Trigonometrical Ratios

- 1. **Trigonometry** is the study of relationship between the sides and the angles of the triangle.
- 2. The word trigonometry is derived from the Greek words 'tri' meaning three, 'gon' meaning sides and 'metron' meaning measure.
- 3. Angle measured in anticlockwise direction is taken as positive angle.
- 4. Angle measured in clockwise direction is taken as negative angle.
- 5. Ratio of the sides of the right triangle with respect to the acute angles is called **trigonometric ratios** of the angle.
- 6. Trigonometric ratios of acute angle A in right triangle ABC:

i.
$$\sin A = \frac{\text{side opposite to } \angle A}{\text{hypotenuse}} = \frac{p}{h}$$

ii. $\cos A = \frac{\text{side adjacent to } \angle A}{\text{hypotenuse}} = \frac{b}{h}$

iii. $\tan A = \frac{\text{side opposite to } \angle A}{\text{side adjacent to } \angle A} = \frac{p}{b}$

iv. $\cos ecA = \frac{\text{hypotenuse}}{\text{side opposite to } \angle A} = \frac{h}{p}$

v. $\sec A = \frac{\text{hypotenuse}}{\text{side adjacent to } \angle A} = \frac{h}{b}$

vi. $\cot A = \frac{\text{side adjacent to } \angle A}{\text{side opposite to } \angle A} = \frac{b}{p}$

- 7. Each trigonometric ratio is a real number. It has no unit.
- 8. Only symbols cosine, sine, tangent, cotangent, sec and cosec have no meaning.
- 9. $(\sin \theta)^n$ is generally written as $\sin^n \theta$, n being a positive integer. Similarly, other trigonometric ratios can also be written.
- 10. The values of the trigonometric ratios of an angle do not vary with the length of the sides of the triangle, if the angles remain the same.
- 11. **Pythagoras theorem**: In a right triangle, square of the hypotenuse is equal to the sum of the square of the other two sides.
- 12. When any two sides of a right triangle are given, its third side can be obtained by using Pythagoras theorem.
- 13. Relation between trigonometric ratios:

i.
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

ii.
$$\cos \operatorname{ec} \theta = \frac{1}{\sin \theta}$$

iii.
$$\sec \theta = \frac{1}{\cos \theta}$$

iv.
$$\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

14. Values of Trigonometric ratios of some specific angles:

∠A	0 °	30°	45°	60°	90°
sin A	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1/2	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	√3	Not defined
cosec A	Not defined	2	√2	$\frac{2}{\sqrt{3}}$	1
sec A	1	$\frac{2}{\sqrt{3}}$	√2	2	Not defined
cot A	Not defined	√3	1	$\frac{1}{\sqrt{3}}$	0

- 15. The value of sin *A* or cos A never exceeds 1, whereas the value of sec *A* or cosec *A* is always greater than 1 or equal to 1.
- 16. The value of $\sin \theta$ increases from 0 to 1 when θ increases from 0^0 to 90^0 .
- 17. The value of $\cos\theta$ decreases from 1 to 0 when θ increases from 0^0 to 90^0 .

18. Trigonometric ratios of complementary angles:

- i. $\sin (90^{\circ} A) = \cos A$
- ii. $\cos (90^{\circ} A) = \sin A$
- iii. $tan (90^{\circ} A) = \cot A$
- iv. $\cot (90^{\circ} A) = \tan A$
- v. $\sec (90^{\circ} A) = \csc A$
- vi. $\csc (90^{\circ} A) = \sec A$
- 19. An equation involving trigonometric ratios of an angle, say θ , is termed as a **trigonometric identity** if it is satisfied by all values of θ .

20. Basic trigonometric identities:

- i. $\sin^2 \theta + \cos^2 \theta = 1$
- ii. $1 + \tan^2 \theta = \sec^2 \theta$
- iii. $1 + \cot^2 \theta = \sec^2 \theta$