typed
after a space and assigns
that to y. Space is used as a
separator for each input.

9.4.2 Output Operator
	 C++ provides << operator to
perform output operation. The operator
<< is called the “Stream insertion” or “put
to” operator. It is used to send the strings
or values of the variables on its right to the
object on its left. << is a binary operator.
	 The first operand is the pre-defined
identifier cout (pronounced as C-Out)
that identifies monitor as the standard
output object. The second operand may be
a constant, variable or an expression.

cout

<<

Constant / Variable
/ Expression

Figure 9.5 Working process of cout
	 To send more than one value at a
time, << operator should be used for each
constant/variable/expression. This is called
cascading of operator.
Example:

cout <<
“ We l c o m e ” ;

Pre-defined object cout
sends the given string
“Welcome” to screen.

cout << “The
sum = “ << sum;

First, cout sends the
string “The Sum = “
to the screen and then
sends the value of the
variable sum;
Usually, cout sends
everything specified
within double quotes or
single quotes i.e., string
or character constants,
except non-graphic
characters.

cout <<“\n
The Area: “
< < 3 . 1 4 * r * r ;

First, cout sends
everything specified
within double quotes
except \n to the screen,
and then it evaluates the
expression 3.14*r*r and
sends the result to the
screen.
\n – is a non graphic
character constant to
feed a new line.

cout << a + b ;
cout sends the sum of
a and b to the output
console (monitor)

9.4.3. Cascading of I/O operators
The multiple use of input and output
operators such as >> and << in a single
statement is known as cascading of I/O
operators.
Cascading cout:
	 int Num=20;

	 cout << “A=” << Num;
The Figure 9.6 is used to understand the
working of Cascading cout statement

A = 20

} }cout << "A=" << Num;

Figure 9.6 Cascading cout

Chapter 9 Page 115-151.indd 124 3/24/2020 9:21:04 AM

124 125

Cascading cin - Example:
	 cout >> “Enter two number: ”;
	 cin >> a >> b;
The Figure 9.7 is used to understand the
working of Cascading cin statement

Enter two number: 5	

 6

cin >> a >> b;

a

5

b

6

Figure 9.7 Cascading cin

9.5 Sample program – A first look at
C++ program

	 Let us start our first C++ program
that prints a string “Welcome to

Programming in C++” on the screen.

The above program produces, the following
output:

Welcome to Programming in C++
	 This is very simple C++ program
which includes the basic elements that every
C++ program has. Let us have a look at these
elements:

1	 // C++ program to print a string

This is a comment statement. Any statement that begins with // are considered as
comments. Compiler does not execute any comment as part of the program and it simply
ignores. If we need to write multiple lines of comments, we can use /* ……. */.

2	 # include <iostream>

Usually all C++ programs begin with include statements starting with a # (hash /
pound). The symbol # is a directive for the preprocessor. That means, these statements
are processed before the compilation process begins.
#include <iostream> statement tells the compiler’s preprocessor to include the
header file “iostream” in the program.
The header file iostream should included in every C++ program to implement input /
output functionalities.
In simple words, iostream header file contains the definition of its member objects
cin and cout. If you fail to include iostream in your program, an error message will
occur on cin and cout; and we will not be able to get any input or send any output.

3	 using namespace std;

The line using namespace std; tells the compiler to use standard namespace. Namespace
collects identifiers used for class, object and variables. Namespaces provide a method of
preventing name conflicts in large projects. It is a new concept introduced by the ANSI
C++ standards committee.

Chapter 9 Page 115-151.indd 125 3/24/2020 9:21:04 AM

126 127

4	 int main ()

C++ program is a collection of functions. Every C++ program must have a main function.
The main() function is the starting point where all C++ programs begin their execution.
Therefore, the executable statements should be inside the main() function.

The statements between the curly braces (Line number 5 to 8) are executable statements.
This is actually called as a block of code. In line 6, cout simply sends the string constant
“Welcome to Programming in C++” to the screen. As we discussed already, every
executable statement must terminate with a semicolon. In line 7, return is a keyword
which is used to return the value what you specified to a function. In this case, it will
return 0 to main() function.

9.6 Execution of C++ program:
	 For creating and executing a C++
program, one must follow four important
steps.
(1) Creating Source code
	 Creating includes typing and editing the

valid C++ code as per the rules followed
by the C++ Compiler.

(2) Saving source code with extension .cpp
	 After typing, the source code should
be saved with the extension .cpp
(3) Compilation
	 This is an important step in constructing

a program. In compilation, compiler
links the library files with the source
code and verifies each and every line of
code. If any mistake or error is found,
it will throw error message. If there are
no errors, it translates the source code
into machine readable object file with
an extension .obj

(4) Execution
	 This is the final step of a C++ Program.

In this stage, the object file becomes an
executable file with extension .exe. Once
the program becomes an executable

file, the program has an independent
existence. This means, you can run
your application without the help of any
compiler or IDE.

#include<iostream>
using namespace std;
int main ()
{
cout<<"Welcome";
return 0;
}

Compiler

Figure 9.8 Execution

9.7 C++ Development Environment

	 There are lot of IDE programs
available for C++. IDE makes it easy to create,
compile and execute a C++ program. Most
of the IDEs are open source applications
(ie.) they are available free of cost.
9.7.1 Familiar C++ Compilers with IDE

Table 9.4 Open Source Compilers

Compiler Availability

Dev C++ Open source

Geany Open source

Code::blocks Open source

Code Lite Open source

Chapter 9 Page 115-151.indd 126 3/24/2020 9:21:04 AM

126 127

Net Beans Open source

Digital Mars Open source

Sky IDE Open source

Eclipse Open source

9.7.2 Working with Dev C++
	 Among the dozens of IDEs, we
take “Dev C++” compiler to create C++
programs. Programming techniques and
illustrated programs of this book are based
on “Dev C++” compiler.

	 Dev C++ is an open source, cross
platform (alpha version available for Linux),
full featured Integrated Development
Environment (IDE) distributed with
the GNU General Public License for
programming in C and C++. It is written in
Delphi. It can be downloaded from http://
www.bloodshed.net/dev/devcpp.html

1.	 After installation Dev C++ icon is
available on the desktop. Double click
to open IDE. 	 Dev C++ IDE appears
as given below.

Figure 9.9 Dev C++ opening Window

2.	 To create a source file, Select File →
New → Source file or Press Ctrl + N.

3.	 In the screen that appears, type your
C++ program, and save the file by

clicking File → Save or Pressing Ctrl +
S. It will add .cpp by default at the end
of your source code file. No need to type
.cpp along with your file name.

Figure 9.10 Dev C++ IDE with a program

4.	 After save, Click Execute → Compile
and Run or press F11 key.

	 If your program contains any error, it
displays the errors under compile log. If
your program is without any error, the
display will appear as follows.

Figure 9.11 Dev C++ Compile Log

5.	 After successful compilation, output
will appear in output console, as
follows

Figure 9.12 Dev C++ Output Window

Chapter 9 Page 115-151.indd 127 3/24/2020 9:21:04 AM

128 129

9.8 Types of Errors
Some common types of errors are given below:

Type of Error Description

Syntax Error

•	 Syntax is a set of grammatical rules to construct a program. Every
programming language has unique rules for constructing the
sourcecode.

•	 Syntax errors occur when grammatical rules of C++ are violated.
•	 Example: if you type as follows, C++ will throw an error.
 cout << “Welcome to Programming in C++”
•	 As per grammatical rules of C++, every executable statement should

terminate with a semicolon. But, this statement does not end with a
semicolon.

Semantic Error

•	 A Program has not produced expected result even though the
program is grammatically correct.It may be happened by wrong use
of variable / operator / order of execution etc. This means, program is
grammatically correct, but it contains some logical error. So, Semantic
error is also called as “Logic Error”.

Run-time error

•	 A run time error occurs during the execution of a program. It occurs
because of some illegal operation that takes place.

•	 For example, if a program tries to open a file which does not exist, it
results in a run-time error

•	 C++ was developed by Bjarne Stroustrup
at AT & T Bell Labs during the year 1979.

•	 Character set is the set of characters
which are allowed to write C++
programs.

•	 Individual elements are collectively
called as Lexical units or Lexical elements
or Tokens.

•	 Keywords are the reserved words that
convey specific meaning to the C++
compiler.

•	 Identifiers are user-defined names given
to different parts of the C++ program
viz. variables, functions, arrays, classes
etc.,

•	 Literals are data items whose values do
not change during the execution of a
program. Therefore, Literals are called as
Constants.

•	 There are different kinds of literals used
in C++ (Integer, Float, Character, String)

•	 The symbols which are used to do some
mathematical, logical operations are
called as “Operators”.

•	 Punctuators are symbols, which are
used as delimiters in constructing
C++ programs. They are also called as
“Separators”.

•	 Extraction operator(>>) and Insertion
operator (<<) are used to get input and
send output in C++.

Points to Remember:

Chapter 9 Page 115-151.indd 128 3/24/2020 9:21:04 AM

128 129

Hands on practice:

•	 Type the following C++ Programs in Dev C++ IDE and execute. if compiler shows any
errors, try to rectify it and execute again and again till you get the expected result.

1. C++ Program to find the total marks of three subjects
#include <iostream>
using namespace std;
int main()
{
	 int m1, m2, m3, sum;
	 cout << "\n Enter Mark 1: ";
	 cin >> m1;
	 cout << "\n Enter Mark 2: ";
	 cin >> m2;
	 cout << "\n Enter Mark 3: ";
	 cin >> m3;
	 sum = m1 + m2 + m3;
	 cout << "\n The sum = " << sum;
}

•	 Make changes in the above code to get the average of all the given marks.

2. C++ program to find the area of a circle
#include <iostream>
using namespace std;
int main()
{
	 int radius;
	 float area;
	 cout << "\n Enter Radius: ";
	 cin >> radius;
	 area = 3.14 * radius * radius;
	 cout << "\n The area of circle = " << area;
}
3. point out the errors in the following program:

Using namespace std;
int main()
{
cout << “Enter a value ”;
cin << num1 >> num2
num+num2=sum;
cout >> “\n The Sum= ” >> sum;

Chapter 9 Page 115-151.indd 129 3/24/2020 9:21:04 AM

130 131

4. point out the type of error in the following program:
#include <iostream>
using namespace std;
int main()
{
	 int h=10; w=12;
	 cout << "Area of rectangle " << h+w;
}

Evaluation

SECTION – A
Choose the correct answer:

1.	 Who developed C++?

	 (a) Charles Babbage			 (b) Bjarne Stroustrup

	 (c) Bill Gates				 (d) Sundar Pichai

2.	 What was the original name given to C++?

	 (a) CPP	 (b) Advanced C 	 (c) C with Classes	 (d) Class with C

3.	 Who coined C++?
	 (a) Rick Mascitti	 (b) Rick Bjarne	 (c) Bill Gates	 (d) Dennis Ritchie

4.	 The smallest individual unit in a program is:

	 (a) Program	 (b) Algorithm	 (c) Flowchart	 (d) Tokens

5.	 Which of the following operator is extraction operator in C++?
	 (a) >>	 (b) <<	 (c) <>	 (d) ^^

6.	 Which of the following statements is not true?
	 (a) �Keywords are the reserved words which convey specific meaning to the C++ compiler.
	 (b) Reserved words or keywords can be used as an identifier name.
	 (c) An integer constant must have at least one digit without a decimal point.
	 (d) Exponent form of real constants consist of two parts

7.	 Which of the following is a valid string literal?

	 (a) ‘A’			 (b) ‘Welcome’		 (c) 1232		 (d) “1232”

8.	 A program written in high level language is called as

	 (a) Object code	 (b) Source code 	 (c) Executable code  (d) All the above
9.	 Assume a=5, b=6; what will be result of a&b?
	 (a) 4			 (b) 5			 (c) 1			 (d) 0

10.	 Which of the following is called as compile time operators?
	 (a) sizeof		 (b) pointer		 (c) virtual		 (d) this

Chapter 9 Page 115-151.indd 130 3/24/2020 9:21:04 AM

130 131

SECTION-B

Very Short Answers

1.	 What is meant by a token? Name the token available in C++.
2.	 What are keywords? Can keywords be used as identifiers?
3.	 The following constants are of which type?
	 (i) 39 (ii) 032 (iii) 0XCAFE (iv) 04.14
4.	 Write the following real constants into the exponent form:
	 (i) 23.197 (ii) 7.214 (iii) 0.00005 (iv) 0.319
5.	 Assume n=10; what will be result of n++ and --n;?
6.	 Match the following

A B
(a) Modulus (1) Tokens

(b) Separators
(2) Remainder of a
d i v i s i o n

(c) Stream extraction (3) Punctuators
(d) Lexical Units (4) get from

SECTION-C
Short Answers

1.	 Describe the differences between keywords and identifiers?
2.	 Is C++ case sensitive? What is meant by the term “case sensitive”?
3.	 Differentiate “=” and “==”.
4.	 What is the use of a header file?
5.	 Why is main function special?

SECTION - D
Explain in detail
1.	 Write about Binary operators used in C++.

2.	 What are the types of Errors?

References:
(1)	 Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,

Mc.Graw Hills.
(2)	 The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.
(3)	 Computer Science with C++ (A text book of CBSE XI and XII), Sumita Arora,

Dhanpat Rai & Co.

Chapter 9 Page 115-151.indd 131 3/24/2020 9:21:05 AM

132 133

Data Types, Variables and Expressions

9.10 Introduction

	 Every programming language has two fundamental elements, viz., data types and
variables. They are very essential elements to write even the most elementary programs.
C++ provides a predefined set of data types for handling the data items. Such data types
are known as fundamental or built-in data types. Apart from the built-in data types, a
programmer can also create his own data types called as User-defined data types. In this
chapter, we are going to learn about built-in data types.

9.11 Concept of Data types

Let us look at the following example,

	 Name = Ram

	 Age = 15

	 Average_Mark = 85.6

	 In the above example, Name, Age, Average_mark are the fields which hold the
values such as Ram, 15, and 85.6 respectively.

	 In a programming language, fields are referred as variables and the values are
referred to as data. Each data item in the above example looks different. That is, “Ram”
is a sequence of alphabets and the other two data items are numbers. The first value is a
whole number and the second one is a fractional number. In real-world scenarios, there
are lots of different kinds of data we handle in our day-to-day life. The nature or type of
the data item varies, for example distance (from your home to school), ticket fare, cost of
a pen, marks, temperature, etc.,

	 In C++ programming, before handling any data, it should be clearly specified to
the language compiler, regarding what kind of data it is, with some predefined set of data
types.

9.12 C++ Data types

	 In C++, the data types are classified as three main categories

	 (1) Fundamental data types

	 (2) User-defined data types and

	 (3) Derived data types.

Chapter 9 Page 115-151.indd 132 3/24/2020 9:21:05 AM

132 133

Data Types

User Defines
Data types

Derived
Data types

Floating
Point

Integral
types

Structure,
Union, Class,
Enumeration

Void

int char float double

Array, Function,
Pointer, Reference

Fundamantal Built -
in data types

Figure 9.13 Data types in C++

	 In this chapter, we are going to learn about only the Fundamental data types.

	 In order to understand the working of data types, we need to know about variables. The
variables are the named memory locations to hold values of specific data types. In C++, the
variables should be declared explicitly with their data types before they are actually used.
Syntax for declaring a variable:
	 <data type> <variable name>;
Example:
	 int num1;
	 To declare more than one variable which are of the same data type using a single
statement, it can be declared by separating the variables using a comma.
Example:
	 int num1, num2, sum;
	 For example, to store your computer science marks first you should declare a variable
to hold your marks with a suitable data type. Choosing an appropriate data type needs more
knowledge and experience. Usually, marks are represented as whole numbers. Thus, the
variable for storing the computer science marks should be of integer data type.
Example:
	 int comp_science_marks;
Now, one variable named comp_science_marks is ready to store your marks.
We will learn more about variables later in this chapter.

9.12.1 Introduction to fundamental Data types:
	 Fundamental (atomic) data types are predefined data types available with C++. There
are five fundamental data types in C++: char, int, float, double and void. Actually, these are
the keywords for defining the data types.

(1) int data type:
	 Integer data type accepts and returns only integer numbers. If a variable is declared as
an int, C++ compiler allows storing only integer values into it. If you try to store a fractional
value in an int type variable it will accept only the integer portion and the fractional part will
be ignored.

Chapter 9 Page 115-151.indd 133 3/24/2020 9:21:05 AM

134 135

For Example
int num=12;
	 num1 variable is declared as integer types. So, it can store integer value
(2) char data type:
	 Character data type accepts and returns all valid ASCII characters. Character data type
is often said to be an integer type, since all the characters are represented in memory by their
associated ASCII Codes. If a variable is declared as char, C++ allows storing either a character
or an integer value.

Example 1:-

char c='A';

cout<<ch ;

In the above code, ch is declared as a char type variable to hold a character. It displays the
character A

Example 2:-

char ch='A'

cout<<ch+1;

In the above statements, the value of ch is incremented by 1 and the new value is stored back
in the same variable ch. (Remember that, arithmetic operations are carried out only on the
numbers not with alphabets) so it displays B

	 Another program illustrates how int and char data types are working together.

#include <iostream>
using namespace std;
int main ()
{
	 int n;
	 char ch;
	 cout << "\n Enter an ASCII code (0 to 255): ";
	 cin >> n;
	 ch = n;
	 cout << "\n Equivalent Character: " << ch;
}
The output
Enter an ASCII code (0 to 255): 100
Equivalent Character: d

Illustration 9.3: C++ program to get an ASCII value and display the corresponding
character

	 In the above program, variable n is declared as an int type and another variable ch as a
char type. During execution, the program prompts the user to enter an ASCII value. If the user
enters an ASCII value as an integer, it will be stored in the variable n. In the statement ch = n;
the value of n is assigned into ch. Remember that, ch is a char type variable.

Chapter 9 Page 115-151.indd 134 3/24/2020 9:21:05 AM

134 135

	 For example, if a user enters 100 as input; initially, 100 is stored in the variable n. In the
next statement, the value of n i.e., 100 is assigned to ch. Since, ch is a char type; it shows the
corresponding ASCII character as output. (Equivalent ASCII Character for 100 is d).

(3) float data type:
	 If a variable is declared as float, all values will be stored as floating point values.
There are two advantages of using float data types.
	 (1) They can represent values between the integers.
	 (2) They can represent a much greater range of values.
	 At the same time, floating point operations takes more time to execute compared to
the integer type ie., floating point operations are slower than integer operations. This is a
disadvantage of floating point operation.

For Example

float num=13.4;

	 In the above example, num variable is declared as float type .

(4) double data type:

	 This is for double precision floating point numbers. (precision means significant
numbers after decimal point). The double is also used for handling floating point numbers.
But, this type occupies double the space than float type. This means, more fractions can be
accommodated in double than in float type. The double is larger and slower than type float.
double is used in a similar way as that of float data type.

(5) void data type:

	 The literal meaning for void is ‘empty space’. Here, in C++, the void data type specifies
an empty set of values. It is used as a return type for functions that do not return any value.

1.	 What do you mean by fundemantal data types?
2.	 The data type char is used to represent characters. then why is it often termed as an

integer type?
3.	 What is the advantage of floating point numbers over integers?
4.	 The data type double is another floating point type. Why is it treated as a distinct data

type?
5.	 What is the use of void data type?

?Evaluate Yourself

9.12.2 Memory representation of Fundamental Data types:

	 One of the most important reason for declaring a variable as a particular data type
is to allocate appropriate space in memory. As per the stored program concept, every
data should be accommodated in the main memory before they are processed. So, C++
compiler allocates specific memory space for each and every data handled according to

Chapter 9 Page 115-151.indd 135 3/24/2020 9:21:05 AM

136 137

the compiler’s standards.
	 The following Table 9.5 shows how much of memory space is allocated for each
fundamental data type. Remember that, every data is stored inside the computer memory
in the form of binary digits (See Unit I Chapter 2).

Table 9. 5 Memory allocation for Fundamental data types

Data type
Space in memory

Range of value
in terms of bytes in terms of bits

char 1 byte 8 bits -128 to 127
int 2 bytes 16 bits -32,768 to 32,767
float 4 bytes 32 bits 3.4×10-38 to 3.4×1038 -1
double 8 bytes 64 bits 1.7×10-308 to 1.7 × 10308-1

9.12.3 Data type modifiers:
	 Modifiers are used to modify the storing capacity of a fundamental data type except void
type. Usually, every fundamental data type has a fixed range of values to store data items in memory.
For example, int data type can store only two bytes of data. In reality, some integer data may have
more length and may need more space in memory. In this situation, we should modify the memory
space to accommodate large integer values. Modifiers can be used to modify (expand or reduce)
the memory allocation of any fundamental data type. They are also called as Qualifiers.
There are four modifiers used in C++. They are:
	 (1) signed 		 (2) unsigned		 (3) long		 (4) short
	 These four modifiers can be used with any fundamental data type. The following
Table 9.6 shows the memory allocation for each data type with and without modifiers.

Integer type

Table 9.6 Memory allocation for Data types

Data type

Space in
memory

Range of valuein
terms

of
bytes

in
terms
of bits

short short is a short name for short int 2
bytes 16 bits -32,768 to

3 2 , 7 6 7
unsigned
short

an integer number without minus
sign.

2
bytes 16 bits 0 to 65535

signed short An integer number with minus sign 2
bytes 32 bits -32,768 to

3 2 , 7 6 7
Both short and signed short are similar

int An integer may or may not be
s igned

2
bytes 16 bits -32,768 to

3 2 , 7 6 7

Chapter 9 Page 115-151.indd 136 3/24/2020 9:21:05 AM

136 137

unsigned int An integer without any sign (minus
symbol)

2
bytes 16 bits 0 to 65535

signed int An integer with sign 2
bytes 16 bits -32,768 to

3 2 , 7 6 7
Both short and int are similar

long long is short name for long int 4
bytes 32 bits -2147483648

to 2147483647
u n s i g n e d
l o n g

A double spaced integer without
any sign

4
bytes 32 bits 0 to

4,294,967,295

signed long A double spaced integer with sign 4
bytes 32 bits -2147483648

to 2147483647
	 The above table clearly shows that an integer type accepts only 2 bytes of data
whereas a long int accepts data that is double this size i.e., 4 bytes of data. So, we can store
more digits in a long int. (long is a modifier and int is a fundamental data type)

char type
Table 9.7 Memory allocation for char Data types

Data type
Space in memory

Range of valuein terms
of bytes

in terms
of bits

char Signed ASCII character 1 byte 8 bits -128 to 127
u n s i g n e d
c h a r

ASCII character without
sign 1 byte 8 bits 0 to 255

signed char ASCII character with
s ign 1 byte 8 bits -128 to 127

Floating point type
Table 9.8 Memory allocation for floating point Data types

Data type

Space in memory

Range of valuein
terms

of bytes

in
terms
of bits

float signed fractional value 4 bytes 32 bits 3.4×10-38 to
3 . 4 × 1 0 3 8 - 1

double signed more precision
fractional value 8 bytes 64 bits 1.7 × 10-308 to

1.7 × 10308 -1

long double signed more precision
fractional value 10 bytes 80 bits 3.4 × 10-4932 to

1.1 × 104932 -1

	 Memory allocation is subjected to vary based on the type of compiler that is being
used. Here, the given values are as per the Turbo C++ compiler. Dev C++ provides some
more space to int and long double types. Following Tables 9.9 shows the difference
between Turbo C++ and Dev C++ allocation of memory.

Table 9.9 Memory allocation of Turbo C++ and Dev C++

Chapter 9 Page 115-151.indd 137 3/24/2020 9:21:05 AM

138 139

Data type
Memory size in bytes

Turbo C++ Dev C++
short 2 2

unsigned short 2 2

signed short 2 2
int 2 4
unsigned int 2 4
signed int 2 4
long 4 4
unsigned long 4 4
signed long 4 4
char 1 1
unsigned char 1 1
signed char 1 1
float 4 4
double 8 8
long double 10 12

	 Since, Dev C++ provides 4 bytes to int and long, any one of these types can be used to
handle bigger integer values while writing programs in Dev C++.
Note: sizeof() is an operator which gives the size of a data type.
Number Suffixes in C++
	 There are different suffixes for integer and floating point numbers. Suffix can be
used to assign the same value as a different type. For example, if you want to store 45 in
int, long, unsigned int and unsigned long int, you can use suffix letter L or U (either case)
with 45 i.e. 45L or 45U. This type of declaration instructs the compiler to store the given
values as long and unsigned. ‘F’ can be used for floating point values, example: 3.14F

9.13 Variables

	 Variables are user-defined names assigned to specific memory locations in which
the values are stored. Variables are also identifiers; and hence, the rules for naming the
identifiers should be followed while naming a variable. These are called as symbolic
variables because these are named locations.
There are two values associated with a symbolic variable; they are R-value and L-value.
•	 R-value is data stored in a memory location
•	 L-value is the memory address in which the R-value is stored.

Chapter 9 Page 115-151.indd 138 3/24/2020 9:21:05 AM

138 139

num2

num1

Variable
name

R - value (Value within
memory)

L - value (Memory Address)

100

65

0x125e
0x126e

0x127e

0x128e
0x129e
0x130e
0x131e
0x132e
0x133e
0x134e

Figure 9.14 Memory allocation of a variable
Remember that, the memory addresses are in the form of Hexadecimal values
9.13.1 Declaration of Variables
	 Every variable should be declared before they are actually used in a program.
Declaration is a process to instruct the compiler to allocate memory as per the type that is
specified along with the variable name. For example, if you declare a variable as int type,
in Dev C++, the compiler allocates 4 bytes of memory. Thus, every variable should be
declared along with the type of value to be stored.
Declaration of more than one variable:
More than one variable of the same type can be declared as a single statement using a
comma separating the individual variables.
Syntax:
<data type> <var1>, <var2>, <var3> …… <var_n>;
Example:
int num1, num2, sum;
	 In the above statement, there are three variables declared as int type. Which means,
in num1, num2 and sum, you can store only integer values.
	 For the above declaration, the C++ compiler allocates 4 bytes of memory (i.e. 4
memory boxes) for each variable.

}}
}

0x125e
0x126e
0x127e
0x128e
0x129e
0x130e
0x131e
0x132e
0x133e
0x134e

L
- v

al
ue

 (M
em

or
y

A
dd

re
ss

int num1, num2, sum;

num2

Variable names

num1

Figure 9.15 Memory allocation of int type variables

Chapter 9 Page 115-151.indd 139 3/24/2020 9:21:05 AM

140 141

If you declare a variable without any initial value, the memory space allocated to that variable
will be occupied with some unknown value. These unknown values are called as “Junk” or
“Garbage” values.

#include <iostream>
using namespace std;
int main()
{
	 int num1, num2, sum;
	 cout << num1 << endl;
	 cout << num2 << endl;
	 cout << num1 + num2;
}

	 In the above program, some unknown values will be occupied in memory that is
allocated for the variables num1 and num2 and the statement cout << num1 + num2; will
display the sum of those unknown junk values.
9.13.2 Initialization of variables
Assigning an initial value to a variable during its declaration is called as “Initialization”.
Examples:
int num = 100;
float pi = 3.14;
double price = 231.45;
Here, the variables num, pi, and price have been initialized during the declaration. These
initial values can be later changed during the program execution.

#include <iostream>
using namespace std;
int main()
{
	 float pi = 3.14, radius, height, CSA;
	 cout << "\n Curved Surface Area of a cylinder";
	 cout << "\n Enter Radius (in cm): ";
	 cin >> radius;
	 cout << "\n Enter Height (in cm): ";
	 cin >> height;
	 CSA = (2*pi*radius)*height;
	 system("cls");
	 cout << "\n Radius: " << radius <<"cm";
	 cout << "\n Height: " << height << "cm";
	 cout << "\n Curved Surface Area of a Cylinder is " << CSA <<" sq. cm.";
}

Output:
 Curved Surface Area of a cylinder
 Enter Radius (in cm): 7
 Enter Height (in cm): 20
 Radius: 7cm
Height: 20cm
Curved Surface Area of a Cylinder is 879.2 sq. cm.

Illustration 9.6 C++ Program to find the Curved Surface Area of a cylinder (CSA) (CSA = 2 pi
r * h)

Variables that are of the same type can be initialized in a single statement.

Chapter 9 Page 115-151.indd 140 3/24/2020 9:21:05 AM

140 141

Example:
int x1 = -1, x2 = 1, x3, n;
9.13.3 Dynamic Initialization
	 A variable can be initialized during the execution of a program. It is known as
“Dynamic initialization”. For example,
int num1, num2, sum;
sum = num1 + num2;
The above two statements can be combined into a single one as follows:
int sum = num1+num2;
This initializes sum using the known values of num1 and num2 during the execution.

#include <iostream>
using namespace std;
int main()
{
	 int num1, num2;
	 cout << "\n Enter number 1: ";
	 cin >> num1;
	 cout << "\n Enter number 2: ";
	 cin >> num2;
	 int sum = num1 + num2; // Dynamic initialization
	 cout << "\n Average: " << sum /2;
}

Output:
Enter number 1: 78
Enter number 2: 65
Average: 71

Illustration 9.7 C++ Program to illustrate dynamic initialization

	 In the above program, after getting the values of num1 and num2, sum is declared
and initialized with the addition of those two variables. After that, it is divided by 2.

#include <iostream>
using namespace std;
int main()
{
	 int radius;
	 float pi = 3.14;
	 cout << "\n Enter Radius (in cm): ";
	 cin >> radius;
	 float perimeter = (pi+2)*radius;	 // dynamic initialization
	 float area = (pi*radius*radius)/2; // dynamic initialization
	 cout << "\n Perimeter of the semicircle is " << perimeter << " cm";
	 cout << "\n Area of the semicircle is " << area << " sq.cm";
}

Output:
Enter Radius (in cm): 14
Perimeter of the semicircle is 71.96 cm
Area of the semicircle is 307.72 sq.cm

Illustration 9.8: C++ program to find the perimeter and area of a semi circle

Chapter 9 Page 115-151.indd 141 3/24/2020 9:21:05 AM

142 143

9.13.4 The Access modifier const
	 const is the keyword used to declare a constant. You already learnt about constant
in the previous chapter. const keyword modifies / restricts the accessibility of a variable.
So, it is known as Access modifier.
For example,
int num = 100;
	 The above statement declares a variable num with an initial value 100. However, the value
of num can be changed during the execution. If you modify the above definition as const int
num = 100; the variable num becomes a constant and its value will remain 100 throughout the
program, and it can never be changed during the execution.

#include <iostream>
using namespace std;
int main()
{
	 const int num=100;
	 cout << "\n Value of num is = " << num;
	 num = num + 1; // Trying to increment the constant
	 cout << "\n Value of num after increment " << num;
}

	 In the above code, an error message will be displayed as “Cannot modify the const
object” in Turbo compiler and “assignment of read only memory num” in Dev C++.
9.13.5 References
	 A reference provides an alias for a previously defined variable. Declaration of a reference
consists of base type and an & (ampersand) symbol; reference variable name is assigned the
value of a previously declared variable.
Syntax:
<type> <& reference_variable> = <original_variable>;

#include <iostream>
using namespace std;
int main()
{
	 int num;
	 int &temp = num; //declaration of a reference variable temp
	 num = 100;
cout << "\n The value of num = " << num;
cout << "\n The value of temp = " << temp;
}
The output of the above program will be
The value of num = 100
The value of temp = 100

Illustration 9.9: C++ program to declare reference variable

Chapter 9 Page 115-151.indd 142 3/24/2020 9:21:05 AM

142 143

1.	 What are modifiers? What is the use of modifiers?
2.	 What is wrong with the following C++ statement:
		 long float x;
3.	 What is a variable ? Why is a variable called symblolic variable?
4.	 What do you mean by dynamic initialization of a variable? Give an exmple.
5.	 What is wrong with the following statement?
 		 const int x;

?Evaluate Yourself

9.14 Formatting Output

	 Formatting output is very important in the development of output screens for
easy reading and understanding. Manipulators are used to format the output of any C++
program. Manipulators are functions specifically designed to use with the insertion (<<)
and extraction(>>) operators.

	 C++ offers several input and output manipulators for formatting. Commonly
used manipulators are: endl, setw, setfill, setprecision and setf. In order to use these
manipulators, you should include the appropriate header file. endl manipulator is a
member of iostream header file. setw, setfill, setprecision and setf manipulators are
members of iomanip header file.

endl (End the Line)

	 endl is used as a line feeder in C++. It can be used as an alternate to ‘\n’. In other
words, endl inserts a new line and then makes the cursor to point to the beginning of the
next line. There is a difference between endl and ‘\n’, even though they are performing
similar tasks.

•	 endl – Inserts a new line and flushes the buffer (Flush means – clean)
•	 ‘\n’ - Inserts only a new line.
Example:
	 cout << "\n The value of num = " << num;
	 cout << "The value of num = " << num <<endl;
Both these statements display the same output.
setw ()

	 setw manipulator sets the width of the field assigned for the output. The field width
determines the minimum number of characters to be written in output.

Syntax:

setw(number of characters)

Chapter 9 Page 115-151.indd 143 3/24/2020 9:21:05 AM

144 145

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
	 float basic, da, hra, gpf, tax, gross, np;
	 char name[30];
	 cout << "\n Enter Basic Pay: ";
	 cin >> basic;
	 cout << "\n Enter D.A : ";
	 cin >> da;
	 cout << "\n Enter H.R.A: ";
	 cin >> hra;
	 gross = basic+da+hra; // sum of basic, da and hra
	 gpf = (basic+da) * 0.10; // 10% 0f basic and da
	 tax = gross * 0.10; //10% of gross pay
	 np = gross - (gpf+tax); //netpay = earnings - deductions
	 cout << setw(25) << "Basic Pay : " << setw(10)<< basic<< endl;
	 cout << setw(25) << "Dearness Allowance : "<< setw(10)<<da<< endl;
	 cout<<setw(25)<<"House Rent Allowance : "<<setw(10)<< hra<<endl;
	 cout << setw(25) << "Gross Pay : " << setw(10) << gross << endl;
	 cout << setw(25) << "G.P.F : " << setw(10) << gpf << endl;
	 cout << setw(25) << "Income Tax : " << setw(10)<< tax << endl;
	 cout << setw(25) << "Net Pay : " << setw(10) << np << endl;
}

Illustration 9.10: Program to Calculate Net Salary

The output will be,
Enter Basic Pay: 12000
Enter D.A : 1250
Enter H.R.A : 1450

Basic Pay : 12000
Dearness Allowance : 1250

House Rent Allowance : 1450
Gross Pay : 14700

G.P.F : 1325
Income Tax : 1470

Net Pay : 11905
(HOT: Try to make multiple output statements as a single cout statement)

	 In the above program, every output statement has two setw() manipulators; first setw (25)
creates a filed with 25 spaces and second setw(10) creates another field with 10 spaces. When you

Chapter 9 Page 115-151.indd 144 3/24/2020 9:21:05 AM

144 145

represent a value to these fields, it will show the value within the field from right to left.

Field 2 with 10 space width New line modifier

Data to accommodate
in Field 2

Data to accommodate
in Field 1

Field 1 with 25 space width

} }
cout<<setw(25)<<"Basic Pay:"<<setw(10)<<basic<<endl;

In field1 and field 2, the string “Basic Pay: ” and the value of basic pay are shown as given in
Figure 9.16 below.

-------------------------------- Basic pay:

Field 1 with 25 space width Field 2 with 10 space width

---------------12000

Figure 9.16 setw() function
setprecision ()
This is used to display numbers with fractions in specific number of digits.
Syntax:
 	 setprecision (number of digits);
Example:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ 	 float hra = 1200.123;
	 cout << setprecision (5) << hra; }
	 In the above code, the given value 1200.123 will be displayed in 5 digits including
fractions. So, the output will be 1200.1
	 setprecision () prints the values from left to right. For the above code, first, it will take
4 digits and then prints one digit from fractional portion.
	 setprecision can also be used to set the number of decimal places to be displayed. In
order to do this task, you will have to set an ios flag within setf() manipulator. This may be
used in two forms: (i) fixed and (ii) scientific
	 These two forms are used when the keywords fixed or scientific are appropriately used
before the setprecision manipulator.
Example:
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ 	 cout.setf(ios::fixed);

	 cout << setprecision(2)<<0.1; }

Chapter 9 Page 115-151.indd 145 3/24/2020 9:21:05 AM

146 147

	 In the above program, ios flag is set to fixed type; it prints the floating point number in
fixed notation. So, the output will be, 0.10

cout.setf(ios::scientific);

cout << setprecision(2) << 0.1;

	 In the above statements, ios flag is set to scientific type; it will print the floating point
number in scientific notation. So, the output will be, 1.00e-001

9.15 Expression
	 An expression is a combination of operators, constants and variables arranged as
per the rules of C++. It may also include function calls which return values. (Functions
will be learnt in upcoming chapters).
	 An expression may consist of one or more operands, and zero or more operators to
produce a value. In C++, there are seven types of expressions, and they are:
	 (i) Constant Expression		 (ii) Integer Expression
	 (iii) Floating Expression		 (iv) Relational Expression
	 (v) Logical Expression		 (vi) Bitwise Expression
	 (vii) Pointer Expression
SN Expression Description Example

1 Constant
Expression

Constant expression consist only constant
values int num=100;

2 I n t e g e r
E x p r e s s i o n

The combination of integer and character
values and/or variables with simple
arithmetic operators to produce integer
results.

sum=num1+num2;
avg=sum/5;

3 Float Expression
The combination of floating point values
and/or variables with simple arithmetic
operators to produce floating point results.

Area=3.14*r*r;

4 R e l a t i o n a l
E x p r e s s i o n

The combination of values and/or variables
with relational operators to produce
bool(true means 1 or false means 0) values
as results.

x>y;
a+b==c+d;

5 L o g i c a l
E x p r e s s i o n

The combination of values and/or variables
with Logical operators to produce bool
values as results.

(a>b)&& (c==10);

6 B i t w i s e
E x p r e s s i o n

The combination of values and/or variables
with Bitwise operators.

x>>3;
a<<2;

7 P o i n t e r
E x p r e s s i o n

A Pointer is a variable that holds a memory
address. Pointer variables are declared using
(✳) symbol.

int *ptr;

Table 9.10 : Types of Expressions

Chapter 9 Page 115-151.indd 146 3/24/2020 9:21:05 AM

146 147

9.16 Type Conversion

	 The process of converting one fundamental data type into another is called as “Type Conversion”.
C++ provides two types of conversions.
(1) Implicit type conversion
(2) Explicit type conversion.
(1) Implicit type conversion:
	 An Implicit type conversion is a conversion performed by the compiler automatically.
So, implicit conversion is also called as “Automatic conversion”.
	 This type of conversion is applied usually whenever different data types are
intermixed in an expression. If the type of the operands differ, the compiler converts one
of them to match with the other, using the rule that the “smaller” type is converted to the
“wider” type, which is called as “Type Promotion”.
For example:
#include <iostream>
using namespace std;
int main()
{
	 int a=6;
	 float b=3.14;
	 cout << a+b;
}
	 In the above program, operand a is an int type and b is a float type. During the
execution of the program, int is converted into a float, because a float is wider than int.
Hence, the output of the above program will be: 9.14

The following Table 9.11 shows you the conversion pattern.

LHO

RHO
char short int long float double long double

char int int int long float double long double

short int int int long float double long double

int int int int long float double long double

long long long long long float double long double

float float float float float float double long double

double double double double double double double long double

long
double

long
double

long
double

long
double

long
double

long
double

long
double long double

(RHO – Right Hand Operand; LHO – Left Hand Operand)

Chapter 9 Page 115-151.indd 147 3/24/2020 9:21:05 AM

148 149

Table 9.11: Implicit conversion of mixed operands

(2) Explicit type conversion
	 C++ allows explicit conversion of variables or expressions from one data type to
another specific data type by the programmer. It is called as “type casting”.
Syntax:
	 (type-name) expression;
Where type-name is a valid C++ data type to which the conversion is to be performed.
Example:
#include <iostream>
using namespace std;
int main()
{
	 float varf=78.685;
	 cout << (int) varf;
}
	 In the above program, variable varf is declared as a float with an initial value
78.685. The value of varf is explicitly converted to an int type in cout statement. Thus, the
final output will be 78.
	 During explicit conversion, if you assign a value to a type with a greater range, it
does not cause any problem. But, assigning a value of a larger type to a smaller type may
result in loosing or loss of precision values.

S.No Explicit Conversion Problem

1 double to float
Loss of precision. If the original value is out of
range for the target type, the result becomes
undefined

2 float to int
Loss of fractional part. If original value may be
out of range for target type, the result becomes
undefined

3 long to short Loss of data
Table 9.12 – Explicit Conversion Problems

#include <iostream>
using namespace std;
int main()
{
	 double varf=178.25255685;
	 cout << (float) varf << endl;
	 cout << (int) varf << endl;
}
Output:
178.253
178

Example:

Chapter 9 Page 115-151.indd 148 3/24/2020 9:21:05 AM

148 149

1.	 What is meant by type conversion?
2.	 How implicit conversion is different from explicit conversion?
3.	 What is the difference between endl and \n?
4.	 What is the use of references?
5.	 What is the use of setprecision () ?

?Evaluate Yourself

Hands on practice:
1. 	 Write C++ programs to interchange the values of two variables.
	 a. Using the third variable
	 b. Without using third variable
2.	 Write C++ programs to do the following:
	 a. To find the perimeter and area of a quadrant.
	 b. To find the area of triangle.
	 c. To convert the temperature from Celsius to Fahrenheit.
3.	� Write a C++ to find the total and percentage of marks you secured from 10th

Standard Public Exam. Display all the marks one-by-one along with total and
percentage. Apply formatting functions.

•	 Every programming language has two
fundamental elements, viz., data types
and variables.

•	 In C++, the data types are classified
as three main categories (1) Built-in
data types (2) User-defined data types
(3) Derived data types.

•	 The variables are the named space to hold
values of certain data type.

•	 There are five fundamental data types in
C++: char, int, float, double and void.

•	 C++ compiler allocates specific memory
space for each and every data handled
according to the compiler’s standards.

•	 Variables are user-defined names
assigned to a memory location in which
the values are stored.

•	 Declaration is a process to instruct the
compiler to allocate memory as per the
type specified along with the variable
name.

•	 Manipulators are used to format output
of any C++ program. Manipulators are
functions specifically designed to use with
the insertion (<<) and extraction(>>)
operators.

•	 An expression is a combination of
operators, constants and variables
arranged as per the rules of C++.

•	 The process of converting one
fundamental data type into another
is called as “Type Conversion”. C++
provides two types of conversions (1)
Implicit type conversion and (2) Explicit
type conversion.

Points to Remember

Chapter 9 Page 115-151.indd 149 3/24/2020 9:21:05 AM

150 151

Evaluation

SECTION – A
Choose the correct answer
1.	 How many categories of data types are available in C++?
	 (a) 5			 (b) 4			 (c) 3			 (d) 2
2.	 Which of the following data types is not a fundamental type?
	 (a) signed		 (b) int			 (c) float		 (d) char
3.	 What will be the result of following statement?
	 char ch= ‘B’;
	 cout << (int) ch;
	 (a) B			 (b) b			 (c) 65			 (d) 66
4.	 Which of the character is used as suffix to indicate a floating point value?
	 (a) F			 (b) C			 (c) L			 (d) D
5.	 How many bytes of memory is allocated for the following variable declaration if you are

using Dev C++? 	 short int x;
	 (a) 2			 (b) 4			 (c) 6			 (d) 8
6.	 What is the output of the following snippet?
	 char ch = ‘A’;
	 ch = ch + 1;
	 (a) B			 (b) A1			 (c) F			 (d) 1A
7.	 Which of the following is not a data type modifier?
	 (a) signed		 (b) int			 (c) long		 (d) short
8.	 Which of the following operator returns the size of the data type?
	 (a) sizeof()		 (b) int	()		 (c) long ()		 (d) double ()
9.	 Which operator is used to access reference of a variable?
	 (a) $			 (b) #			 (c) &			 (d) !
10.	 This can be used as alternate to endl command:
	 (a) \t			 (b) \b			 (c) \0			 (c) \n

SECTION-B

Very Short Answers

1.	 Write a short note on const keyword with an example.
2.	 What is the use of setw() format manipulator?
3.	 Why is char often treated as integer data type?
4.	 What is a reference variable? What is its use?
5.	 Consider the following C++ statement. Are they equivalent?
	 char ch = 67;		 char ch = ‘C’;

Chapter 9 Page 115-151.indd 150 3/24/2020 9:21:05 AM

150 151

6.	 What is the difference between 56L and 56?

7.	 Determine which of the following are valid constant? And specify their type.

	 (i) 0.5		 (ii) ‘Name’	 (iii) ‘\t’	 (iv) 27,822

8.	 Suppose x and y are two double type variable that you want add as integer and assign to
an integer variable. Construct a C++ statement to do the above.

9.	 What will be the result of following if num=6 initially.

	 (a) cout << num;

	 (b) cout << (num==5);

10.	 Which of the following two statements are valid? Why? Also write their result.

	 (i) 	int a; a = 3,014;	 (ii) int a; a=(3,014);

SECTION-C
Short Answers

1.	 What are arithmetic operators in C++? Differentiate unary and binary arithmetic operators.
Give example for each of them.

2.	 How relational operators and logical operators are related to one another?

3.	 Evaluate the following C++ expressions where x, y, z are integers and m, n are floating
point numbers. The value of x = 5, y = 4 and m=2.5;

	 (i) n = x + y / x;

	 (ii) z = m * x + y;

	 (iii) z *= x * m + x;

Reference:

(1)	 Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,
Mc.Graw Hills.

(2)	 The Complete Reference C++ (Forth Edition), Herbert Schildt. Mc.Graw Hills.

(3)	 Computer Science with C++ (A text book of CBSE XI and XII), Sumita Arora,
Dhanpat Rai & Co.

Chapter 9 Page 115-151.indd 151 3/24/2020 9:21:05 AM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101
	Chapter 8 Page 102-114
	Chapter 9 Page 115-151

