
180 181

Learning Objectives
After learning this
chapter, the students will
be able to
• Understand the

Definition of
Functions and uses of Functions

• Understand the Types of Functions –
pre-defined and
user-defined functions

• Apply mathematical functions for
solving problems.

• Use String and Character functions for
the manipulation of String and Character
data

• Implement modular programming by
creating functions

• Understand the role of arguments
and compare different methods of the
arguments

• Recognizes the scope of variables and
functions in a program.

11.1 INTRODUCTION
 A large program can be split into small
sub-programs (blocks) called as functions
where each sub-program can perform some
specific functionality. Functions reduce the
size and complexity of a program, makes
it easier to understand, test, and check for
errors. The functions which are available by
default are known as “Built-in” functions
and user can create their own functions
known as “User-defined” functions.

CHAPTER 11
Functions

Unit III Introduction to C++

• Built-in functions – Functions which
are available in C++ language standard
library.

• User-defined functions – Functions
created by users.

11.2 Need for Functions

 To reduce size and complexity
of the program we use Functions. The
programmers can make use of sub programs
either writing their own functions or calling
them from standard library.

1. Divide and Conquer
• Complicated programs can be divided

into manageable sub programs called
functions.

• A programmer can focus on developing,
debugging and testing individual
functions.

• Many programmers can work on
different functions simultaneously.

2. Reusability

• Few lines of code may be repeatedly
used in different contexts. Duplication
of the same code can be eliminated by
using functions which improves the
maintenance and reduce program size.

• Some functions can be called multiple
times with different inputs.

Chapter 11 Page 180-205.indd 180 3/24/2020 9:22:03 AM

180 181

11.3 Types of Functions
Functions can be classified into two types,

1. Pre-defined or Built-in or Library
Functions

2. User-defined Function.

 C++ provides a rich collection of
functions ready to be used for various tasks.
The tasks to be performed by each of these
are already written, debugged and compiled,
their definitions alone are grouped and
stored in files called header files. Such
ready-to-use sub programs are called pre-
defined functions or built-in functions.

 C++ also provides the facility to
create new functions for specific task as per
user requirement. The name of the task and
data required (arguments) are decided by
the user and hence they are known as User-
defined functions.

11.4 C++ Header Files and
Built-in Functions

 Header files provide function
prototype and definitions for library
functions. Data types and constants used
with the library functions are also defined
in them. A header file can be identified by
their file extension .h. A single header file
may contain multiple built-in functions.
 For example: stdio.h is a header file
that contains pre-defined “standard input/
output” functions.
11.4.1 Standard input/output (stdio.h)
 This header file defines the standard
I/O predefined functions getchar(),
putchar(), gets(), puts() and etc.
11.4.1.1 getchar() and putchar() functions

 The predefined function getchar() is
used to get a single character from keyboard
and putchar() function is used to display it.

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
 cout<<"\n Type a Character : ";
 char ch = getchar();
 cout << "\n The entered Character is: ";
 putchar(ch);
 return 0;
}
Output:
Type a Character : T
The entered Character is: T

Program 11.1 C++ code to accept a character and display it

11.4.1.2. gets() and puts() functions
 Function gets() reads a string from standard input and stores it into the string pointed
by the variable. Function puts() prints the string read by gets() function in a newline.

Chapter 11 Page 180-205.indd 181 3/24/2020 9:22:03 AM

182 183

#include<iostream>
#include<stdio.h>
using namespace std;
int main()
{
 char str[50];
 cout<<"Enter a string : ";
 gets(str);
 cout<<"You entered: "
 puts(str);
 return(0);
}
Output :
Enter a string : Computer Science
You entered: Computer Science

Program 11.2 C++ code to accept and display a string

11.4.2 Character functions (ctype.h)

 This header file defines various operations on characters. Following are the various
character functions available in C++. The header file ctype.h is to be included to use these
functions in a program.

11.4.2.1.isalnum()

 This function is used to check whether a character is alphanumeric or not. This
function returns non-zero value if c is a digit or a letter, else it returns 0.

General Form:

 int isalnum (char c)

Example :

 int r = isalnum(‘5’);

 cout << isalnum('A') <<’\t’<<r;

 But the statements given below assign 0 to the variable n, since the given character is
neither an alphabet nor a digit.

 char c = '$';

 int n = isalnum(c);

 cout<<c;

Output:

 0

Chapter 11 Page 180-205.indd 182 3/24/2020 9:22:03 AM

182 183

#include<iostream>
#include<stdio.h>
#include<ctype.h>
using namespace std;
int main()
{
 char ch;
 int r;
 cout<<"\n Type a Character :";
 ch = getchar();
 r = isalnum(ch);
 cout<<"\nThe Return Value of isalnum(ch) is :"<<r;
}
Output-1:
 Type a Character :A
 The Return Value of isalnum(ch) is :1
Output-2:
 Type a Character :?
 The Return Value of isalnum(ch) is :0

Program 11.3

11.4.2.2. isalpha()

 The isalpha() function is used to check whether the given character is an alphabet or
not.

General Form:

 isalpha(char c)

 This function will return 1 if the given character is an alphabet, and 0 otherwise 0. The
following statement assigns 0 to the variable n, since the given character is not an alphabet.

 int n = isalpha(‘3’);

But, the statement given below displays 1, since the given character is an alphabet.

 cout << isalpha('a');

Chapter 11 Page 180-205.indd 183 3/24/2020 9:22:03 AM

184 185

#include<iostream>
#include<stdio.h>
#include<ctype.h>
using namespace std;
int main()
{
 char ch;
 cout << "\n Enter a charater: ";
 ch = getchar();
 cout<<"\n The Return Value of isalpha(ch) is :" << isalpha(ch) ;
}
Output-1:
 Enter a charater: A
 The Return Value of isalpha(ch) is :1
Output-2:
 Enter a charater: 7
 The Return Value of isalpha(ch) is :0

Program 11.4

11.4.2.3 isdigit()

 This function is used to check whether a given character is a digit or not. This function
will return 1 if the given character is a digit, and 0 otherwise.

General Form:

 isdigit(char c)

using namespace std;
#include<iostream>
#include<ctype.h>
int main()
{
 char ch;
 cout << "\n Enter a Character: ";
 cin >> ch;
 cout<<"\n The Return Value of isdigit(ch) is :" << isdigit(ch) ;
}

Program 11.5

Chapter 11 Page 180-205.indd 184 3/24/2020 9:22:03 AM

184 185

Output-1
 Enter a Character: 3
 The Return Value of isdigit(ch) is :1
Output-2
 Enter a Character: A
 The Return Value of isdigit(ch) is :0

 *Return 0; (Not Compulsory in latest compilers)

11.4.2.4. islower()

 This function is used to check
whether a character is in lower case (small
letter) or not. This functions will return a
non-zero value, if the given character is a
lower case alphabet, and 0 otherwise.

General Form:
 islower(char c)
 After executing the following
statements, the value of the variable n will be
1 since the given character is in lower case.

 char ch = 'n';
 int n = islower(ch);
 But the statement given below will
assign 0 to the variable n, since the given
character is an uppercase alphabet.
 int n = islower('P');

11.4.2.5. isupper()

 This function is used to check the
given character is uppercase. This function
will return 1 if true otherwise 0.

General Form:
 isupper(char c)
For the following examples value 1 will be
assigned to n and 0 for m.
 int n=isupper(‘A’);
 int m=isupper(‘a’);

11.4.2.6. toupper()
 This function is used to convert
the given character into its uppercase.
This function will return the upper case

equivalent of the given character. If the
given character itself is in upper case, the
output will be the same.

General Form:
 char toupper(char c);
 The following statement will assign
the character constant 'K' to the variable c.
 char c = toupper('k’);
 But, the output of the statement given
below will be 'B' itself.
 cout <<toupper('B');

11.4.2.7. tolower()
 This function is used to convert
the given character into its lowercase. This
function will return the lower case equivalent
of the given character. If the given character
itself is in lower case, the output will be the
same.

General Form:
 char tolower(char c)
 The following statement will assign
the character constant 'k' to the variable c.
 char c = tolower('K’);
 But, the output of the statement given
below will be 'b' itself.
 cout <<tolower('b');

11.4.3 String manipulation (string.h)

 The library string.h (also referred
as cstring) has several common functions
for dealing with strings stored in array of
characters. The string.h header file is to be
included before using any string function.

Chapter 11 Page 180-205.indd 185 3/24/2020 9:22:03 AM

186 187

11.4.3.1 strcpy()
General Form:
 strcpy(Target String, Source String)
 The strcpy() function takes two arguments: target and source. It copies the character
string pointed by the source to the memory location pointed by the target. The null terminating
character (\0) attached to the string is also copied.

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char source[] = "Computer Science";
 char target[20]="target";
 cout<<"\n String in Source Before Copied :"<<source;
 cout<<"\n String in Target Before Copied :"<<target;
 strcpy(target,source);
 cout<<"\n String in Target After strcpy function Executed :"<<target;
 return 0;
}

Program 11.6

Output:
 String in Source Before Copied :Computer Science
 String in Target Before Copied :target
 String in Target After strcpy function Executed :Computer Science

11.4.3.2 strlen()

 The strlen() takes a null terminated string as its argument and returns its length. The
length does not include the null(\0) character.
General Form:
 strlen(string)

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char source[] = "Computer Science";
 cout<<"\n Given String is "<<source<<" its Length is "<<strlen(source);
 return 0;
}
Output:
 Given String is Computer Science its Length is 16

Program 11.7

Chapter 11 Page 180-205.indd 186 3/24/2020 9:22:03 AM

186 187

11.4.3.3 strcmp()

 The strcmp() function takes two arguments: string1 and string2. It compares the
contents of string1 and string2 lexicographically.

General Form:

 strcpy(String1, String2)

The strcmp() function returns a:

• Positive value if the first differing character in string1 is greater than the corresponding
character in string2. (ASCII values are compared)

• Negative value if the first differing character in string1 is less than the corresponding
character in string2.

• 0 if string1 and string2 are equal.

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char string1[] = "Computer";
 char string2[] = "Science";
 int result;
 result = strcmp(string1,string2);
 if(result==0)
 {
 cout<<"String1 : "<<string1<<" and String2 : "<<string2 <<"Are Equal";
 }
 if (result<0)
 {
 cout<<"String1 :"<<string1<<" and String2 : "<<string2 <<" Are Not Equal";
 }
}
Output
 String1 : Computer and String2 : Science Are Not Equal

Program 11.8

11.4.3.4 strcat()
 The strcat() function takes two arguments: target and source. This function appends
copy of the character string pointed by the source to the end of string pointed by the target.

Chapter 11 Page 180-205.indd 187 3/24/2020 9:22:03 AM

188 189

General Form:
 strcat(Target, source)

#include <string.h>
#include <iostream>
using namespace std;
int main()
{
 char target[50] = "Learning C++ is fun";
 char source[50] = " , easy and Very useful";
 strcat(target, source);
 cout << target ;
 return 0;
}
Output
 Learning C++ is fun , easy and Very useful

Program 11.9

11.4.3.5 strupr()
 The strupr() function is used to convert the given string into Uppercase letters.

General Form:
 strcat(string)

using namespace std;
#include<iostream>
#include<ctype.h>
#include<string.h>
int main()
{
 char str1[50];
 cout<<"\nType any string in Lower case :";
 gets(str1);
 cout<<"\n Converted the Source string “<<str1<<into Upper Case is "<<strupr(str1);
 return 0;
}
Output:
 Type any string in Lower case : computer science
Converted the Source string computer science into Upper Case is COMPUTER SCIENCE

Program 11.10

11.4.3.6 strlwr()
 The strlwr() function is used to convert the given string into Lowercase letters.
General Form:

 strlwr(string)

Chapter 11 Page 180-205.indd 188 3/24/2020 9:22:03 AM

188 189

using namespace std;
#include<iostream>
#include<ctype.h>
#include<string.h>
int main()
{
 char str1[50];
 cout<<"\nType any string in Upper case :";
 gets(str1);
 cout<<"\n Converted the Source string “<<str1<<into Lower Case is "<<strlwr(str1);
}
Output:
 Type any string in Upper case : COMPUTER SCIENCE
Converted the Source string COMPUTER SCIENCE into lower Case is computer science

Program 11.11

11.4.4 Mathematical functions (math.h)
 Most of the mathematical functions are defined in math.h header file which includes
basic mathematical functions.
11.4.4.1 cos() function
 The cos() function takes a single argument in radians. The cos() function returns the
value in the range of [-1, 1]. The returned value is either in double, float, or long double.

#include <iostream>
#include <math.h>
using namespace std;
int main()
{
 double x = 0.5, result;
 result = cos(x);
 cout << "COS("<<x<<")= "<<result;
}
Output:
 COS(0.5)= 0.877583

Program 11.12

11.4.4.2 sqrt() function
 The sqrt() function returns the square root of the given value. The sqrt() function
takes a single non-negative argument. If a negative value is passed as an argument to sqrt()
function, a domain error occurs.

Chapter 11 Page 180-205.indd 189 3/24/2020 9:22:03 AM

190 191

#include <iostream>
#include <math.h>
using namespace std;
int main()
{
 double x = 625, result;
 result = sqrt(x);
 cout << "sqrt("<<x<<") = "<<result;
 return 0;
}
Output:
 sqrt(625) = 25

Program 11.13

11.4.4.3 sin() function
 The sin() function takes a single argument in radians. The sin() function returns the
value in the range of [-1, 1]. The returned value is either in double, float, or long double.
11.4.4.4 pow() function
 The pow() function returns base raised to the power of an exponent. If any argument
passed to pow() is long double, the return type is promoted to long double. If not, the return
type is double. The pow() function takes two arguments:
• base - the base value
• exponent - exponent of the base

#include <iostream>
#include <math.h>
using namespace std;
int main ()
{
 double base, exponent, result;
 base = 5;
 exponent = 4;
 result = pow(base, exponent);
 cout << "pow("<<base << "^" << exponent << ") = " << result;
 double x = 25;;
 result = sin(x);
 cout << "\nsin("<<x<<")= "<<result;
 return 0;
}
Output:
 pow(5^4) = 625
 sin(25)= -0.132352

Program 11.14

Chapter 11 Page 180-205.indd 190 3/24/2020 9:22:03 AM

190 191

11.5 User-defined Functions

11.5.1 Introduction

 We can also define new functions
to perform a specific task. These are called
as user-defined functions. User-defined
functions are created by the user. A function
can optionally define input parameters that
enable callers to pass arguments into the
function. A function can also optionally
return a value as output. Functions are useful
for encapsulating common operations in a
single reusable block, ideally with a name
that clearly describes what the function does.

11.5.2 Function Definition
 In C++, a function must be defined
before it is used anywhere in the program.
The general syntax of a function definition is:

 Return_Data_Type Function_
name(parameter list)

 {

 Body of the function

 }

Note:
1. The Return_Data_Type is any valid data

type of C++.

2. The Function_name is a user-defined
identifier.

3. The parameter list, which is optional, is
a list of parameters, i.e. a list of variables
preceded by data types and separated by
commas.

4. The body of the function comprises C++
statements that are required to perform
the intended task of this function.

11.5.3 Function Prototype

 C++ program can contain any
number of functions. But, it must always
have only one main() function to begin

the program execution. We can write the
definitions of functions in any order as we
wish. We can define the main() function
first and all other functions after that or we
can define all the needed functions prior
to main(). Like a variable declaration, a
function must be declared before it is used
in the program. The declaration statement
may be given outside the main() function.

long fact (int, double)

Function name

List of argumentsReturn type

long
fact (int, double)

Figure 11.1
The prototype above provides the
following information to the compiler:
• The return value of the function is of

type long.
• fact is the name of the function.
• the function is called with two arguments:
 The first argument is of int data type.
 The second argument is of double data

type.
 int display(int, int) // function

prototype//
 The above function prototype
provides details about the return data type,
name of the function and a list of formal
parameters or arguments.

11.5.4 Use of void command
void type has two important purposes:
• To indicate the function does not return

a value
• To declare a generic pointer.

Chapter 11 Page 180-205.indd 191 3/24/2020 9:22:04 AM

192 193

void data type indicates the compiler that
the function does not return a value, or in
a larger context void indicates that it holds
nothing.

Notes

For Example:
 void fun(void)
 The above function prototype tells
compiler that the function fun() neither
receives values from calling program nor
return a value to the calling program.

11.5.5 Accessing a function
 The user-defined function should
be called explicitly using its name and
the required arguments to be passed. The
compiler refers to the function prototype to
check whether the function has been called
correctly. If the argument type does not
match exactly with the data type defined in
the prototype, the compiler will perform type
conversion, if possible. If type conversion is
impossible, the compiler generates an error
message.

Example :

1 display() calling the function without a return value and without any argument
2 display (x, y) calling the function without a return value and with arguments
3 x = display() calling the function with a return value and without any argument

4 x = display (x, y) calling the function with a return value and with arguments

11.5.5.1 Formal Parameters and Actual Parameters or Arguments
 Arguments or parameters are the means to pass values from the calling function to
the called function. The variables used in the function definition as parameters are known as
formal parameters. The constants, variables or expressions used in the function call are known
as actual parameters.

Using namespace std;
int sum (int x, int y)
{
 return (x + y);
}
int main ()
{
 int a,b ;
 cout<<"\n Enter Number 1:";
 cin>>a;
 cout<<"\n Enter Number 2:";
 cin >>b;
 cout<<"\n The sum = "<<sum (a, b);
}

#include <iostream>

[

[

[[

Formal Parameter

M
ai

n
Pr

og
ra

m
Fu

nc
tio

n

Actual Parameter

Figure 11.2 Formal and Actual Parameters

Chapter 11 Page 180-205.indd 192 3/24/2020 9:22:04 AM

192 193

11.5.5.2 Default arguments
 In C++, one can assign default values
to the formal parameters of a function
prototype. The Default arguments allows
to omit some arguments when calling the
function.

When calling a function,

• For any missing arguments, complier
uses the values in default arguments for
the called function.

• The default value is given in the form of
variable initialization.

 Example : void defaultvalue(int
n1=10, n2=100);

• The default arguments facilitate the
function call statement with partial or
no arguments.

Example : defaultvalue(x,y);

 defaultvalue(200,150);

 defaultvalue(150);

 defaultvalue(x,150);

• The default values can be included in
the function prototype from right to left,
i.e., we cannot have a default value for an
argument in between the argument list.

Example : void defaultvalue(int n1=10,
n2);//invalid prototype
 void defaultvalue(int n1, n2
= 10);//valid prototype
11.5.5.3 Constant Arguments
 The constant variable can be
declared using const keyword. The const
keyword makes variable value stable. The
constant variable should be initialized
while declaring. The const modifier enables
to assign an initial value to a variable that
cannot be changed later inside the body of
the function.
Syntax :
<returntype><functionname> (const
<datatype variable=value>)
Example:
• int minimum(const int a=10);
• float area(const float pi=3.14, int r=5);

#include <iostream>
using namespace std;
double area(const double r,const double pi=3.14)
{
 return(pi*r*r);
}
int main ()
{
 double rad,res;
 cout<<"\nEnter Radius :";
 cin>>rad;
 res=area(rad);
 cout << "\nThe Area of Circle ="<<res;
 return 0;
}
Output:
Enter Radius :5
The Area of Circle =78.5

Program 11.16

Chapter 11 Page 180-205.indd 193 3/24/2020 9:22:04 AM

194 195

 If the variable value “r” is changed as r=25; inside the body of the function “area” then
compiler will throw an error as “assignment of read-only parameter 'r'”

double area(const double r,const double pi=3.14)

{

 r=25;

 return(pi*r*r);

}

11.6 Methods of calling functions

 In C++, the arguments can be passed to a function in two ways. Based on the method
of passing the arguments, the function calling methods can be classified as Call by Value
method and Call by Reference or Address method.

11.6.1 Call by value Method

 This method copies the value of an actual parameter into the formal parameter of the
function. In this case, changes made to formal parameter within the function will have no
effect on the actual parameter.

#include<iostream>
using namespace std;
void display(int x)
{
 int a=x*x;
 cout<<"\n\nThe Value inside display function (a * a):"<<a;
}
int main()
{
 int a;
 cout<<”\nExample : Function call by value:”;
 cout<<"\n\nEnter the Value for A :";
 cin>>a;
 display(a);
 cout<<"\n\nThe Value inside main function "<<a;
 return(0);
}
Output :
Example : Function call by value
Enter the Value for A : 5
The Value inside display function (a * a) : 25
The Value inside main function 5

Program 11.17

Chapter 11 Page 180-205.indd 194 3/24/2020 9:22:04 AM

194 195

11.6.2 Call by reference or address Method

 This method copies the address of the actual argument into the formal parameter.
Since the address of the argument is passed ,any change made in the formal parameter will be
reflected back in the actual parameter.

Program 11.18

#include<iostream>
using namespace std;
void display(int &x) //passing address of a//
{
 x=x*x;
 cout<<"\n\nThe Value inside display function (n1 x n1) :"<<x ;
 }
int main()
{
int n1;
cout<<"\nEnter the Value for N1 :";
cin>>n1;
cout<<"\nThe Value of N1 is inside main function Before passing : "<< n1;
display(n1);
cout<<"\nThe Value of N1 is inside main function After passing (n1 x n1) : "<< n1; return(0);
}
Output :
Enter the Value for N1 :45
The Value of N1 is inside main function Before passing : 45
The Value inside display function (n1 x n1) :2025
The Value of N1 is inside main function After passing (n1 x n1) : 2025

 Note that the only change in the display() function is in the function header. The &
symbol in the declaration of the parameter x means that the argument is a reference variable
and hence the function will be called by passing reference. Hence when the argument n1 is
passed to the display() function, the variable x gets the address of n1 so that the location will
be shared. In other words, the variables x and n1 refer to the same memory location. We use
the name n1 in the main() function, and the name x in the display() function to refer the same
storage location. So, when we change the value of x, we are actually changing the value of n1.
11.6.3 Inline function

 Normally the call statement to a function makes a compiler to jump to the functions
(the definition of the functions are stored in STACKS) and also jump back to the instruction
following the call statement. This reduces the speed of program execution. Inline functions
can be used to reduce the overheads like STACKS for small function definition.

Chapter 11 Page 180-205.indd 195 3/24/2020 9:22:04 AM

196 197

 An inline function looks like normal function in the source file but inserts the function's
code directly into the calling program. To make a function inline, one has to insert the keyword
inline in the function header.

Syntax :
 inline returntype functionname(datatype parameter 1, … datatype parameter n)
Advantages of inline functions:
• Inline functions execute faster but requires more memory space.
• Reduce the complexity of using STACKS.

#include <iostream>
using namespace std;
inline int add (int a , int b)
{
 int c=a+b;
 return(c);
}
int main ()
{
 int x,y,z;
 cout<<"\nEnter the First Number :";
 cin>>x;
 cout<<"\nEnter the second Number :";
 cin>>y;
 z=add(x,y);
 cout << "\n sum of "<<x<<"+"<<y<<"="<<z;
 return 0;
}
Output:
Enter the First Number :10
Enter the second Number :20
sum of 10+20=30

Program 11.19

 Though the above program is written in the normal function definition format during
compilation the function code a+b will be directly inserted in the calling statement i.e.
z=add(x,y); this makes the calling statement to change as z = a+b;

11.7 Different forms of User-defined Function declarations

11.7.1 A Function without return value and without parameter

 The following program is an example for a function with no return and no arguments
passed .

Chapter 11 Page 180-205.indd 196 3/24/2020 9:22:04 AM

196 197

 The name of the function is display(), its return data type is void and it does not have
any argument.

#include<iostream>

using namespace std;

void display()

{ cout<<"First C++ Program with Function"; }

int main()

{ display(); // Function calling statement//

 return(0);

}

Output :

 First C++ Program with Function

Program 11.20

11.7.2 A Function with return value and without parameter

 The name of the function is display(), its return type is int and it does not have any
argument. The return statement returns a value to the calling function and transfers the
program control back to the calling statement.

#include<iostream>
using namespace std;
int display()
{
 int a=10, b=5, s;
 s=a+b;
 return s;
}
int main()
{ int m=display();
 cout<<"\nThe Sum="<<m;
 return(0);
}
Output :
 The Sum=15

Program 11.21

Chapter 11 Page 180-205.indd 197 3/24/2020 9:22:04 AM

198 199

11.7.3 A Function without return value and with parameter

 The name of the function is display(), its return type is void and it has two parameters
or arguments x and y to receive two values. The return statement returns the control back to
the calling statement.

#include<iostream>
using namespace std;
void display(int x, int y)
{
 int s=x+y;
 cout<<"The Sum of Passed Values: "<<s;
}
int main()
{
 int a=50,b=45;
 display(a,b);
 return(0);
}
Output :
The Sum of Passed Values: 95

Program 11 .22

11.7.4 A Function with return value and with parameter

 The name of the function is display(), its return type is int and it has two parameters or
arguments x and y to receive two values. The return statement returns the control back to the
calling statement.

#include<iostream>
using namespace std;
int display(int x, int y)
{
 int s=x+y;
 return s;
}
int main()
{
 int a=45,b=20;
 int s=display(a,b);
 cout<<”\nExample:Function with Return Value and with Arguments”;
 cout<<"\nThe Sum of Passed Values: "<<s;
 return(0);
}

Program 11.23

Chapter 11 Page 180-205.indd 198 3/24/2020 9:22:04 AM

198 199

Output :

Example: Function with Return Value and with Arguments

The Sum of Passed Values: 65

11.8 Returning from function

 Returning from the function is done by using the return statement.

 The return statement stops execution and returns to the calling function. When a
return statement is executed, the function is terminated immediately at that point.

11.8.1 The return statement

 The return statement is used to return from a function. It is categorized as a jump
statement because it terminates the execution of the function and transfer the control to the
called statement. A return may or may not have a value associated with it. If return has a value
associated with it, that value becomes the return value for the calling statement. Even for void
function return statement without parameter can be used to terminate the function.

Syntax:
 return expression/variable;
Example : return(a+b); return(a);
 return; // to terminate the function
11.8.2 Returning values:
 The functions that return no value is declared as void. The data type of a function is
treated as int, if no data type is explicitly mentioned. For example,
For Example :
 int add (int, int);
 add (int, int);
 In both prototypes, the return value is int, because by default the return value of a
function in C++ is of type int when no return value is explicitly given. Look at the following
examples:

Sl.No Function Prototype Return type
1 int sum(int, float) int
2 float area(float, float) float

3 char result() char

4 double fact(int n) double

Chapter 11 Page 180-205.indd 199 3/24/2020 9:22:04 AM

200 201

Returning Non-integer values
 A string can also be returned to a calling statement.

#include<iostream>
#include<string.h>
using namespace std;
char *display()
{ return (“chennai”); }
int main()
{
 char s[50];
 strcpy(s,display());
 cout<<”\nExample:Function with Non Integer Return”<<s;
 return(0);}
Output :
Example: Function with Non Integer Return Chennai

Program 11.24

11.9 Recursive Function
 A function that calls itself is known as recursive function. And, this technique is known
as recursion.
Example 1: Factorial of a Number Using Recursion

#include <iostream>
using namespace std;
int factorial(int); // Function prototype //
int main()
{
 int no;
 cout<<"\nEnter a number to find its factorial: ";
 cin >> no;
 cout << "\nFactorial of Number " << no <<" = " << factorial(no);
 return 0;
}
int factorial(int m)
{
 if (m > 1)
 {
 return m*factorial(m-1);
 }
 else
 {
 return 1;
}
}
Output :
Enter a number to find its factorial: 5
Factorial of Number 5 = 120

Program 11.25

Chapter 11 Page 180-205.indd 200 3/24/2020 9:22:04 AM

200 201

Note: Function prototype is mandatory since the function factorial() is given after the main()
function.

11.10 Scope Rules of Variables

 Scope refers to the accessibility of a variable. There are four types of scopes in C++.
They are: Local scope, Function scope, File scope and Class scope.

11.10.1 Introduction
 A scope is a region or life of the variable and broadly speaking there are three places,
where variables can be declared,
• Inside a block which is called local variables.
• Inside a function is called function variables.
• Outside of all functions which is called global variables.
• Inside a class is called class variable or data members.
11.10.2 Local Scope:
• A local variable is defined within a block. A block of code begins and ends with curly

braces { }.
• The scope of a local variable is the block in which it is defined.
• A local variable cannot be accessed from outside the block of its declaration.
• A local variable is created upon entry into its block and destroyed upon exit.

11.10.3 Function Scope:
• The scope of variables declared within a function is extended to the function block, and all

sub-blocks therein.
• The life time of a function scope variable, is the life time of the function block. The scope

of formal parameters is function scope.

11.10.4 File Scope:

• A variable declared above all blocks and functions (including main ()) has the scope of a
file. The life time of a file scope variable is the life time of a program.

• The file scope variable is also called as global variable.

//Demo to test all Scopes//
#include<iostream>
using namespace std;
int file_var=20; //Declared within File - file scope variable
void add(int x)
{
 int m; //Declaration of variable m in add () - Function scope variable
 m=x+30+file_var;
 cout<<"\n The Sum = "<<m;
}

Program 11.26

Chapter 11 Page 180-205.indd 201 3/24/2020 9:22:04 AM

202 203

int main ()
{
int a ;
a = 10;
if(a>b)
{
 int t; // local to this if block - Local variable

 t=a+20;
 }
cout<<t;
add(a);
cout<<m;
cout<<”\nThe File Variable = “<<file_var;
return(0);
}

Error
In function 'int main()':
[Error] 't' was not declared in main()
 On compilation the Program 11.28, the compiler prompts an error
message: The variable t is not accessible. Because the life time of a local
variable is the life time of a block in its state of execution.
[Error] 'm' was not declared in this scope

The variable m is not accessible. Because the life time of the function
scope variable is the life time of a block in its state of execution.

11.10.5 Class Scope:

• A class is a new way of creating and implementing a user defined data type. Classes provide
a method for packing together data of different types.

• Data members are the data variables that represent the features or properties of a class.

class student
{
 private :
int mark1, mark2, total;
};

The class student contains
mark1, mark2 and total are
data variables. Its scope is
within the class student
only.

Note: The class scope will be discussed later in chapter “Classes and Object”.

Chapter 11 Page 180-205.indd 202 3/24/2020 9:22:04 AM

202 203

11.10.6 Scope resolution operator

The scope operator reveals the hidden scope of a variable. The scope resolution operator (::)
is used for the following purposes.

• To access a Global variable when there is a Local variable with same name. An example
using Scope Resolution Operator.

// Program to show that we can access a global variable
// using scope resolution operator :: when there is a local
// variable with same name //
#include<iostream>
using namespace std;
int x=45; // Global Variable x
int main()
{
 int x = 10; // Local Variable x
 cout << "\nValue of global x is " << ::x;
 cout << "\nValue of local x is " << x;
 return 0;
}
Output:
Value of global x is 45
Value of local x is 10

Program 11.27

• A large program can typically be split into
smaller sized blocks called as functions.

• Functions can be classified into Pre-
defined or Built-in or Library Functions
and User-defined Functions.

• User-defined functions are created by
the user.

• The void function tells the compiler that
the function returns nothing.

• The return statement returns a value
to the calling function and transfers
the program control back to the calling
function.

• The default return type of a function in
C++ is of type int.

• A function that calls itself is known as
recursive function.

• Scope refers to the accessibility of a
variable.

• There are four types of Scopes. They are:
Local scope, Function scope, File scope
and Class scope.

• The scope operator (::) reveals the hidden
scope of a variable.

Points to Remember:

Chapter 11 Page 180-205.indd 203 3/24/2020 9:22:04 AM

204 205

Hands on practice:

Write C++ program to solve the following problems :

1. Program that reads two strings and appends the first string to the second. For example,
if the first string is entered as Tamil and second string as nadu, the program should print
Tamilnadu. Use string library header.

2. Program that reads a string and converts it to uppercase. Include required header files.

3. Program that checks whether a given character is an alphabet or not. If it is an alphabet,
whether it is lowercase character or uppercase character? Include required header files.

4. Write definition for a function sumseries () in c++ with two arguments/ parameters -
double x and int n. The function should return a value of type double and it should perform
sum of the following series:

 x-x2 /3! + x3 / 5! - x4 / 7! + x5 / 9! -... upto n terms.

5. Program that invokes a function calc () which intakes two integers and an arithmetic
operator and prints the corresponding result.

Evaluation

SECTION – A
Choose the correct answer

1. Which of the following header file defines the standard I/O predefined functions ?
 A) stdio.h B) math.h C) string.h D) ctype.h
2. Which function is used to check whether a character is alphanumeric or not.
 A) isalpha() B) isdigit() C) isalnum() D) islower()
3. Which function begins the program execution ?
 A) isalpha() B) isdigit() C) main() D) islower()
4. Which of the following function is with a return value and without any argument ?
 A) x=display(int, int) B) x=display() C) y=display(float) D) display(int)
5. Which is return data type of the function prototype of add(int, int); ?
 A) int B) float C) char D) double
6. Which of the following is the scope operator ?
 A) > B) & C) % D) ::

Chapter 11 Page 180-205.indd 204 3/24/2020 9:22:04 AM

204 205

SECTION-B

Very Short Answers

1. Define Functions.
2. Write about strlen() function.
3. What are importance of void data type.
4. What is Parameter and list its types?
5. Write a note on Local Scope.

SECTION-C
Short Answers

1. What is Built-in functions ?
2. What is the difference between isupper() and toupper() functions ?
3. Write about strcmp() function.
4. Write short note on pow() function in C++.
5. What are the information the prototype provides to the compiler ?
6. What is default arguments ? Give example.

SECTION - D

Explain in detail

1. Explain Call by value method with suitable example.
2. What is Recursion? Write a program to find the factorial of the given number using

recursion.
3. What are the different forms of function return? Explain with example.
4. Explain scope of variable with example.
5. Write a program to accept any integer number and reverse it.

Chapter 11 Page 180-205.indd 205 3/24/2020 9:22:04 AM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101
	Chapter 8 Page 102-114
	Chapter 9 Page 115-151
	Chapter 10 Page 152-179
	Chapter 11 Page 180-205

