JEE (Main)-2025 (Online) Session-2 Memory Based Question with & Solutions (Physics, Chemistry and Mathematics) 3rd April 2025 (Shift-1)

Time: 3 hrs. M.M.: 300

IMPORTANT INSTRUCTIONS:

- **(1)** The test is of 3 hours duration.
- **(2)** This test paper consists of 75 questions. Each subject (PCM) has 25 questions. The maximum marks are 300.
- (3) This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
- (4) Section A: Attempt all questions.
- (5) Section B : Attempt all questions.
- **(6)** Section A (01 20) contains 20 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.
- (7) Section B (21 25) contains 5 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.

MEMORY BASED QUESTIONS JEE-MAIN EXAMINATION - APRIL, 2025

(Held On Thursday 3rd April, 2025) TIME: 9:00 AM to 12:00 PM

PHYSICS

SECTION-A

1. An ammeter having resistance 240Ω is connected in the given circuit as shown. Find current through the ammeter.

- (1) 2 mA
- (2) 5 mA
- (3) 8 mA
- (4) 9 mA

Ans. (2)

Sol.
$$I_{1} = I_{0} \times \frac{10}{250}$$
$$= \frac{20}{150.4 + 9.6} \times \frac{10}{250}$$
$$= \frac{20}{160} \times \frac{10}{250} = 5 \text{mA}$$

- 2. A particle is released from height 'h' above the surface of the earth. At certain height it's K.E is 3 times of PE. The height from the surface of the earth and the speed of the Particle at the instant are respectively.
 - $(1)\frac{h}{2},\sqrt{\frac{3gh}{2}}$
- $(2)\frac{h}{4},\sqrt{\frac{3gh}{2}}$
- $(3)\frac{h}{2}$, $\sqrt{\frac{3gh}{4}}$
- $(4)\frac{h}{4}, \sqrt{\frac{3gh}{4}}$

Ans. (2

Sol. mgh = KE + PEmgh = 4mgh

$$h' = \frac{h}{4}$$

$$\frac{1}{2}mv^2 = 3 \times mg \frac{h}{4}$$

$$v = \sqrt{\frac{3}{2}gh}$$

3. The work function of a metal 3 eV. The colour of the visible light that is required to cause emission of photo electrons is:-

- (1) Violet
- (2) Red
- (3) Yellow
- (4) Green

Ans. (1)

Sol. $\phi_0 = E = \frac{hc}{\lambda} = \frac{1240}{\lambda}$

$$\lambda = \frac{1240}{3} = 413.3 \text{ nm}$$

4. A force of 49 N acts tangentially at the highest point of a sphere (solid sphere of mass 20 kg) kept on a rough horizontal plane. If the sphere rolls without slipping, then the acceleration of the center of the sphere is:-

- $(1) 2.5 \text{ m/s}^2$
- $(2) 3.5 \text{ m/s}^2$
- $(3) 0.35 \text{ m/s}^2$
- $(4) 0.45 \text{ m/s}^2$

Ans. (2)

Sol. F + f = ma

$$(F - f)R = \frac{2}{5}mR^2 \frac{a}{R}$$

$$2F = \frac{7}{5}$$
ma

$$a = \frac{10}{7} \times \frac{F}{m} = \frac{10}{7} \times \frac{49}{20} = 3.5 \text{ m/s}^2$$

- 5. The electrostatic potential on the surface of uniformly charged spherical shell of radius R = 10 cm is 120 V. The potential at the centre of shell, at a distance 5 cm from centre and a distance 15 cm from the centre of the shells are:
 - (1) 0V, 120 V, 40 V
- (2) 40 V, 40 V, 80 V
- (3) 120 V, 120 V, 80 V (4) 0 V, 0 V, 80 V

Ans.

(3)

Sol.
$$v_{\text{surface}} = \frac{KQ}{R} = 120 = (V_{\text{in}})_{\text{surface}}$$

 $v_{\text{c}} = 120V$
 $v_{\text{5cm}} = 120V$
 $v_{15} = \frac{kQ}{r} = 120 \times \frac{10}{15} = 80$

- 6. In a biconvex lens R₁, R₂ and f are 15 cm, 10 cm and 12 cm respectively find refractive index of lens.
 - (1) 2
- $(2)^{\frac{3}{4}}$
- $(3)\frac{4}{3}$
- $(4)\frac{3}{2}$

Ans. (4)

Sol.
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
$$\frac{1}{12} = (\mu - 1) \left(\frac{1}{15} + \frac{1}{10} \right)$$
$$\frac{1}{12} = (\mu - 1) \frac{1}{5} \left(\frac{5}{6} \right)$$
$$\frac{1}{2} + 1 = \mu$$

- 7. Power of point source is 450 watt. Radiation pressure on a perfectly Reflecting surface at a distance of 2 m is
 - $(1) 2 \times 10^{-8}$
- $(2) 4 \times 10^{-8}$
- $(3) 6 \times 10^{-8}$
- $(4) 8 \times 10^{-8}$

Ans. (3

Sol.
$$\frac{2I}{C} = \frac{2}{C} \left(\frac{P}{4\pi r^2} \right)$$
$$= \frac{2 \times 450}{3 \times 10^8 \times 4\pi 2^2} = \frac{300}{16\pi} 10^{-8}$$

- **8.** When block of ice melts
 - (1) Internal energy decreases
 - (2) Internal energy constant
 - (3) Work done by atmosphere is positive
 - (4) Work done by atmosphere is negative
- Ans. (3
- **Sol.** Work done by atmosphere is positive.

9. Two dielectric of dielectric constants ϵ_1 & ϵ_2 are inserted between the plates of two identical parallel plate capacitors as shown in the figure. The ratio of their capacitances C_2/C_1 is (Given $\frac{\epsilon_1}{\epsilon_2} = 2$):-

- $(1)\frac{9}{8}$ $(2)\frac{7}{8}$ $(3)\frac{8}{7}$ $(4)\frac{8}{9}$
- Ans. (1
- **Sol.** $C_1^{**} = \frac{2k\frac{A}{2}\varepsilon_0}{d} = C_0(Let)$

$$C_2^{**} = \frac{2\frac{A}{2}\epsilon_0}{d} = \frac{C_0}{2}$$

$$C_2 = \frac{3C_0}{2}$$

$$C_{_{_{1}}}^{*}=\frac{2KA\epsilon_{_{0}}}{\frac{d}{2}}$$

$$C_1^* = 4C_0$$

$$C_2^* = \frac{KA\epsilon_0}{\frac{d}{2}} = 2C_0$$

$$C_{\text{effc}} = \frac{4C_0 2C_0}{6C_0}$$

$$C_{\text{effc}} = \frac{4}{3}C_0$$

10. A current carrying wire is bent as shown in the figure. Find magnetic field at centre O of the semi-circles. (Take $R_1 = 4\pi$ and $R_2 = 6\pi$):-

- (1) $8.3 I \times 10^{-9} T$
- $(2) 8.3 I \times 10^{-6} T$
- $(3) 6 I \times 10^{-8} T$
- $(4) 4 I \times 10^{-6} T$

Ans.

(1)

Sol.
$$B_{net} = B_1 - B_2$$

$$= \frac{\mu_0}{4} = \frac{I}{R} - \frac{\mu_0}{4} \frac{I}{r_2} = \frac{\mu_0 I}{4} \left(\frac{1}{4\pi} - \frac{1}{6\pi} \right)$$

$$= \frac{\mu_0}{4\pi} \frac{I}{2} \left(\frac{1}{2} - \frac{1}{3} \right) = 8.3 I \times 10^{(-9)} T$$

11. If a particle is thrown at an angle ϕ with vertical then mark the graph between h and ϕ .

Ans. (3)

Sol.

12. The figure below shows an oscillating system of two blocks and a spring. The horizontal surface is smooth and the contact between the blocks is rough with coefficient of static friction μ. Considering that the blocks of mass m is always stationary relative to M, choose the correct option regarding the statement below:

smoot

- (A) Maximum frictional force between blocks is μ mg
- (B) Time period of oscillation is $2\pi \sqrt{\frac{m+M}{k}}$
- (C) Friction between the blocks at any instant is μMg
- (1) Only A & B are correct
- (2) Only A is correct
- (3) Only B is correct
- (4) None of these

Ans. (3)

Sol.
$$f_{max.} = ma_{max}$$

= $m\omega^2 A$
 $f = ma$

 $= m\omega^2 x$

- 13. Choose the correct option.
 - a. Gravitational potential
- (i) $M^{-1}L^3T^{-2}$
- b. Gravitational constant
- (ii) ML^2T^{-2}
- c. Acceleration due to gravity
- (iii) $M^0L^2T^{-2}$
- d. Potential energy
- (iv) M^0LT^{-2}
- (1) a(iii), b(i), c(iv), d(ii)
- (2) a(iii), b(ii), c(iv), d(i)
- (3) a(ii), b(i), c(iv), d(iii)
- (4) a(ii), b(iv), c(i), d(iii)

Ans. (1)

Sol. Gravitational potential

$$v = \frac{-GM}{R} = M^0 L^2 T^{-2}$$

Gravitational constant $F = \frac{GM_1M_2}{R^2} = M^{-1}L^3T^{-2}$

$$g = \frac{GM}{R^2} = M^0LT^{-2}$$

$$U = \frac{GM_1M_2}{R} = ML^2T^{-2}$$

- 14. A thin uniform wire of length 25 m and area of cross-section 5 mm² has resistivity $2 \times 10^{-6} \Omega$ -m. If the wire is bent to form a circle, the resistance across diametrically opposite points is
 - (1) 12.5Ω
- (2) 5 Ω
- $(3) 10 \Omega$
- (4) 2.5Ω

Ans. (4)

Sol. $R = \frac{\rho \ell}{\Lambda}$

$$R_{net} = \frac{R}{4}$$

$$=\frac{\rho\ell}{\Delta t}$$

$$=\frac{\rho\ell}{A4} = \frac{2\times10^{-6}\times25}{5\times10^{-6}\times4} = \frac{10}{4} = 2.5\Omega$$

15. For given truth table, which option is correct

A	В	Y
0	0	0
0	1	0
1	0	1
1	1	1

Ans.

Option 1 is correct because its follow the given truth table

- **16.** Which of the following is correct when deviation is minimum regarding an equilateral prism of angle A:
 - (1) i = e
 - (2) Ray inside prism becomes parallel to base of prism.
 - (3) More is 'A', smaller is deviation.
 - (4) All of these

Ans. (4)

Sol. From condition of minimum deviation

i = e

Ray inside prism becomes parallel to base of prism.

$$\delta = (i + e) - A$$

$$\delta = 2i - A$$

So, More is 'A', smaller is deviation.

SECTION-B

1. Three particles in figure (a) collide at centroid in 4 sec. In how much time will they collide in figure (b)

Ans. (8

Sol.
$$v_{rel} = \frac{3v}{2}$$

$$t' = 8s$$

$$t = \frac{2d}{3v} = 4$$

2. In the shown diagram a block of 50 kg is kept on a light plate of area 1 m² covering the surface of a water tank in which a hole is pierced at a height of 0.9 m from the bottom. Given the height of water is 1.6 m. If the velocity of efflux is v (in SI unit), then find $10v^2$:

Ans. (150)

Sol.
$$P_0 + \frac{50 \times 10}{1} + 1000 \times 10 \times 0.7$$
$$= P_0 + \frac{1}{2} \rho v^2$$
$$2 \left(\frac{500 \times 7000}{1000} \right) = V^2 = 15$$
$$10V^2 = 150$$

3. If a rod of length 4 cm is placed in magnetic field 0.15 T perpendicularly having current 3 amp. The magnitude of force on Rod is $2x \times 10^{-3}$. Find x:-

Ans. (x=9)

Sol.
$$\vec{F} = i (\vec{\ell} \times \vec{B})$$

$$F = i \ell B$$

$$3 \times 4 \times 10^{-2} \times 0.15$$

$$=12\times10^{-2}\times0.15$$

$$F = 180 \times 10^{-4} \text{ N}$$

$$=18\times10^{-3} \,\mathrm{N}$$

$$2x = 18$$

$$x = 9 s$$

CHEMISTRY

SECTION-A

- 1. Which of the following has highest atomic number
 - (1) Po
- (2) Pt
- (3) Pr
- (4) Pb
- Ans. (1)
- **Sol.** $_{84}\text{Po} \rightarrow \text{p-block}$
 - $_{78}\text{Pt} \rightarrow \text{d-block}$
 - $_{59}$ Pr \rightarrow f-block
 - $_{82}\text{Pb} \rightarrow \text{p-block}$
- 2. Which of the following ion shows spin only magnetic of 4.9 B.M.
 - $(1) \text{ Mn}^{2+}$
- $(2) Cr^{2+}$
- $(3) \, \mathrm{Fe}^{3+}$
- $(4) \text{ Co}^{2+}$
- Ans. (2)
- **Sol.** $\mu = \sqrt{n(n+2)}$ B.M., where n = no. of unpaired e^{Θ} if $\mu = 4.9$ B.M. then n = 4

$$Cr^{2\oplus} \Rightarrow 3d^4$$
 1 1 1 1 n=4

- 3. An ideal gas with an adiabatic exponent 1.5, initially at 27°C is compressed adiabatically from 800 cc to 200 cc. The final temperature of the gas is
 - (1) 600 K
- (2) 300 K
- (3) 450 K
- (4) 273 K

- Ans. (1)
- **Sol.** $PV^x = constant$

$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{x-1}$$

$$\frac{300}{T_2} = \left(\frac{200}{800}\right)^{\frac{3}{2}-1}$$

$$T_2 = 600K$$

- 4. 2 moles each of ethylene glycol and glucose are mixed with 500 g of water. Find the boiling point of solution.
 - Given : $K_b = 0.52 \text{ K kg mol}^{-1}$
 - (1) 377.16 K
- (2) 368.84 K
- (3) 376.16 K
- (4) 369.84 K

Ans. (1)

Sol. $\Delta T_b = ik_b m$

$$\Delta T_b = k_b \times \frac{4 \times 1000}{500} \qquad (i = 1)$$

$$= 0.52 \times 8$$

$$=4.16$$

$$(T_b)_{\text{solution}} - T_b = 4.16$$

$$(T_b)_{\text{solution}} = 373 + 4.16$$

= 377.16

5. Match the column.

List-I			List-II
(a)	PF ₅	(i)	Tetrahedral and sp ³
(b)	SF_6	(ii)	Square planar and dsp ²
(c)	[Ni(CO) ₄]	(iii)	Octahedral and sp ³ d ²
(d)	[PtCl ₄] ²⁻	(iv)	Trigonal bipyramidal
13 31			and sp ³ d

- (1) $a\rightarrow (iv)$, $b\rightarrow (iii)$, $c\rightarrow (i)$, $d\rightarrow (ii)$
- (2) $a\rightarrow(ii)$, $b\rightarrow(i)$, $c\rightarrow(iv)$, $d\rightarrow(iii)$
- (3) $a\rightarrow(iii)$, $b\rightarrow(ii)$, $c\rightarrow(i)$, $d\rightarrow(iv)$
- (4) a \rightarrow (ii), b \rightarrow (iv), c \rightarrow (i), d \rightarrow (iii)
- Ans. (1)
- **Sol.** (a) $PF_5 \rightarrow sp^3d$ (Trigonal bipyramidal)
 - (b) $SF_6 \rightarrow sp^3d^2$ (Octahedral)
 - (c) $Ni(CO)_4 \rightarrow sp^3$ (Tetrahedral)
 - (d) $[PtCl_4]^{2-} \rightarrow dsp^2$ (Square Planar)
- **6.** Arrange the following cations in increasing order of limiting molar conductivities of at 298 K

H⁺, Ca⁺², Na⁺, K⁺, Mg⁺².

- (1) $K^+ > Na^+ > H^+ > Ca^{+2} > Mg^{+2}$
- (2) $H^+ > Ca^{+2} > Mg^{+2} > K^+ > Na^+$
- (3) $H^+ > Ca^{+2} > K^+ > Mg^{+2} > Na^+$
- (4) $H^+ > Ca^{+2} > Mg^{+2} > Na^+ > K^+$
- Ans. (2)
- **Sol.** Reference NCERT table

Limiting Molar Conductivity for some Ions in Water at 298 K

Ion	$\lambda^0/(S \text{ cm}^2 \text{mol}^{-1})$
H^+	349.6
Na ⁺	50.1
K ⁺	73.5
Ca ²⁺	119.0
Mg^{2+}	106.0

Molar conductivity ∞ charge

∞ Mobility

Limiting Molar Conductivity:

$$H^+ > Ca^{+2} > Mg^{+2} > K^+ > Na^+$$

- 7. Which is **correct**:
 - (1) $A + e^- \rightarrow A^- \rightarrow$ is always exothermic.
 - (2) $A \rightarrow A^+ + e^- \rightarrow$ is always endothermic.
 - (3) IE_1 of $(Be) \le IE_1$ (B).
 - (4) Lithium is most electropositive in its group.
- Ans. (2)
- **Sol.** (1) $A + e^{-} \rightarrow A^{-}$

If A = inert gas, Be, Mg & N then it will be endothermic.

 $(2) A \rightarrow A^+ + e^-$

Ionisation energy is always endothermic

- (3) Be > B ionisation energy (due to 2s² configuration)
- (4) Li is not most electropositive in its group Cs is more electropositive
- **8.** Which of the following property shows irregular trend in group 16?
 - (1) Electronegativity
- (2) Atomic radius
- (3) Electron affinity
- (4) Ionisation enthalpy
- Ans. (3)
- **Sol.** Electron affinity

S > Se > Te > Po > O

9. Consider the following statements

Statement I: N–N has less bond strength than P–P **Statement II:** All group-15 elements in +3 oxidation state undergo disproportionation.

In the above statements, choose the correct option.

- (1) Both Statement are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Both Statement are incorrect.
- Ans. (2)

Sol. N-N < P-P

(due to Lone pair. – Lone pair repulsion)

- **10.** Consider the following complex ions
 - (a) $[Co(NH_3)_6]^{3+}$
- (b) $[Co(NH_3)_5Cl]^{2+}$
- (c) $[Co(NH_3)_5(H_2O)]^{3+}$ (d) $[Co(CN)_6]^{3-}$

Choose the correct order of wavelength absorbed by complex ions

- (1) b > a > c > d
- (2) a > b > c > d
- (3) b > c > a > d
- (4) d > c > b > a

Ans. (3)

Sol. $\Delta \propto \frac{1}{\lambda_{\perp}}$

 $\Delta: d > a > c > b$

 $\lambda_{obs}: b > c > a > d$

11.
$$A \xrightarrow{\text{NaNO}_2 + \text{HCl}} A \xrightarrow{\text{NaNO}_2 + \text{HCl}} A \xrightarrow{\text{Na}} B \xrightarrow{\text{Na}} B \xrightarrow{\text{ether}} A \xrightarrow{\text{ether}} A \xrightarrow{\text{Na}} B \xrightarrow{\text{$$

Identify A, B, C respectively

$$(1) \bigcirc , \bigcirc , \bigcirc \bigcirc \bigcirc$$

Ans. (3)

Sol. $\begin{array}{c}
NH_2 \\
NaNO_2+HC1 \\
\hline
(0-5^{\circ}C)
\end{array}$ $\begin{array}{c}
N_2C1 \\
\hline
KI \\
\hline
\Delta
\end{array}$ $\begin{array}{c}
Na \\
\text{ether}
\end{array}$

Ans. (1)

Sol. pKa(p-nitrophenol) is around 7.15
pKa(pentanoic acid) is around 4.82
pKa(phenol) is around 10.00
pKa(p-methoxy phenol) is around 10.2
So, pentanoic acid has highest acidic nature among all

13. Identify reactant of following reaction $Reactant \xrightarrow{O_3} 3-Methyl-6-ketoheptanal$

Ans. (3)

14. Identify structure of L-Fructose

Ans. (2)

Sol.
$$CH_2OH$$
 $= O$
 H
 $= OH$
 HO
 $= H$
 CH_2OH

(L-Fructose)

15. Which of the following is/are correct

Ans. (3)

16. The given reaction is at equilibrium starting with only PCl₅

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g),$$

When addition of Xe gas takes place at constant pressure, then which of the following is correct?

- (1) Conc. of PCl₃ will become more than Cl₂
- (2) PCl₃ and Cl₂ will have same concentration at new equilibrium.
- (3) Conc. of Cl₂ will become more than PCl₃.
- (4) PCl₃ will be 30% and Cl₂ will be 70% at the new equilibrium

Ans. (2)

Sol.
$$PV = nRT$$
 $(V) \uparrow \propto (n) \uparrow$

Reaction will be shift at that direction where no. of gases mole more.

- 17. Which of the following statement(s) is/are INCORRECT
 - I. NO₂ dimerises easily
 - II. NF₅ does not exist but PF₅ exists
 - III. The oxides N_2O_5 and P_2O_5 are purely acidic but As_2O_5 and Sb_2O_5 are basic
 - IV. Nitrogen cannot form $p\pi$ -d π bond as the heavier elements
 - (1) Only I, II and IV
- (2) Only III
- (3) Only III and IV
- (4) Only I and II

Ans. (3)

- **Sol.** I. NO_2 dimerises easily to form N_2O_4 due to presence of unpaired electron.
 - II. N does not have any d-orbital so it cannot increase its valancy to 5 to form NF_5
 - III. N_2O_5 , P_2O_5 As_2O_5 $Sb_2O_5 =$ Acidic oxides
 - IV. Nitrogen can form $p\pi$ -d π bond

Eg.
$$N(SiH_3)_3$$

- **18.** Correct set of four Quantum numbers for last electron of Cr³⁺ on is:
 - (1) n = 4, l = 1, m = 0, $s = +\frac{1}{2}$
 - (2) n = 4, l = 2, m = 0, $s = +\frac{1}{2}$
 - (3) n = 3, l = 2, m = 0, $s = +\frac{1}{2}$
 - (4) n = 3, l = 2, m = -1, s = 0

Ans. (3)

Sol. $Cr+3 = [Ar]3d^3$

$$n = 3, 1 = 2, m = 0, s = +\frac{1}{2}$$

19. Given below are two statements about X-ray spectra of elements:

Statement I: A plot of \sqrt{v} (v = frequency of X-rays emitted) vs atomic mass is a straight line.

Statement II: A plot of v (v = frequency of X-rays emitted) vs atomic number is a straight line. In the light of the above statements, choose the

- In the light of the above statements, choose the correct answer from the options given below:
- (1) Both Statement are correct.
- (2) Statement I is correct but Statement II is incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Both Statement are incorrect.

Ans. (4)

Sol. $\sqrt{v} = a(z-b)$

$$\sqrt{v} \propto Z$$

 $\sqrt{\upsilon}$ vs Z graph is a straight line

SECTION-B

There are two solutions of compounds A & B. The initial concentration of B is 8 times initial concentration of A. If half life of A & B are 40 and 10 min. then find the time when concentration of both A & B are same.

(Assume first order reaction)

Ans. (40)

Sol. $A \longrightarrow P$

$$B \longrightarrow P$$

t=0 a

8a

$$t=t$$
 C_A

 C_{B}

$$C_A = a.e^{-k_A t}$$

 $C_B = 8a \times e^{-K_B t}$

$$k_A = \frac{\ln 2}{40}$$

 $k_{\rm B} = \frac{\ln 2}{10}$

$$a \times e^{-\frac{\ln 2}{40} \times t} = 8a \times e^{-\frac{\ln 2}{10} \times t}$$

$$\frac{\mathsf{t}}{10} - \frac{\mathsf{t}}{40} = 3$$

$$t = 40 \text{ min}$$

21. $K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow A + K_2SO_4 + 5H_2SO_4$.

Find the number of oxygen atom in product A.

Ans. (5

Sol. $K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow CrO_5 + K_2SO_4 + 5H_2SO_4$.

Number of 'O' atom in A = 5

22. $FeCl_3 + KOH + H_2C_2O_4 \longrightarrow A$

'A' is a complex, find the number of optical isomer of product A.

Ans. (2

Sol. $K_3[Fe(C_2O_4)_3] = A$

 $C_2O_4^{2-} \rightarrow$ Symmetrical bidentate ligand

[Fe(BB)₃]³⁻

POS ×

Optically active

- 23. 0.5 g of a hydrocarbon gives 1.46 g CO₂ and 0.9 g H₂O on combustion. What is the percentage of carbon in hydrocarbon. (Nearest integer)
- Ans. (80)

Sol.
$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

$$%C = \frac{12}{44} \times \frac{\text{wt.of CO}_2}{\text{wt.of Hydrocarbon}} \times 100$$

$$\%C = \frac{12}{44} \times \frac{1.46}{0.5} \times 100$$

$$%C = 79.63 \approx 80\%$$

24. Calculate the mass of nitrogen present in 1.6 g of following compound

Ans. (0.52)

Sol.
$$C_4H_{10}N_2 \rightarrow \text{Molar mass} = 12 \times 4 + 1 \times 10 + 14 \times 2$$

= $48 + 10 + 28$

$$1.6 \text{ gm o.c} \rightarrow \frac{28}{86} \times 1.6$$

$$= 0.52 \text{ g}$$

MATHEMATICS

- 1. Let A be 3×3 matrix such that $\det(A) = 5$. If $\det\left(3adj(2Aadj(2A))\right) = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma}$, then $(\alpha + \beta + \gamma)$ is equal to
 - (1) 25
- (2)26
- (3)27
- (4) 28

Ans. (4)

- **Sol.** $|3adj(2Aadj(2A))| = 3^3 |adj(2A.adj(2A))|$ = $3^3 |2A.adj(2A)|^2$
 - $=3^3 ||2A|I_3|^2$
 - $=3^{3}(|2A|^{3})^{2}$
 - $=3^3 \times (2^9.|A|^3)^2$
 - $=3^3 \times 2^{18} \times 5^6$
- 2. The sum of all rational terms in $(2 + \sqrt{3})^8$ is
 - (1) 18117
- (2) 18817
- (3)17280
- (4)1800

Ans. (2)

Sol. $T_{r+1} = {}^{8} C_{r} \times 2^{8-r} \times (\sqrt{3})^{r}$

Sum of all rational terms

$$= {}^{8}C_{0} \times 2^{8} + {}^{8}C_{2} \times 2^{6} \times 3 + {}^{8}C_{4} \times 2^{4} \times 3^{2}$$

$$+^{8}C_{6} \times 2^{2} \times 3^{3} + 3^{4}$$

$$= 256 + 28 \times 64 \times 3 + 70 \times 16 \times 9 + 28 \times 4 \times 27 + 81$$

- = 256 + 5376 + 10080 + 3024 + 81
- = 18817
- 3. If the sum $\sum_{r=1}^{9} \left(\frac{r+3}{2^r}\right) \cdot {}^9C_r = \alpha \cdot \left(\frac{3}{2}\right)^9 \beta,$

then the value of $(\alpha + \beta)^2$ is equal to

- (1)9
- (2)81
- (3)27
- (4)36

Ans. (2)

- **Sol.** $\sum_{r=1}^{9} r \cdot \frac{9}{r} \cdot {}^{8}C_{r-1} \cdot \frac{1}{2^{r}} + \sum_{r=1}^{9} \frac{3}{2^{r}} \cdot {}^{9}C_{r}$
 - $= \frac{9}{2} \left(1 + \frac{1}{2} \right)^8 + 3 \left\{ \left(1 + \frac{1}{2} \right)^9 1 \right\}$
 - $=\frac{9}{2}\cdot\left(\frac{3}{2}\right)^8+3\cdot\left(\frac{3}{2}\right)^9-3$
 - $=6.\left(\frac{3}{2}\right)^{9}-3=\alpha\left(\frac{3}{2}\right)^{9}-\beta$
 - $\alpha = 6, \beta = 3$
 - $\therefore (\alpha + \beta)^2 = 81.$
- 4. Let $S_n = 1 + 3 + 11 + 25 + 45 + \cdots$ Then sum upto 20^{th} term equals to
 - (1) 6200
- (2) 7200
- (3)7240
- (4)6240

Ans. (3)

Sol. Using method of difference

$$S_n = \underbrace{1 + 3 + 11 + 25 + 45 + \dots}_{2 \quad \ \ \, 8 \quad 14 \quad 20}$$

 $T_1 = 1$

$$T_2 = 1 + 2$$

$$T_3 = 1 + 2 + 8$$

$$T_4 = 1 + 2 + 8 + 14$$

$$T_n = \underbrace{1 + 2 + 8 + 14 + 20 + \dots}_{\text{upto n terms}}$$

$$T_n = 1 + \frac{n-1}{2} \left[2 \times 2 + (n-2) \times 6 \right] = 3n^2 - 7n + 5$$

$$S_{20} = \sum_{n=1}^{20} T_n = 3\sum_{1}^{20} n^2 - 7\sum_{1}^{20} n + 5\sum_{1}^{20} 1$$

$$=3\times\frac{20\times21\times41}{6}-\frac{7\times20\times21}{2}+5\times20$$

= 7240

- Let $f(x) = \int x^3 \sqrt{3 x^2} dx$. If $5f(\sqrt{2}) = -4$, 5. then f(1) is equal to
 - $(1)-\frac{2\sqrt{2}}{5}$
- $(3) \frac{4\sqrt{3}}{5}$

Ans.

Let $3 - x^2 = y^2$ Sol.

$$\therefore$$
 - x dx = ydy

$$\therefore xdx = -vdv$$

$$\int (3 - y^2)(-y dy) \cdot y = \int -(3y^2 - y^4) dy$$

$$=-3\left(y^3-\frac{y^5}{5}\right)+c$$

$$=-\frac{y^3}{5}(5-y^2)+c$$

$$= -\frac{\left(3 - x^2\right)^{3/2}}{5} \left(5 - 3 + x^2\right) + c$$

$$f(x) = -\frac{(3-x^2)^{3/2}}{5}(2+x^2)+c$$

$$f(\sqrt{2}) = -\frac{4}{5}$$
 : $-\frac{4}{5} = -\frac{1}{5}(2+2) + c$: $c = 0$

$$f(1) = -\frac{(2)^{3/2}}{5}(3) = -\frac{6\sqrt{2}}{5}$$

6. A relation

> $R = \{(x, y): x, y \in A = \{-3, -2, -1, 0, 1, 2, 3\}\}$ such that $x^2 + 2y \le 4$. Then, the number of ordered pairs in relation R be r and number of ordered pairs required to add in R so that it becomes reflexive relations is m, then r + m is equal to

- (1)26
- (2)28
- (3)24
- (4)23

Ans. **(2)**

 $A = \{-3, -2, -1, 0, 1, 2, 3\}$ Sol.

No of ordered pairs in relation R

$$2y \le 4 - x^2$$

$$2y \le 4 - x^2$$
 $\therefore y \le \frac{4 - x^2}{2}$

Now put:

(1) $x = \pm 3, y \le \frac{4-9}{2} \implies y \le \frac{-5}{2} \implies y = -3$ $(\pm 3, -3) \rightarrow 2$ pairs

- (2) $x = \pm 2, y \le \frac{4-4}{2} \implies y \le 0$ \Rightarrow y = -3, -2, -1, 0 $(\pm 2, -3), (\pm 2, -2), (\pm 2, -1), (\pm 2, 0)$ 8 pairs.
- $x \pm 1, y \le \frac{3}{2} \Rightarrow y = -3, -2, -1, 0, 1$ (3) No of ordered pairs = 10
- $x = 0, y \le 2$ (4) \Rightarrow y = -3, -2, -1, 0, 1, 2 6 pairs.
- total order pair
- r = 26

For reflexive m = 2

- r + m = 28.
- 7. The radius of circle touching both parabolas $y = x^2 + 2$ and $x = y^2 + 2$ is
- $(3)\frac{7\sqrt{2}}{4}$

Ans.

Sol.

For
$$y = x^2 + 2$$

$$\frac{dy}{dx} = 2x = 1$$

at
$$x = \frac{1}{2}$$
 and $y = \frac{9}{4}$

For
$$x = y^2 + 2$$

$$1 = 2y \frac{dy}{dx} \Rightarrow \frac{1}{2y} = 1$$

at
$$y = \frac{1}{2}$$
 and $x = \frac{9}{4}$

$$\Rightarrow 2R = \sqrt{2 \times \left(\frac{9}{4} - \frac{1}{2}\right)^2} = \sqrt{2 \times \left(\frac{7}{4}\right)^2} = \sqrt{2} \times \frac{7}{4}$$

$$\Rightarrow R = \frac{7\sqrt{2}}{8}$$

- If $3x + 2 \tan x = \pi$, $x \in [-2\pi, 2\pi] \{\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}\}$ 8. Then number of values of x that satisfies the above equation is
 - (1)7
- (2)5
- (3)4
- (4)6

Ans. **(2)**

 $3x + 2\tan x = \pi, \ x \in [-2\pi, 2\pi] - \{\pm \pi/2, \pm 3\pi/2\}$ Sol. $\tan x = \frac{\pi - 3x}{2}$

- Let $\int_0^x g(t) dt = x \int_0^x tg(t) dt$, $x \ge 0$ and 9. $\frac{dy}{dx}$ - ytanx = 2(x + 1)secx g(x)satisfying the condition y(0) = 0. Then $y\left(\frac{\pi}{3}\right)$ is
 - $(1) \pi$
- $(2) 2\pi$

 $x \ge 0$

- $(3)\frac{2\pi}{3}$
- $(4)\frac{4\pi}{2}$

Ans.

Sol.
$$\int_{0}^{x} g(t)dt = x - \int_{0}^{x} tg(t)dt$$
$$g(x) = 1 - xg(x)$$

$$\Rightarrow g(x) = \frac{1}{1+x}$$

$$\frac{dy}{dx} - y \tan x = 2(x+1)\sec xg(x)$$

$$\frac{dy}{dx} - y \tan x = 2 \sec x$$

 $\cos x.y = 2x + c$

$$y = \frac{2x}{\cos x}$$

$$y\left(\frac{\pi}{3}\right) = \frac{\frac{2\pi}{3}}{\frac{1}{2}} = \frac{4\pi}{3}$$

 $\Rightarrow 2R = \sqrt{2 \times \left(\frac{9}{4} - \frac{1}{2}\right)^2} = \sqrt{2 \times \left(\frac{7}{4}\right)^2} = \sqrt{2} \times \frac{7}{4} \quad | \quad \mathbf{10.} \quad \text{If } f(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix}$

the value of f''(x) + f(x) is

- (1) -1
- (2)28
- (3)27
- (4) 1

Ans. **(1)**

 $|\sin x \cos x \sin x + \cos x + 1|$ Sol.

$$f'(x) = \begin{vmatrix} \cos x & -\sin x & \cos x - \sin x \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix}$$

$$f''(x) = \begin{vmatrix} -\sin x & -\cos x & -\sin x - \cos x \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix}$$

$$f''(x) + f(x) = \begin{vmatrix} 0 & 0 & 1 \\ 27 & 28 & 27 \\ 1 & 1 & 1 \end{vmatrix}$$

- = 27 28= -1
- 11. The number of seven digit numbers whose sum of digits is 7, is .

(924)Ans.

- Let the seven digit number be $a_0, a_1, a_2, a_3, a_4, a_5, a_6$ Sol. where a₀, a₁, a₂, a₃, a₄, a₅, a₆ are digits from 0 to 7 & $a_0 \neq 0$
 - \therefore When $a_0 = 1$, $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 6$
 - :. No. of ways = ${}^{6+6-1}C_{6-1} = {}^{11}C_5$
 - \therefore When $a_0 = 2$, $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 5$
 - :. No. of ways = ${}^{5+6-1}C_{6-1} = {}^{10}C_5$

- \therefore When $a_0 = 7$, $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 0$
- \therefore No. of ways = ${}^{0+6-1}C_{6-1} = {}^{5}C_{5}$
- .. Total number of nos.

$$= {}^{5}C_{5} + {}^{6}C_{5} + {}^{7}C_{5} + \dots + {}^{11}C_{5}$$

$$= {}^{12}C_6 = \frac{12.11.10.9.8.7}{6.5.4.3.2.1} = 924$$

12. Let α , β are the roots of the equation $x^2 + \sqrt{3}x - 16 = 0$ and γ , δ are the roots of the equation $x^2 + 3x - 1 = 0$.

If $Q_n = \alpha^n + \beta^n \,\forall \, n \in \mathbb{N}$ then the value of $\frac{Q_{25} + \sqrt{3}Q_{24}}{2Q_{23}} + \left(\frac{P_{25} - P_{23}}{P_{24}}\right) \text{ is}$

- (1) 5
- (2)6
- (3)7
- (4) 8

Ans. (1)

Sol.

$$x^2 + \sqrt{3}x - 16 = 0$$

$$\beta, Q_n = \alpha^n + \beta^n$$

so, it will satisfy $Q_{n+2} + \sqrt{3}Q_{n+1} - 16Q_n = 0$

$$x^2 + 3x - 1 = 0 \underbrace{\gamma}_{\delta} \qquad P_n = \gamma^n + \delta^n$$

so, it will satisfy $P_{n+2} + 3P_{n+1} - P_n = 0$

So, the value of
$$\left(\frac{Q_{25} + \sqrt{3}Q_{24}}{2Q_{23}}\right) + \left(\frac{P_{25} - P_{23}}{P_{24}}\right)$$

$$\therefore \frac{Q_{25} + \sqrt{3}Q_{24}}{2Q_3} = 8 \text{ and } \frac{P_{25} - P_{23}}{P_{24}} = -3$$

 \Rightarrow the required value = 8 - 3 = 5

- 13. If $y = \max\{|x|, x, |x-2|\}$, then the area under the curve from x = -2 to x = 4 is (in square units)
 - (1) 15
- (2) 20
- (3) 12
- (4) 8

Ans. (1)

Sol. :. Area =
$$\frac{1}{2} \times 3 \times 3 + 3 \times 1 + 3 \times 1 + \frac{1}{2} \times 3 \times 3$$

= 15

14. Let a line passing through (4,1,3) intersects the lines $l_1: \frac{x-1}{3} - \frac{y-2}{4} = \frac{z-3}{5}$ at (α, β, γ) and

 $l_2: x - 1 = y = -z + 4$ at (a,b,c), then find

$$\begin{bmatrix} \alpha & \beta & \gamma \\ a & b & c \end{bmatrix}$$
 is equal to

- (3) 63 (4) 21

Ans. (2)

Sol.

$$\frac{3\lambda + 1 - 4}{1 + \mu - 4} = \frac{4\lambda + 2 - 1}{\mu - 1} = \frac{5\lambda + 3 - 3}{-\mu + 4 - 3}$$

$$\frac{3\lambda - 3}{\mu - 3} = \frac{4\lambda + 1}{\mu - 1} = \frac{5\lambda}{-\mu + 1} = \frac{9\lambda + 1}{0}$$

$$\Rightarrow \lambda = \frac{-1}{9}, \ \mu = \frac{9}{7}$$

$$3\lambda + 1$$
 $4\lambda + 2$ $5\lambda + 3$

$$\mu+1$$
 μ $-\mu+4$

Using $C_2 \rightarrow C_2 + C_3$

$$= \begin{vmatrix} 63 & 0 & -21 \\ 3\lambda + 1 & 9\lambda + 5(=4) & 5\lambda + 3 \\ \mu + 1 & 4 & -\mu + 4 \end{vmatrix}$$

Using $R_2 \rightarrow R_2 - R_3$

$$= \begin{vmatrix} 63 & 0 & -21 \\ 3\lambda - \mu & 0 & 5\lambda + \mu - 1 \\ \mu + 1 & 4 & -\mu + 4 \end{vmatrix}$$

$$= -4[63(5\lambda + \mu - 1) + 21(3\lambda - \mu)]$$

$$= -4 \times 21[15\lambda + 3\mu - 3 + 3\lambda - \mu]$$

$$=-84[18\lambda + 2\mu - 3]$$

$$=-84\left[-2+\frac{18}{7}-3\right]$$

$$=-84\left[-5+\frac{18}{7}\right]=-12\left[-35+18\right]$$

$$= 12 \times 17$$

$$= 204$$

15. Let $a_1, a_2, a_3, ...$ be the terms of an increasing G.P. such that $a_3 \cdot a_5 = 729$ and $a_2 + a_4 = \frac{111}{4}$, then $24(a_1 + a_2 + a_3)$ is equal to

(1) 139

(2)129

(3)125

(4)119

Ans. (2)

Sol. Let the first term of the increasing G.P. be a and common ratio be r then as per the question $a_3 \cdot a_5 = ar^2 \cdot ar^4 = 729 \Rightarrow ar^3 = 27$

$$a_2 + a_4 = \frac{111}{4} \Rightarrow ar + ar^3 = \frac{111}{4}$$
$$\Rightarrow ar = \frac{111}{4} - 27 = \frac{3}{4}$$

So,
$$r^2 = \frac{27}{3/4} = 36 \implies r = 6$$

So,
$$a = \frac{3}{4 \times 6} = \frac{1}{8}$$

Hence,
$$24(a_1 + a_2 + a_3) = 24(a + ar + ar^2)$$

$$=24\times a(1+r+r^2)$$

$$= 24 \times \frac{1}{8} \left(1 + 6 + 6^2 \right) = 129$$

16. Let $z \in C$ such that $\frac{z^2 + 3i}{z - 2 + i} = 2 + 3i$ then sum of all possible values of z^2 is

$$(1) - 19 - 2i$$

(2) 19 + 2i

$$(3) -19 + 2i$$

(4) 19 - 2i

Ans. (1)

Sol. $\frac{z^2 + 3i}{z - 2 + i} = 2 + 3i$ $\Rightarrow z^2 + 3i = (2 + 3i)(z - 2 + i)$

$$\Rightarrow z^2 + 3i = 2z - 4 + 2i + 3iz - 6i - 3$$

$$\Rightarrow z^2 + 3i = 2z - 4i - 7 + 3iz$$

$$\Rightarrow z^2 - z(2+3i) + 7(1+i) = 0$$

Which has roots as α and β sum of whose squares will be given as

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$
$$= (2+3i)^{2} - 2\times7(1+i)$$
$$= (4-9+12i)-14-14i$$

=-19-2i

17. Let
$$f(x) = \begin{cases} (1+ax)^{\frac{1}{x}}, & x < 0\\ 1+b, & x = 0\\ \frac{(x+4)^{\frac{1}{2}}-2}{(x+c)^{\frac{1}{3}}-2}, & x > 0 \end{cases}$$

continuous

at x = 0 then $e^a bc$ is equal to

(1)64

(2)48

(3)72

(4) 36

Ans. (2)

Sol.
$$f(x) = \begin{cases} (a+ax)^{\frac{1}{x}}, & x < 0\\ (1+b), & x = 0\\ \frac{(x+4)^{\frac{1}{2}} - 2}{(x+c)^{\frac{1}{3}} - 2}, & x > 0 \end{cases}$$

$$\Rightarrow \frac{2-2}{c^{\frac{1}{3}}-2} \Rightarrow \text{finite}$$

$$c^{\frac{1}{3}} = 2$$

c = 8

$$\frac{1}{e^x} \times ax = 1 + b \Longrightarrow e^a = b + 1$$

$$\frac{\frac{1}{2}(x+4)^{\left(\frac{-1}{2}\right)}}{\frac{1}{3}(x+c)^{\frac{-2}{3}}} \Rightarrow \frac{\frac{1}{2} \times \frac{1}{2}}{\frac{1}{3} \times c^{\frac{-2}{3}}}$$

$$= \frac{3}{4}c^{\frac{2}{3}} = \frac{3}{4} \times 4 = 3$$

$$b+1=3 \Rightarrow b=2$$

$$e^a \times bc = (b+1)bc$$

$$=3\times2\times8=48$$

18. Let the product of the focal distances of the point $P(4,2\sqrt{3})$ on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be 32. The length of conjugate axis be p and the length of it's latus rectum be q. Then $p^2 + q^2$ is equal to ___.

Ans.

(120)

Sol. $P = 4, 2\sqrt{3} \equiv P(x_1, y_1)$

$$PS_1 = e \left| x_1 - \frac{a}{e} \right| = ex_1 - a$$

$$PS_2 = e \left| x_1 + \frac{a}{e} \right| = ex_1 + a$$

$$PS_1 \times PS_2 = 32$$

$$\Rightarrow e^2 x_1^2 - a^2 = 32$$

$$\Rightarrow \left(1 + \frac{b^2}{a^2}\right) \times 16 - a^2 = 32$$

$$\Rightarrow 16\frac{b^2}{a^2} - a^2 = 16 \qquad \dots (i)$$

$$\frac{16}{a^2} - \frac{12}{b^2} = 1$$
 ...(ii)

$$\Rightarrow 16\frac{b^2}{a^2} - 12 = b^2$$

$$\Rightarrow 16 + a^2 - 12 = b^2$$

$$\Rightarrow b^2 = a^2 + 4 \qquad \dots (iii)$$

Solving (ii) & (iii)

$$\frac{16}{a^2} - \frac{12}{a^2 + 4} = 1$$

$$\Rightarrow 16a^2 + 64 - 12a^2 = a^4 + 4a^2$$

$$\Rightarrow$$
 a⁴ = 64

$$\therefore a^2 = 8$$

$$b^2 = 12$$

$$p = 2b \& q = \frac{2b^2}{q}$$

$$p^2 + q^2 = 4b^2 + \frac{4b^4}{a^2}$$

$$=4\times12+4\times\frac{144}{9}$$

$$=48+72=120$$

19. $\frac{2x-3}{5+4x} \quad ^{-1} \quad \frac{3x+4}{2-x} \quad \text{If domain of}$ f(x) is $[\alpha, \beta)$, then find the value of $\alpha^2 + 4\beta$.

Ans. (4)

Sol.
$$\frac{2x-3}{5+4x} > 0 \implies x \in \left(-\infty, \frac{-5}{4}\right) \cup \left(\frac{3}{2}, \infty\right)$$
$$-1 \le \frac{3x+4}{2-x} \le 1 \implies -1 \le \frac{3x+4}{2-x} \text{ and } \frac{3x+4}{2-x} < 1$$
$$\frac{3x+4}{2-x} + 1 \ge 0 \text{ and } \frac{3x+4}{2-x} - 1 < 0$$
$$\implies x \in [-3, 2) \text{ and } x \in \left(-\infty, \frac{-1}{2}\right] \cup (2, \infty)$$
So, Domain is $x \in \left[-3, \frac{-5}{4}\right]$

$$\alpha = -3 \& \beta = -\frac{5}{4}$$

So,
$$\alpha^2 + 4\beta$$

= 9 - 5 = 4.