Triangles

• **Triangle:** A triangle is a three-sided polygon. It is the polygon with the least number of sides.

We denote this triangle as $\triangle PQR$. Here, \overline{PQ} , \overline{QR} and \overline{RP} are the sides of $\triangle PQR$. The points P, Q and R are the vertices of $\triangle PQR$ and the angles are $\angle RPQ$, $\angle PQR$ and $\angle QRP$.

- A triangle can be classified on the basis of the measures of its angles and sides.
- Classification of triangles on the basis of the measures of its angles:

Name	Nature of the angle
Acute-angled triangle	Each angle is acute
obtuse-angled triangle	One angle is obtuse
Right-angled triangle	One angle is a right angle

• Classification of triangles on the basis of the lengths of its sides:

Name	Nature of the angle
Scalene triangle	All three sides are of unequal length
Isosceles triangle	Any two sides are of equal length

• Isosceles triangle

In an isosceles triangle, (1) two sides are of equal length and (2) the base angles opposite to the equal sides are equal.

Example:

In the following figure, AC = BC. Find m∠ACD. A 50° B Solution: In \triangle ABC, AC = BC $\therefore \angle$ CBA = \angle CAB $\therefore \angle$ ACD = \angle CAB + \angle CBA = 2 × 50° = 100°

• Equilateral triangle

In an equilateral triangle, (1) all sides are equal and (2) each angle is of measure 60° .

• A triangle can be constructed if all its sides are known.

Example:

Construct a triangle whose sides are 3 cm, 5cm and 7 cm.

Solution:

- 1. Draw a line segment AB of length 7 cm. With A as centre and radius equal to 3 cm, draw an arc.
- 2. With B as centre and radius 5 cm, draw another arc cutting the earlier drawn arc at C.
- 3. Join AC and BC to get \triangle ABC.

cm.

Solution:

1. Draw a line segment QR of length 4 cm and draw a ray QX, making an angle of 60° with QR

2. Now, draw ray RY, making an angle of 45° with QR and intersecting QX at P. The resulting Δ PQR is the required triangle.

• A triangle can be constructed if the length of two sides and angle between them are given.

Example:

Construct $\triangle ABC$ where BC = 7 cm, AB = 5 cm and $\angle ABC = 30^{\circ}$

Solution:

- 1. Draw a line segment BC of length 7 cm and at B draw a ray BX, making an angle of 30° with BC.
- 2. With B as centre and radius equal to 5 cm, draw an arc cutting BX at A.
- 3. Join AC to get the required $\triangle ABC$.

• A right-angled triangle can be constructed if the length of one of its sides or arms and the length of its hypotenuse are known.

Example: Construct $\triangle XYZ$, right-angled at Y, with XZ = 5 cm and YZ = 3 cm. **Solution:**

- 1. Draw a line segment YZ of length 3 cm. At Y, draw MY⊥YZ.
- 2. With Z as centre and radius equal to 5 cm, draw an arc intersecting MY at X. Join XZ to get the required Δ XYZ.

• Construction of circumcircle of given triangle:

Example:

Construct the circumcircle of $\triangle PQR$ such that $\angle Q = 60^{\circ}$, QR = 4 cm, and QP = 5.7 cm.

Solution:

Step 1: Draw a triangle PQR with $\angle Q = 60^{\circ}$, QR = 4 cm, and QP = 5.7 cm

Step 2: Draw perpendicular bisector of any two sides, say QR and PR. Let these perpendicular bisectors meet at point O.

Step 3: With O as centre and radius equal to OP, draw a circle.

The circle so drawn passes through the points P, Q, and R, and is the required circumcircle of Δ PQR.

• Construction of incircle of given triangle:

Example:

Construct incircle of a right $\triangle PQR$, right angled at Q, such that QR = 4 cm and PR = 6 cm.

Solution:

Step 1: Draw a \triangle PQR right-angled at Q with QR = 4 cm and PR = 6 cm.

Step 2: Draw bisectors of $\angle Q$ and $\angle R$. Let these bisectors meet at the point O.

Step 3: From O, draw OX perpendicular to the side QR.

Step 4: With O as centre and radius equal to OX, draw a circle.

The circle so drawn touches all the sides of ΔPQR and is the required incircle of ΔPQR .

• Right-angled triangle

A triangle with one of the angles as 90° , is called a right-angled triangle.

 \triangle ABC is a right-angled triangle with \angle B = 90°

- The side opposite to the right angle is called its hypotenuse. The other two sides are called the legs of the right-angled triangle, i.e., in the given figure, AC is the hypotenuse and AB, BC are the legs.
- In a right-angled triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides, i.e., $AC^2 = AB^2 + BC^2$.

This property is called Pythagoras Theorem.

Example: Find the value of *x* in the following figure.

Solution: $\triangle ABC$ is a right-angled triangle with $\angle B = 90^{\circ}$. $AC^2 = AB^2 + BC^2$ [By Pythagoras Theorem] $\Rightarrow (17 \text{ cm})^2 = (8 \text{ cm})^2 + x^2$ $\Rightarrow x = \sqrt{289 - 64 \text{ cm}} = 15 \text{ cm}$

• In a triangle, if Pythagoras property holds, then it is a right-angled triangle.

Therefore, Pythagoras property holds in $\triangle ABC$. Thus, it is a right-angled triangle.