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Pioneers of Thermodynamics

Lord Kelvin (William Thomson) (1824-1907), born in Belfast, Ireland, is
among the foremost British scientists of the nineteenth century. Thomson
played a key role in the development of the law of conservation of energy
suggested by the work of James Joule (1818-1889), Julius Mayer (1814-
1878) and Hermann Helmholtz (1821-1894). He collaborated with Joule
on the so-called Joule-Thomson effect : cooling of a gas when it expands
into vacuum. He introduced the notion of the absolute zero of temperature
and proposed the absolute temperature scale, now called the Kelvin scale
in his honour. From the work of Sadi Carnot (1796-1832), Thomson arrived
at a form of the Second Law of Thermodynamics. Thomson was a versatile
physicist, with notable contributions to electromagnetic theory and
hydrodynamics.

Rudolf Clausius (1822-1888), born in Poland, is generally regarded as
the discoverer of the Second Law of Thermodynamics. Based on the work
of Carnot and Thomson, Clausius arrived at the important notion of entropy
that led him to a fundamental version of the Second Law of
Thermodynamics that states that the entropy of an isolated system can
never decrease. Clausius also worked on the kinetic theory of gases and
obtained the first reliable estimates of molecular size, speed, mean free

path, etc.

A heat pump is the same as a refrigerator.
What term we use depends on the purpose of
the device. If the purpose is to cool a portion of
space, like the inside of a chamber, and higher
temperature reservoir is surrounding, we call
the device a refrigerator; if the idea is to pump
heat into a portion of space (the room in a
building when the outside environment is cold),
the device is called a heat pump.

In a refrigerator the working substance
(usually, in gaseous form) goes through the
following steps : (a) sudden expansion of the gas
from high to low pressure which cools it and
converts it into a vapour-liquid mixture, (b)
absorption by the cold fluid of heat from the
region to be cooled converting it into vapour, (c)
heating up of the vapour due to external work
done on the system, and (d) release of heat by
the vapour to the surroundings, bringing it to
the initial state and completing the cycle.

The coefficient of performance (¢) of a
refrigerator is given by

or=— (12.21)

where @, is the heat extracted from the cold
reservoir and W is the work done on the
system-the refrigerant. (o for heat pump is
defined as Q, /W) Note that while n by definition
can never exceed 1, o can be greater than 1.
By energy conservation, the heat released to the
hot reservoir is

Q, =W+ Q,

. _ 9

je., © 0-0, (12.22)
In a heat engine, heat cannot be fully

converted to work; likewise a refrigerator cannot

work without some external work done on the

system, i.e., the coefficient of performance in Eq.

(12.21) cannot be infinite.

12.11 SECOND LAW OF THERMODYNAMICS

The First Law of Thermodynamics is the principle
of conservation of energy. Common experience
shows that there are many conceivable
processes that are perfectly allowed by the First
Law and yet are never observed. For example,
nobody has ever seen a book lying on a table
jumping to a height by itself. But such a thing



310

PHYSICS

would be possible if the principle of conservation
of energy were the only restriction. The table
could cool spontaneously, converting some of its
internal energy into an equal amount of
mechanical energy of the book, which would
then hop to a height with potential energy equal
to the mechanical energy it acquired. But this
never happens. Clearly, some additional basic
principle of nature forbids the above, even
though it satisfies the energy conservation
principle. This principle, which disallows many
phenomena consistent with the First Law of
Thermodynamics is known as the Second Law
of Thermodynamics.

The Second Law of Thermodynamics gives a
fundamental limitation to the efficiency of a heat
engine and the co-efficient of performance of a
refrigerator. In simple terms, it says that
efficiency of a heat engine can never be unity.
According to Eq. (12.20), this implies that heat
released to the cold reservoir can never be made
zero. For a refrigerator, the Second Law says that
the co-efficient of performance can never be
infinite. According to Eq. (12.21), this implies
that external work (W) can never be zero. The
following two statements, one due to Kelvin and
Planck denying the possibility of a perfect heat
engine, and another due to Clausius denying
the possibility of a perfect refrigerator or heat
pump, are a concise summary of these
observations.

Second Law of Thermodynamics

Kelvin-Planck statement

No process is possible whose sole result is the
absorption of heat from a reservoir and the
complete conversion of the heat into work.

Clausius statement

No process is possible whose sole result is the
transfer of heat from a colder object to a hotter
object.

It can be proved that the two statements
above are completely equivalent.

12.12 REVERSIBLE AND IRREVERSIBLE
PROCESSES

Imagine some process in which a thermodynamic
system goes from an initial state i to a final
state f. During the process the system absorbs
heat Q from the surroundings and performs
work W on it. Can we reverse this process and

bring both the system and surroundings to their
initial states with no other effect anywhere ?
Experience suggests that for most processes in
nature this is not possible. The spontaneous
processes of nature are irreversible. Several
examples can be cited. The base of a vessel on
an oven is hotter than its other parts. When
the vessel is removed, heat is transferred from
the base to the other parts, bringing the vessel
to a uniform temperature (which in due course
cools to the temperature of the surroundings).
The process cannot be reversed; a part of the
vessel will not get cooler spontaneously and
warm up the base. It will violate the Second Law
of Thermodynamics, if it did. The free expansion
of a gas is irreversible. The combustion reaction
of a mixture of petrol and air ignited by a spark
cannot be reversed. Cooking gas leaking from a
gas cylinder in the kitchen diffuses to the
entire room. The diffusion process will not
spontaneously reverse and bring the gas back
to the cylinder. The stirring of a liquid in thermal
contact with a reservoir will convert the work
done into heat, increasing the internal energy
of the reservoir. The process cannot be reversed
exactly; otherwise it would amount to conversion
of heat entirely into work, violating the Second
Law of Thermodynamics. Irreversibility is a rule
rather an exception in nature.

Irreversibility arises mainly from two causes:
one, many processes (like a free expansion, or
an explosive chemical reaction) take the system
to non-equilibrium states; two, most processes
involve friction, viscosity and other dissipative
effects (e.g., a moving body coming to a stop and
losing its mechanical energy as heat to the floor
and the body; a rotating blade in a liquid coming
to a stop due to viscosity and losing its
mechanical energy with corresponding gain in
the internal energy of the liquid). Since
dissipative effects are present everywhere and
can be minimised but not fully eliminated, most
processes that we deal with are irreversible.

A thermodynamic process (state i — state f)
is reversible if the process can be turned back
such that both the system and the surroundings
return to their original states, with no other
change anywhere else in the universe. From the
preceding discussion, a reversible process is an
idealised notion. A process is reversible only if
it is quasi-static (system in equilibrium with the
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surroundings at every stage) and there are no
dissipative effects. For example, a quasi-static
isothermal expansion of an ideal gas in a
cylinder fitted with a frictionless movable piston
is a reversible process.

Why is reversibility such a basic concept in
thermodynamics ? As we have seen, one of the
concerns of thermodynamics is the efficiency
with which heat can be converted into work.
The Second Law of Thermodynamics rules out
the possibility of a perfect heat engine with 100%
efficiency. But what is the highest efficiency
possible for a heat engine working between two
reservoirs at temperatures T, and T, ? It turns
out that a heat engine based on idealised
reversible processes achieves the highest
efficiency possible. All other engines involving
irreversibility in any way (as would be the case
for practical engines) have lower than this
limiting efficiency.

12.13 CARNOT ENGINE

Suppose we have a hot reservoir at temperature
T, and a cold reservoir at temperature T,. What
is the maximum efficiency possible for a heat
engine operating between the two reservoirs and
what cycle of processes should be adopted to
achieve the maximum efficiency ? Sadi Carnot,
a French engineer, first considered this question
in 1824. Interestingly, Carnot arrived at the
correct answer, even though the basic concepts
of heat and thermodynamics had yet to be firmly
established.

We expect the ideal engine operating between
two temperatures to be a reversible engine.
Irreversibility is associated with dissipative
effects, as remarked in the preceding section,
and lowers efficiency. A process is reversible if
it is quasi-static and non-dissipative. We have
seen that a process is not quasi-static if it
involves finite temperature difference between
the system and the reservoir. This implies that
in a reversible heat engine operating between
two temperatures, heat should be absorbed
(from the hot reservoir) isothermally and
released (to the cold reservoir) isothermally. We
thus have identified two steps of the reversible
heat engine : isothermal process at temperature
T, absorbing heat Q| from the hot reservoir, and
another isothermal process at temperature T,
releasing heat @, to the cold reservoir. To

complete a cycle, we need to take the system
from temperature T, to T, and then back from
temperature T, to T,. Which processes should
we employ for this purpose that are reversible?
A little reflection shows that we can only adopt
reversible adiabatic processes for these
purposes, which involve no heat flow from any
reservoir. If we employ any other process that is
not adiabatic, say an isochoric process, to take
the system from one temperature to another, we
shall need a series of reservoirs in the
temperature range T, to T, to ensure that at each
stage the process is quasi-static. (Remember
again that for a process to be quasi-static and
reversible, there should be no finite temperature
difference between the system and the reservoir.)
But we are considering a reversible engine that
operates between only two temperatures. Thus
adiabatic processes must bring about the
temperature change in the system from T to T,
and T, to T, in this engine.

(P,V,.T)

o —>

(P,,V,,T)

(P, V,,T))
(P, V,,T,)

0 v —

Fig. 12.11 Carnot cycle for a heat engine with an
ideal gas as the working substance.

A reversible heat engine operating between
two temperatures is called a Carnot engine. We
have just argued that such an engine must have
the following sequence of steps constituting one
cycle, called the Carnot cycle, shown in Fig.
12.11. We have taken the working substance of
the Carnot engine to be an ideal gas.

(@) Step 1 — 2 Isothermal expansion of the gas
taking its state from (P, V,, T)) to
(P,, V,, T).

The heat absorbed by the gas (Q)) from the
reservoir at temperature T, is given by
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Eq. (12.12). This is also the work done (W, _ )
by the gas on the environment.

Vo
W, ,, =0 =uRT, In (71) (12.23)
(b) Step2 — 3 Adiabatic expansion of the gas
from (P, V,, T) to (P,, V,, T)
Work done by the gas, using

Eq.(12.16),is
UR(T, - T,
W5 =(y+12) (12.24)

(c) Step3 — 4 Isothermal compression of the
gas from (P,, V,, T) to (P, V,, T,

3’ T2 4’ 2)'

Heat released (Q,) by the gas to the reservoir
at temperature T, is given by Eq. (12.12). This
is also the work done (W, _ ) on the gas by the
environment.

V.
W;,,=0, = uRTIn [ng (12.25)

4

(d) Step4 — 1 Adiabatic compression of the
gas from (P, V,, T)) to (P,,V, T).

Work done on the gas, [using Eq.(12.16)], is
7} _-75
v-1

From Egs. (12.23) to (12.26) total work done
by the gas in one complete cycle is

W491=MR[ (12.26)
W=W, 5 +W, ,3-W5 ,,-W,

Vs V3
= uRT, In v, —URT, In v, (12.27)

The efficiency n of the Carnot engine is

(12.28)

Now since step 2 — 3 is an adiabatic process,

y-1 y-1
T, V, =T, V,

v T 1/(y-1)
L. Y222
ie. v, [Tl j (12.29)

Similarly, since step 4 — 1 is an adiabatic
process

-1 -1
T2 V4y = Tl Vly

1/y-1
i ﬁ = & 12.30
ie. v, ol (12.30)
From Egs. (12.29) and (12.30),
Vs _Vy
v, Vv, (12.31)
Using Eq. (12.31) in Eq. (12.28), we get
T2
1721—F (Carnot engine) (12.32)
1

We have already seen that a Carnot engine
is a reversible engine. Indeed it is the only
reversible engine possible that works between
two reservoirs at different temperatures. Each
step of the Carnot cycle given in Fig. 12.11 can
be reversed. This will amount to taking heat Q,
from the cold reservoir at T,, doing work W on
the system, and transferring heat Q, to the hot
reservoir. This will be a reversible refrigerator.

We next establish the important result
(sometimes called Carnot’s theorem) that
(a) working between two given temperatures T,
and T, of the hot and cold reservoirs respectively,
no engine can have efficiency more than that of
the Carnot engine and (b) the efficiency of the
Carnot engine is independent of the nature of
the working substance.

To prove the result (a), imagine a reversible
(Carnot) engine R and an irreversible engine [
working between the same source (hot reservoir)
and sink (cold reservoir). Let us couple the
engines, I and R, in such a way so that I acts
like a heat engine and R acts as a refrigerator.
Let I absorb heat Q1 from the source, deliver
work W’ and release the heat Q - W’ to the sink.
We arrange so that Rreturns the same heat Q,
to the source, taking heat Q2 from the sink and
requiring work W = Q, - Q, to be done on it.
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Now suppose 1, < 71, i.e. if R were to act
as an engine it would give less work output
than that of Ii.e. W< W’ for a given Q,. With R
acting like a refrigerator, this would mean
Q,= Q -W> @Q - W' Thus on the whole,
the coupled I-R system extracts heat
Q,-W)-(Q, -W)=(W’-W) from the cold
reservoir and delivers the same amount of work
in one cycle, without any change in the source
or anywhere else. This is clearly against the
Kelvin-Planck statement of the Second Law of
Thermodynamics. Hence the assertion n, > 1,
is wrong. No engine can have efficiency greater

Wv
1 Ql Q _Wl
1
Q1 I QI_W
W

Fig. 12.12 An irreversible engine (I) coupled to a
reversible refrigerator (R). [f W ’> W, this
would amount to extraction of heat
W’ — W from the sink and its full
conversion to worlk, in contradiction with
the Second Law of Thermodynamics.

than that of the Carnot engine. A similar
argument can be constructed to show that a
reversible engine with one particular substance
cannot be more efficient than the one using
another substance. The maximum efficiency of
a Carnot engine given by Eq. (12.32) is
independent of the nature of the system
performing the Carnot cycle of operations. Thus
we are justified in using an ideal gas as a system
in the calculation of efficiency n of a Carnot
engine. The ideal gas has a simple equation of
state, which allows us to readily calculate n, but
the final result for n, [Eq. (12.32)], is true for
any Carnot engine.

This final remark shows that in a Carnot
cycle,
G _Th

9 T
is a universal relation independent of the nature
of the system. Here Q and @, are respectively,
the heat absorbed and released isothermally
(from the hot and to the cold reservoirs) in a
Carnot engine. Equation (12.33), can, therefore,
be used as a relation to define a truly universal
thermodynamic temperature scale that is
independent of any particular properties of the
system used in the Carnot cycle. Of course, for
an ideal gas as a working substance, this
universal temperature is the same as the ideal
gas temperature introduced in section 12.11.

(12.33)

SUMMARY

1. The zeroth law of thermodynamics states that ‘two systems in thermal equilibrium with a
third system are in thermal equilibrium with each other. The Zeroth Law leads to the

concept of temperature.

2. Internal energy of a system is the sum of kinetic energies and potential energies of the
molecular constituents of the system. It does not include the over-all kinetic energy of
the system. Heat and work are two modes of energy transfer to the system. Heat is the
energy transfer arising due to temperature difference between the system and the
surroundings. Work is energy transfer brought about by other means, such as moving
the piston of a cylinder containing the gas, by raising or lowering some weight connected

to it.

3. The first law of thermodynamics is the general law of conservation of energy applied to
any system in which energy transfer from or to the surroundings (through heat and

work) is taken into account. It states that

AQ =AU + AW

where AQ is the heat supplied to the system, AW is the work done by the system and AU
is the change in internal energy of the system.
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The specific heat capacity of a substance is defined by
1 AQ
f=—=r
m AT

where m is the mass of the substance and AQ is the heat required to change its
temperature by AT. The molar specific heat capacity of a substance is defined by

S g Ye)
u AT

where | is the number of moles of the substance. For a solid, the law of equipartition
of energy gives
C = 3R

which generally agrees with experiment at ordinary temperatures.

Calorie is the old unit of heat. 1 calorie is the amount of heat required to raise the
temperature of 1 g of water from 14.5 °C to 15.5 °C. 1 cal = 4.186 J.

For an ideal gas, the molar specific heat capacities at constant pressure and volume
satisfy the relation

C,-C, =R
where R is the universal gas constant.

Equilibrium states of a thermodynamic system are described by state variables. The
value of a state variable depends only on the particular state, not on the path used to
arrive at that state. Examples of state variables are pressure (P), volume (V), temperature
(T), and mass (m). Heat and work are not state variables. An Equation of State (like
the ideal gas equation PV = u RT) is a relation connecting different state variables.

A quasi-static process is an infinitely slow process such that the system remains in
thermal and mechanical equilibrium with the surroundings throughout. In a
quasi-static process, the pressure and temperature of the environment can differ from
those of the system only infinitesimally.

In an isothermal expansion of an ideal gas from volume V, to V, at temperature T the
heat absorbed (Q) equals the work done (W) by the gas, each given by

Yy
Q=W= uRT In |7y

In an adiabatic process of an ideal gas

PVV = constant

where Y= C_

Work done by an ideal gas in an adiabatic change of state from (P, V|, T)) to (P,, V,, T))
is
_ LR (T1 - TQ)

y-1

\"4

Heat engine is a device in which a system undergoes a cyclic process resulting in
conversion of heat into work. If Q, is the heat absorbed from the source, Q, is the heat
released to the sink, and the work output in one cycle is W, the efficiency 7 of the engine
is:

w9

=2 =]
9T a
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11. In a refrigerator or a heat pump, the system extracts heat Q, from the cold reservoir and
releases Q, amount of heat to the hot reservoir, with work W done on the system. The
co-efficient of performance of a refrigerator is given by

_9s O
W 0,-09-

12. The second law of thermodynamics disallows some processes consistent with the First
Law of Thermodynamics. It states

Kelvin-Planck statement

No process is possible whose sole result is the absorption of heat from a reservoir and
complete conversion of the heat into work.

Clausius statement

No process is possible whose sole result is the transfer of heat from a colder object to a
hotter object.

Put simply, the Second Law implies that no heat engine can have efficiency n equal to
1 or no refrigerator can have co-efficient of performance o equal to infinity.

13. A process is reversible if it can be reversed such that both the system and the surroundings
return to their original states, with no other change anywhere else in the universe.
Spontaneous processes of nature are irreversible. The idealised reversible process is a
quasi-static process with no dissipative factors such as friction, viscosity, etc.

14. Carnot engine is a reversible engine operating between two temperatures T, (source) and
T, (sink). The Carnot cycle consists of two isothermal processes connected by two
adiabatic processes. The efficiency of a Carnot engine is given by

n=1- -2 (Carnot engine)
T,

No engine operating between two temperatures can have efficiency greater than that of
the Carnot engine.

15. If Q > 0, heat is added to the system
If Q < O, heat is removed to the system
If W > 0, Work is done by the system
If W < 0, Work is done on the system

Co-efficienty of volume o, K] K! o, =30
expansion
Heat supplied to a system AQ ML T7] J Qis not a state
variable
Specific heat s [L2T2 K] Jkg!K!
dt
Thermal Conductivity K [MLT3 K] Js'K! H=-KA —
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POINTS TO PONDER

1. Temperature of a body is related to its average internal energy, not to the kinetic energy
of motion of its centre of mass. A bullet fired from a gun is not at a higher temperature
because of its high speed.

2. Equilibrium in thermodynamics refers to the situation when macroscopic variables
describing the thermodynamic state of a system do not depend on time. Equilibrium of
a system in mechanics means the net external force and torque on the system are zero.

3. In a state of thermodynamic equilibrium, the microscopic constituents of a system are
not in equilibrium (in the sense of mechanics).

4. Heat capacity, in general, depends on the process the system goes through when heat is
supplied.

5. In isothermal quasi-static processes, heat is absorbed or given out by the system even
though at every stage the gas has the same temperature as that of the surrounding
reservoir. This is possible because of the infinitesimal difference in temperature between
the system and the reservoir.

EXERCISES

12.1 A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C.
If the geyser operates on a gas burner, what is the rate of consumption of the fuel if
its heat of combustion is 4.0 x 10* J/g ?

12.2 What amount of heat must be supplied to 2.0 x 102 kg of nitrogen (at room
temperature) to raise its temperature by 45 °C at constant pressure ? (Molecular
mass of N, = 28; R=8.3Jmol 'K )

12.3 Explain why

(a) Two bodies at different temperatures T, and T, if brought in thermal contact do
not necessarily settle to the mean temperature (T} + T,)/2.

(b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent
the different parts of a plant from getting too hot) should have high specific
heat.

(c) Air pressure in a car tyre increases during driving.

(d) The climate of a harbour town is more temperate than that of a town in a desert
at the same latitude.

12.4 A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature
and pressure. The walls of the cylinder are made of a heat insulator, and the piston
is insulated by having a pile of sand on it. By what factor does the pressure of the
gas increase if the gas is compressed to half its original volume ?

12.5 In changing the state of a gas adiabatically from an equilibrium state A to another
equilibrium state B, an amount of work equal to 22.3 J is done on the system. If the
gas is taken from state A to B via a process in which the net heat absorbed by the
system is 9.35 cal, how much is the net work done by the system in the latter case ?
(Take 1 cal =4.19J)

12.6 Two cylinders A and B of equal capacity are connected to each other via a stopcock.
A contains a gas at standard temperature and pressure. B is completely evacuated.
The entire system is thermally insulated. The stopcock is suddenly opened. Answer
the following :

(a) What is the final pressure of the gas in A and B ?
(b) What is the change in internal energy of the gas ?
(c) What is the change in the temperature of the gas ?

(d) Do the intermediate states of the system (before settling to the final equilibrium
state) lie on its P-V-T surface ?
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12.7 A steam engine delivers 5.4x 10%J of work per minute and services 3.6 x 10°J of heat
per minute from its boiler. What is the efficiency of the engine? How much heat is
wasted per minute?

12.8 An electric heater supplies heat to a system at a rate of 100W. If system performs
work at a rate of 75 joules per second. At what rate is the internal energy increasing?

12.9 A thermodynamic system is taken from an original state to an intermediate state by
the linear process shown in Fig. (12.13)

[
=]
o
o

300

Pressure, P (N/m?) ———>

0 2.0 5.0
Volume, V (m®) ———>

Fig. 12.13

Its volume is then reduced to the original value from E to F by an isobaric process.
Calculate the total work done by the gas from D to E to F

12.10 Arefrigerator is to maintain eatables kept inside at 9°C. If room temperature is 36°C,
calculate the coefficient of performance.
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KiINETIC THEORY

13.1 INTRODUCTION

Boyle discovered the law named after him in 1661. Boyle,
Newton and several others tried to explain the behaviour of
gases by considering that gases are made up of tiny atomic
particles. The actual atomic theory got established more than
150 years later. Kinetic theory explains the behaviour of gases
based on the idea that the gas consists of rapidly moving
atoms or molecules. This is possible as the inter-atomic forces,
which are short range forces that are important for solids
and liquids, can be neglected for gases. The kinetic theory
was developed in the nineteenth century by Maxwell,
Boltzmann and others. It has been remarkably successful. It
gives a molecular interpretation of pressure and temperature
of a gas, and is consistent with gas laws and Avogadro’s
hypothesis. It correctly explains specific heat capacities of
many gases. It also relates measurable properties of gases
such as viscosity, conduction and diffusion with molecular
parameters, yielding estimates of molecular sizes and masses.
This chapter gives an introduction to kinetic theory.

13.2 MOLECULAR NATURE OF MATTER

Richard Feynman, one of the great physicists of 20th century
considers the discovery that “Matter is made up of atoms” to
be a very significant one. Humanity may suffer annihilation
(due to nuclear catastrophe) or extinction (due to
environmental disasters) if we do not act wisely. If that
happens, and all of scientific knowledge were to be destroyed
then Feynman would like the ‘Atomic Hypothesis’ to be
communicated to the next generation of creatures in the
universe. Atomic Hypothesis: All things are made of atoms -
little particles that move around in perpetual motion,
attracting each other when they are a little distance apart,
but repelling upon being squeezed into one another.
Speculation that matter may not be continuous, existed in
many places and cultures. Kanada in India and Democritus
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Atomic Hypothesis in Ancient India and Greece

Though John Dalton is credited with the introduction of atomic viewpoint in modern science, scholars in
ancient India and Greece conjectured long before the existence of atoms and molecules. In the Vaiseshika
school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in
considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter.
It was argued that if matter could be subdivided without an end, there would be no difference between a
mustard seed and the Meru mountain. The four kinds of atoms (Paramanu — Sanskrit word for the
smallest particle) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic
mass and other attributes, were propounded. Akasa (space) was thought to have no atomic structure and
was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a
diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending
upon the nature and ratio of the constituent atoms. The size of the atoms was also estimated, by conjecture
or by methods that are not known to us. The estimates vary. In Lalitavistara, a famous biography of the
Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic
size, of the order of 10 °m.

In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The
word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in
shape, size and other properties and this resulted in the different properties of the substances formed
by their combination. The atoms of water were smooth and round and unable to ‘hook’ on to each
other, which is why liquid /water flows easily. The atoms of earth were rough and jagged, so they held
together to form hard substances. The atoms of fire were thorny which is why it caused painful burns.
These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they
were intuitive conjectures and speculations not tested and modified by quantitative experiments - the
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hallmark of modern science.

in Greece had suggested that matter may consist
of indivisible constituents. The scientific *“Atomic
Theory’ is usually credited to John Dalton. He
proposed the atomic theory to explain the laws
of definite and multiple proportions obeyed by
elements when they combine into compounds.
The first law says that any given compound has,
a fixed proportion by mass of its constituents.
The second law says that when two elements
form more than one compound, for a fixed mass
of one element, the masses of the other elements
are in ratio of small integers.

To explain the laws Dalton suggested, about
200 years ago, that the smallest constituents
of an element are atoms. Atoms of one element
are identical but differ from those of other
elements. A small number of atoms of each
element combine to form a molecule of the
compound. Gay Lussac’s law, also given in early
19" century, states: When gases combine
chemically to yield another gas, their volumes
are in the ratios of small integers. Avogadro’s
law (or hypothesis) says: Equal volumes of all
gases at equal temperature and pressure have
the same number of molecules. Avogadro’s law,
when combined with Dalton’s theory explains
Gay Lussac’s law. Since the elements are often
in the form of molecules, Dalton’s atomic theory
can also be referred to as the molecular theory

of matter. The theory is now well accepted by
scientists. However even at the end of the
nineteenth century there were famous scientists
who did not believe in atomic theory !

From many observations, in recent times we
now know that molecules (made up of one or
more atoms) constitute matter. Electron
microscopes and scanning tunnelling
microscopes enable us to even see them. The
size of an atom is about an angstrom (10 !° m).
In solids, which are tightly packed, atoms are
spaced about a few angstroms (2 A) apart. In
liquids the separation between atoms is also
about the same. In liquids the atoms are not
as rigidly fixed as in solids, and can move
around. This enables a liquid to flow. In gases
the interatomic distances are in tens of
angstroms. The average distance a molecule
can travel without colliding is called the mean
free path. The mean free path, in gases, is of
the order of thousands of angstroms. The atoms
are much freer in gases and can travel long
distances without colliding. If they are not
enclosed, gases disperse away. In solids and
liquids the closeness makes the interatomic force
important. The force has a long range attraction
and a short range repulsion. The atoms attract
when they are at a few angstroms but repel when
they come closer. The static appearance of a gas
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is misleading. The gas is full of activity and the
equilibrium is a dynamic one. In dynamic
equilibrium, molecules collide and change their
speeds during the collision. Only the average
properties are constant.

Atomic theory is not the end of our quest, but
the beginning. We now know that atoms are not
indivisible or elementary. They consist of a
nucleus and electrons. The nucleus itself is made
up of protons and neutrons. The protons and
neutrons are again made up of quarks. Even
quarks may not be the end of the story. There
may be string like elementary entities. Nature
always has surprises for us, but the search for
truth is often enjoyable and the discoveries
beautiful. In this chapter, we shall limit ourselves
to understanding the behaviour of gases (and a
little bit of solids), as a collection of moving
molecules in incessant motion.

13.3 BEHAVIOUR OF GASES

Properties of gases are easier to understand than
those of solids and liquids. This is mainly
because in a gas, molecules are far from each
other and their mutual interactions are
negligible except when two molecules collide.
Gases at low pressures and high temperatures
much above that at which they liquefy (or
solidify) approximately satisfy a simple relation
between their pressure, temperature and volume
given by (see Ch. 11)

PV =KT (13.1)

for a given sample of the gas. Here T is the
temperature in kelvin or (absolute) scale. K is
a constant for the given sample but varies with
the volume of the gas. If we now bring in the
idea of atoms or molecules then Kis proportional
to the number of molecules, (say) N in the
sample. We can write K= N k. Observation tells
us that this I is same for all gases. It is called
Boltzmann constant and is denoted by kB.

P 1V1 _ P 2V2

N lTl - N, 2T2
if P, Vand T are same, then N is also same for
all gases. This is Avogadro’s hypothesis, that the
number of molecules per unit volume is same
for all gases at a fixed temperature and pressure.
The number in 22.4 litres of any gas is 6.02 x
1023. This is known as Avogadro number and
is denoted by N,. The mass of 22.4 litres of any
gas is equal to its molecular weight in grams at
S.T.P (standard temperature 273 K and pressure
1 atm). This amount of substance is called a
mole (see Chapter 2 for a more precise definition).
Avogadro had guessed the equality of numbers
in equal volumes of gas at a fixed temperature
and pressure from chemical reactions. Kinetic
theory justifies this hypothesis.

The perfect gas equation can be written as

PV =uRT (13.3)

where u is the number of moles and R = N,
kg is a universal constant. The temperature Tis
absolute temperature. Choosing kelvin scale for

= constant = kg (13.2)

blindness.

John Dalton (1766- 1844)

He was an English chemist. When different types of atoms combine,
they obey certain simple laws. Dalton’s atomic theory explains these
laws in a simple way. He also gave a theory of colour

Amedeo Avogadro (1776 — 1856)

He made a brilliant guess that equal volumes of gases
have equal number of molecules at the same
temperature and pressure. This helped in
understanding the combination of different gases in

nitrogen are not atoms but diatomic molecules.

a very simple way. It is now called Avogadro’s hypothesis (or law). He also
suggested that the smallest constituent of gases like hydrogen, oxygen and
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absolute temperature, R = 8.314 J mol'K .
Here

M _N

‘u MO NA
where M is the mass of the gas containing N
molecules, M, is the molar mass and N, the
Avogadro’s number. Using Eqgs. (13.4) and (13.3)

can also be written as
PV =, NT or

Ideal gas /
3

(13.4)

P=lgnT

0 200 400 600 800

P (atm)
Fig.13.1 Real gases approach ideal gas behaviour
at low pressures and high temperatures.

where nis the number density, i.e. number of
molecules per unit volume. Ig; is the Boltzmann
constant introduced above. Its value in SI units
is 1.38 x 102 J KL

Another useful form of Eq. (13.3) is
PpRT

0
where p is the mass density of the gas.

A gas that satisfies Eq. (13.3) exactly at all
pressures and temperatures is defined to be an
ideal gas. An ideal gas is a simple theoretical
model of a gas. No real gas is truly ideal.
Fig. 13.1 shows departures from ideal gas
behaviour for a real gas at three different
temperatures. Notice that all curves approach
the ideal gas behaviour for low pressures and
high temperatures.

At low pressures or high temperatures the
molecules are far apart and molecular
interactions are negligible. Without interactions
the gas behaves like an ideal one.

If we fix y and Tin Eq. (13.3), we get

p=

(13.5)

PV = constant (13.6)

i.e., keeping temperature constant, pressure of
a given mass of gas varies inversely with volume.
This is the famous Boyle’s law. Fig. 13.2 shows
comparison between experimental P-V curves
and the theoretical curves predicted by Boyle’s
law. Once again you see that the agreement is
good at high temperatures and low pressures.
Next, if you fix P, Eq. (13.1) shows that Ve T
i.e., for a fixed pressure, the volume of a gas is
proportional to its absolute temperature T
(Charles’ law). See Fig. 13.3.

1.6

T 1.4

P
1.2

1.0
0.8

|
160 220

V —»

|
20 60 100 140

Fig.13.2 Experimental P-V curves (solid lines) for
steam at three temperatures compared
with Boyle’s law (dotted lines). P is in units
of 22 atm and V in units of 0.09 litres.

Finally, consider a mixture of non-interacting
ideal gases: I8 moles of gas 1, u, moles of gas
2, ete. in a vessel of volume V at temperature T
and pressure P. It is then found that the
equation of state of the mixture is :

PV=_(u, +u,+... ) RT (13.7)
ie. P= RT + RT + (13.8)
1.€. 2 % Hs % cee .

=P +P,+... (13.9)
Clearly P, = u, RT/V is the pressure gas 1

would exert at the same conditions of volume
and temperature if no other gases were present.
This is called the partial pressure of the gas.
Thus, the total pressure of a mixture of ideal
gases is the sum of partial pressures. This is
Dalton’s law of partial pressures.
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Fig. 13.3 Experimental T-V curves (solid lines) for
CO, at three pressures compared with
Charles’ law (dotted lines). T is in units of
300 K and V in units of 0.13 litres.

We next consider some examples which give
us information about the volume occupied by
the molecules and the volume of a single
molecule.

‘ Example 13.1 The density of wateris 1000
kg m3. The density of water vapour at 100 °C
and 1 atm pressure is 0.6 kg m=3. The
volume of a molecule multiplied by the total
number gives ,what is called, molecular
volume. Estimate the ratio (or fraction) of
the molecular volume to the total volume
occupied by the water vapour under the
above conditions of temperature and
pressure.

Answer For a given mass of water molecules,
the density is less if volume is large. So the
volume of the vapour is 1000/0.6 = /(6 x10 1)
times larger. If densities of bulk water and water
molecules are same, then the fraction of
molecular volume to the total volume in liquid
state is 1. As volume in vapour state has
increased, the fractional volume is less by the
same amount, i.e. 6x10™%. <

p Example 13.2 Estimate the volume of a
water molecule using the data in Example
13.1.

Answer In the liquid (or solid) phase, the
molecules of water are quite closely packed. The

density of water molecule may therefore, be

regarded as roughly equal to the density of bulk

water = 1000 kg m™. To estimate the volume of

a water molecule, we need to know the mass of

a single water molecule. We know that 1 mole

of water has a mass approximately equal to
2+16)g =18g = 0.018 kg.

Since 1 mole contains about 6 x 1028
molecules (Avogadro’s number), the mass of
a molecule of water is (0.018)/(6 x 1023 kg =
3 x 1026 kg. Therefore, a rough estimate of the
volume of a water molecule is as follows :

Volume of a water molecule

= (3 x 1026 kg)/ (1000 kg m™3)

=3x102°m3

= (4/3) © (Radius)®

Hence, Radius = 2 x101° m =2 A <

Example 13.3 What is the average
distance between atoms (interatomic
distance) in water? Use the data given in
Examples 13.1 and 13.2.

Answer : Agiven mass of water in vapour state
has 1.67x103 times the volume of the same mass
of water in liquid state (Ex. 13.1). This is also
the increase in the amount of volume available
for each molecule of water. When volume
increases by 10° times the radius increases by
V173 or 10 times, i.e., 10 x 2 A = 20 A. So the
average distance is 2 x 20 = 40 A. <

‘ Example 13.4 A vessel contains two non-
reactive gases : neon (monatomic) and
oxygen (diatomic). The ratio of their partial
pressures is 3:2. Estimate the ratio of (i)
number of molecules and (ii) mass density
of neon and oxygen in the vessel. Atomic
mass of Ne = 20.2 u, molecular mass of O,
=32.0 u.

Answer Partial pressure of a gas in a mixture is
the pressure it would have for the same volume
and temperature if it alone occupied the vessel.
(The total pressure of a mixture of non-reactive
gases is the sum of partial pressures due to its
constituent gases.) Each gas (assumed ideal)
obeys the gas law. Since Vand Tare common to
the two gases, we have PV=u RT and P,V =
u, RT, ie. (P,/P) = (u, / u,). Here 1 and 2 refer
to neon and oxygen respectively. Since (P,/P,) =
(3/2) (given), (u,/ ) = 3/2.
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(i By definition y, = (N,/N,) and u, = (N,/N,)
where N, and N, are the number of molecules
of 1 and 2, and N, i the Avogadro’s number.
Therefore, (N,/N,) = (1, / u,) =3/2.

(i) We can also write u, = (m;/M,) and u, =
(m,/M,) where m and m, are the masses of
1 and 2; and M, and M, are their molecular
masses. (Both m, and M;; as well as m, and
M, should be expressed in the same units).
If p, and p, are the mass densities of 1 and
2 respectively, we have

p_m/V ﬂ:ﬂx(%j

pp my/V - my Uy M,
= §>< 20.2 =0.947 R |
2 32.0

13.4 KINETIC THEORY OF AN IDEAL GAS

Kinetic theory of gases is based on the molecular
picture of matter. A given amount of gas is a
collection of a large number of molecules
(typically of the order of Avogadro’s number) that
are in incessant random motion. At ordinary
pressure and temperature, the average distance
between molecules is a factor of 10 or more than
the typical size of a molecule (2 A). Thus the
interaction between the molecules is negligible
and we can assume that they move freely in
straight lines according to Newton’s first law.
However, occasionally, they come close to each
other, experience intermolecular forces and their
velocities change. These interactions are called
collisions. The molecules collide incessantly
against each other or with the walls and change
their velocities. The collisions are considered to
be elastic. We can derive an expression for the
pressure of a gas based on the kinetic theory.

We begin with the idea that molecules of a
gas are in incessant random motion, colliding
against one another and with the walls of the
container. All collisions between molecules
among themselves or between molecules and the
walls are elastic. This implies that total kinetic
energy is conserved. The total momentum is
conserved as usual.

13.4.1 Pressure of an Ideal Gas

Consider a gas enclosed in a cube of side 1. Take
the axes to be parallel to the sides of the cube,
as shown in Fig. 13.4. A molecule with velocity

(-

““. >SX

Fig. 13.4 Elastic collision of a gas molecule with
the wall of the container:

(v, v, U, ) hits the planar wall parallel to yz-
plane of area A (= 2). Since the collision is elastic,
the molecule rebounds with the same velocity;
its y and z components of velocity do not change
in the collision but the x-component reverses
sign. That is, the velocity after collision is
(v, v, v,) . The change in momentum of the
molecule is : -mv_- (mv) = - 2mv_. By the
principle of conservation of momentum, the
momentum imparted to the wall in the collision
=2mv,_ .

To calculate the force (and pressure) on the
wall, we need to calculate momentum imparted
to the wall per unit time. In a small time interval
At, a molecule with x-component of velocity v,
will hit the wall if it is within the distance v_At
from the wall. That is, all molecules within the
volume Av At only can hit the wall in time At.
But, on the average, half of these are moving
towards the wall and the other half away from
the wall. Thus the number of molecules with
velocity (v, v, v,) hitting the wall in time At is
YA v, At nwhere nis the number of molecules
per unit volume. The total momentum
transferred to the wall by these molecules in
time At is:

Q=2mw) (YanAv At) (13.10)

The force on the wall is the rate of momentum
transfer Q/At and pressure is force per unit
area :

P= Q/(AA) = nmuv? 3.11)

Actually, all molecules in a gas do not have
the same velocity; there is a distribution in
velocities. The above equation therefore, stands
for pressure due to the group of molecules with
speed v in the x-direction and n stands for the
number density of that group of molecules. The
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total pressure is obtained by summing over the
contribution due to all groups:
P=nm 2 (13.12)
where E is the average of v? . Now the gas
is isotropic, i.e. there is no preferred direction
of velocity of the molecules in the vessel.
Therefore, by symmetry,

2 = 2 = 2
vy S U, T,

(1/3) [2 + o2 + 02 1=(1/3) v (13.13)

where v is the speed and v® denotes the mean

of the squared speed. Thus
P=(1/3)nm p2 (13.14)

Some remarks on this derivation. First,
though we choose the container to be a cube,
the shape of the vessel really is immaterial. For
avessel of arbitrary shape, we can always choose
a small infinitesimal (planar) area and carry
through the steps above. Notice that both A and
At do not appear in the final result. By Pascal’s
law, given in Ch. 10, pressure in one portion of

the gas in equilibrium is the same as anywhere
else. Second, we have ignored any collisions in
the derivation. Though this assumption is
difficult to justify rigorously, we can qualitatively
see that it will not lead to erroneous results.
The number of molecules hitting the wall in time
At was found to be ¥ n Av _At. Now the collisions
are random and the gas is in a steady state.
Thus, if a molecule with velocity (v, U, U, )
acquires a different velocity due to collision with
some molecule, there will always be some other
molecule with a different initial velocity which
alter a collision acquires the velocity (v, v, v,).
If this were not so, the distribution of velocities
would not remain steady. In any case we are
finding vi . Thus, on the whole, molecular
collisions (if they are not too frequent and the
time spent in a collision is negligible compared
to time between collisions) will not affect the
calculation above.

13.4.2 Kinetic Interpretation of Temperature
Equation (13.14) can be written as

PV = (1/3) nVm p? (13.15a)

Founders of Kinetic Theory of Gases

James Clerk Maxwell (1831 - 1879), born in Edinburgh,

Scotland, was among the greatest physicists of the nineteenth
century. He derived the thermal velocity distribution of molecules
in a gas and was among the first to obtain reliable estimates of
molecular parameters from measurable quantities like viscosity,
etc. Maxwell's greatest achievement was the unification of the laws
of electricity and magnetism (discovered by Coulomb, Oersted,
Ampere and Faraday) into a consistent set of equations now called
Maxwell's equations. From these he arrived at the most important
conclusion that light is an
electromagnetic wave.
Interestingly, Maxwell did not
agree with the idea (strongly
suggested by the Faraday’'s
laws of electrolysis) that
electricity was particulate in
nature.

Ludwig Boltzmann
(1844 -1906) born in

Vienna, Austria, worked on the kinetic theory of gases
independently of Maxwell. A firm advocate of atomism, that is
basic to kinetic theory, Boltzmann provided a statistical
interpretation of the Second Law of thermodynamics and the
concept of entropy. He is regarded as one of the founders of classical
statistical mechanics. The proportionality constant connecting
energy and temperature in kinetic theory is known as Boltzmann's
constant in his honour.
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PV = (2/3) Nx%m (2 (13.15b) M 98
No -26
where N (= nV) is the number of molecules in m = = 75 = 4.65x10 kg.
N, 6.02x10
the sample. o
The quantity in the bracket is the average v> =38k, T/m = (516)?m?s?

translational kinetic energy of the molecules in
the gas. Since the internal energy E of an ideal
gas is purely kinetic*,

E=Nx(1/2) m p? (13.16)
Equation (13.15) then gives :
PV=(2/3)E (13.17)

We are now ready for a kinetic interpretation
of temperature. Combining Eq. (13.17) with the
ideal gas Eq. (13.3), we get

E=(3/2) k; NT (13.18)
or E/N=Y% my* = (3/2)I,T (13.19)
i.e., the average kinetic energy of a molecule is
proportional to the absolute temperature of the
gas; it is independent of pressure, volume or
the nature of the ideal gas. This is a fundamental
result relating temperature, a macroscopic
measurable parameter of a gas
(a thermodynamic variable as it is called) to a
molecular quantity, namely the average kinetic
energy of a molecule. The two domains are
connected by the Boltzmann constant. We note
in passing that Eq. (13.18) tells us that internal
energy of an ideal gas depends only on
temperature, not on pressure or volume. With
this interpretation of temperature, kinetic theory
of an ideal gas is completely consistent with the
ideal gas equation and the various gas laws
based on it.

For a mixture of non-reactive ideal gases, the
total pressure gets contribution from each gas
in the mixture. Equation (13.14) becomes

P=(1/3) [nm, vlz +n,m, v§ +... ] (13.20)

In equilibrium, the average kinetic energy of

the molecules of different gases will be equal.
That is,

Voom, v> =%m, v2=(3/2 Kk, T
so that

P=(n, +n,+.. ) I, T (13.21)

which is Dalton’s law of partial pressures.

From Eq. (13.19), we can get an idea of the
typical speed of molecules in a gas. At a
temperature T = 300 K, the mean square speed
of a molecule in nitrogen gas is :

The square root of p? is known as root mean
square (rms) speed and is denoted by v,

rms’
(We can also write 2 as < v2>))
v = bH16ms’!

rms

The speed is of the order of the speed of sound
in air. It follows from Eq. (13.19) that at the same
temperature, lighter molecules have greater rms
speed.

P Example 13.5 A flask contains argon and
chlorine in the ratio of 2:1 by mass. The
temperature of the mixture is 27 °C. Obtain
the ratio of (i) average kinetic energy per
molecule, and (ii) root mean square speed
v of the molecules of the two gases.
Atomic mass of argon = 39.9 u; Molecular
mass of chlorine = 70.9 u.

Answer The important point to remember is that
the average Kkinetic energy (per molecule) of any
(ideal) gas (be it monatomic like argon, diatomic
like chlorine or polyatomic) is always equal to
(3/2) k,T. It depends only on temperature, and
is independent of the nature of the gas.

(i) Since argon and chlorine both have the same
temperature in the flask, the ratio of average
kinetic energy (per molecule) of the two gases
is 1:1.

(i) Now Y2 muv_ ? = average Kinetic energy per

molecule = (3/2)) k;T where m is the mass

of a molecule of the gas. Therefore,

(V?mS)Ar _ My _ M)y 70,9
(me)@ " (m), (M), =399 =177

ar 39.9

where M denotes the molecular mass of the gas.
(For argon, a molecule is just an atom of argon.)
Taking square root of both sides,

(V)
(v’ms )Cl

You should note that the composition of the
mixture by mass is quite irrelevant to the above

= 1.33

* E denotes the translational part of the internal energy U that may include energies due to other degrees of

Jreedom also. See section 13.5.
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Maxwell Distribution Function

In a given mass of gas, the velocities of all molecules are not the same, even when bulk
parameters like pressure, volume and temperature are fixed. Collisions change the direction
and the speed of molecules. However in a state of equilibrium, the distribution of speeds is
constant or fixed.

Distributions are very important and useful when dealing with systems containing large
number of objects. As an example consider the ages of different persons in a city. It is not
feasible to deal with the age of each individual. We can divide the people into groups: children
up to age 20 years, adults between ages of 20 and 60, old people above 60. If we want more
detailed information we can choose smaller intervals, 0-1, 1-2,..., 99-100 of age groups. When
the size of the interval becomes smaller, say half year, the number of persons in the interval
will also reduce, roughly half the original number in the one year interval. The number of
persons dN(¥ in the age interval xand x+dx is proportional to dxor dN(x) = n_dx. We have
used n_to denote the number of persons at the value of x.

o 0.5 1 Av 15 2.0 O/ Vims)

Maxwell distribution of molecular speeds

In a similar way the molecular speed distribution gives the number of molecules between
the speeds v and v+ dv. dN(v) =4p N e 12 dv = nudv. This is called Maxwell distribution.
The plot of n, against v is shown in the figure. The fraction of the molecules with speeds v and
v+dv is equal to the area of the strip shown. The average of any quantity like v? is defined by
the integral <v®>> = (1/N) Jv?2 dNw) = \/[SkB T/m) which agrees with the result derived from
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more elementary considerations.

calculation. Any other proportion by mass of
argon and chlorine would give the same answers
to (i) and (ii), provided the temperature remains
unaltered. <

> Example 13.6 Uranium has two isotopes
of masses 235 and 238 units. If both are
present in Uranium hexafluoride gas which
would have the larger average speed ? If
atomic mass of fluorine is 19 units,
estimate the percentage difference in
speeds at any temperature.

Answer At a fixed temperature the average
energy =% m<uv?> is constant. So smaller the

mass of the molecule, faster will be the speed.
The ratio of speeds is inversely proportional to
the square root of the ratio of the masses. The
masses are 349 and 352 units. So
Ugyo / Usgy, = (3527 349)1/2 =1.0044 .
AV
Hence difference Vv = 0.44 %.

[235U s the isotope needed for nuclear fission.
To separate it from the more abundant isotope
238U, the mixture is surrounded by a porous
cylinder. The porous cylinder must be thick and
narrow, so that the molecule wanders through
individually, colliding with the walls of the long
pore. The faster molecule will leak out more than
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the slower one and so there is more of the lighter
molecule (enrichment) outside the porous
cylinder (Fig. 13.5). The method is not very
efficient and has to be repeated several times
for sufficient enrichment.]. <
When gases diffuse, their rate of diffusion is
inversely proportional to square root of the
masses (see Exercise 13.12). Can you guess the
explanation from the above answer?

/7

Fig. 13.5 Molecules going through a porous wall.

‘ Example 13.7 (a) When a molecule (or
an elastic ball) hits a ( massive) wall, it
rebounds with the same speed. When a ball
hits a massive bat held firmly, the same
thing happens. However, when the bat is
moving towards the ball, the ball rebounds
with a different speed. Does the ball move
faster or slower? (Ch.6 will refresh your
memory on elastic collisions.)

(b) When gas in a cylinder is compressed
by pushing in a piston, its temperature
rises. Guess at an explanation of this in
terms of Kinetic theory using (a) above.

(c) What happens when a compressed gas
pushes a piston out and expands. What
would you observe ?

(d) Sachin Tendulkar uses a heavy cricket
bat while playing. Does it help him in
anyway ?

Answer (a) Let the speed of the ball be u relative
to the wicket behind the bat. If the bat is moving
towards the ball with a speed V' relative to the
wicket, then the relative speed of the ball to bat

is V+ u towards the bat. When the ball rebounds
(after hitting the massive bat) its speed, relative
to bat, is V + u moving away from the bat. So
relative to the wicket the speed of the rebounding
ballis V+ (V + u) = 2V + u, moving away from
the wicket. So the ball speeds up after the
collision with the bat. The rebound speed will
be less than u if the bat is not massive. For a
molecule this would imply an increase in
temperature.

You should be able to answer (b) (c¢) and (d)
based on the answer to (a).
(Hint: Note the correspondence, piston—> bat,

cylinder - wicket, molecule - ball.) <

13.5 LAW OF EQUIPARTITION OF ENERGY

The kinetic energy of a single molecule is

1 . 1 o 1 o
g = ETnUX + Emvy + Emvz
For a gas in thermal equilibrium at

temperature T the average value of energy

(13.22)

denoted by <g,>is

1 1 1 3
()= [ymet)(gms )+ (gmes )= 3kT (029
Since there is no preferred direction, Eq. (13.23)
implies

1, 1 1, 1
<§ mvx> = 5 kBT ’<§ mvy> = 5 kBT’

<% mv§> = % kT

A molecule free to move in space needs three
coordinates to specify its location. If it is
constrained to move in a plane it needs two;and
if constrained to move along a line, it needs just
one coordinate to locate it. This can also be
expressed in another way. We say that it has
one degree of freedom for motion in a line, two
for motion in a plane and three for motion in
space. Motion of a body as a whole from one
point to another is called translation. Thus, a
molecule free to move in space has three
translational degrees of freedom. Each
translational degree of freedom contributes a
term that contains square of some variable of
motion, e.g., ¥2 mv? and similar terms in
v, and v,. In, Eq. (13.24) we see that in thermal
equilibrium, the average of each such term is

Vo kT .

(13.24)
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Molecules of a monatomic gas like argon have
only translational degrees of freedom. But what
about a diatomic gas such as O, or N,? A
molecule of O, has three translational degrees
of freedom. But in addition it can also rotate
about its centre of mass. Figure 13.6 shows the
two independent axes of rotation 1 and 2, normal
to the axis joining the two oxygen atoms about
which the molecule can rotate*. The molecule
thus has two rotational degrees of freedom, each
of which contributes a term to the total energy
consisting of translational energy g, and
rotational energy «¢,.

1 1 1 1 1
& + e, =§mu§ +§mu: +§mu§ +§Ila>12 +512w§

(13.25)

Fig. 13.6 The two independent axes of rotation of a
diatomic molecule

where o, and o, are the angular speeds about
the axes 1 and 2 and I, I, are the corresponding
moments of inertia. Note that each rotational
degree of freedom contributes a term to the
energy that contains square of a rotational
variable of motion.

We have assumed above that the O, molecule
is a ‘Tigid rotator’, i.e. the molecule does not
vibrate. This assumption, though found to be
true (at moderate temperatures) for O,, is not
always valid. Molecules like CO even at moderate
temperatures have a mode of vibration, i.e. its
atoms oscillate along the interatomic axis like
a one-dimensional oscillator, and contribute a
vibrational energy term ¢, to the total energy:

1 (dyY 1, .
cegmla) 5

E=¢ +€. +¢E, (13.26)
where k is the force constant of the oscillator
and y the vibrational co-ordinate.

Once again the vibrational energy terms in
Eq. (13.26) contain squared terms of vibrational
variables of motion y and dy/dt .

At this point, notice an important feature in
Eq.(13.26). While each translational and
rotational degree of freedom has contributed only
one ‘squared term’ in Eq.(13.26), one vibrational
mode contributes two ‘squared terms’ : kKinetic
and potential energies.

Each quadratic term occurring in the
expression for energy is a mode of absorption of
energy by the molecule. We have seen that in
thermal equilibrium at absolute temperature T,
for each translational mode of motion, the
average energy is Y2 I, T. Amost elegant principle
of classical statistical mechanics (first proved
by Maxwell) states that this is so for each mode
of energy: translational, rotational and
vibrational. That is, in equilibrium, the total
energy is equally distributed in all possible
energy modes, with each mode having an average
energy equal to Y2 I, T. This is known as the
law of equipartition of energy. Accordingly,
each translational and rotational degree of
freedom of a molecule contributes % kT to the
energy while each vibrational frequency
contributes 2 x 5 kBT = kBT, since a vibrational
mode has both kinetic and potential energy
modes.

The proof of the law of equipartition of energy
is beyond the scope of this book. Here we shall
apply the law to predict the specific heats of
gases theoretically. Later we shall also discuss
briefly, the application to specific heat of solids.

13.6 SPECIFIC HEAT CAPACITY
13.6.1 Monatomic Gases

The molecule of a monatomic gas has only three
translational degrees of freedom. Thus, the
average energy of a molecule at temperature
Tis (3/2)k;T . The total internal energy of a
mole of such a gas is

* Rotation along the line joining the atoms has very small moment of inertia and does not come into play for
quantum mechanical reasons. See end of section 13.6.
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