Angles, Linesand Triangles

Exercise 4A

Question 1:

- (i) Angle: Two rays having a common end point form an angle.
- (ii) Interior of an angle: The interior of \angle AOB is the set of all points in its plane, which lie on the same side of OA as B and also on same side of OB as A.
- (iii) Obtuse angle: An angle whose measure is more than 90° but less than 180°, is called an obtuse angle.
- (iv) Reflex angle: An angle whose measure is more than 180° but less than 360° is called a reflex angle.
- (v) Complementary angles: Two angles are said to be complementary, if the sum of their measures is 90o.
- (vi) Supplementary angles: Two angles are said to be supplementary, if the sum of their measures is 180° .

Question 2:

Therefore, the sum $\angle A + \angle B = 65^{\circ} 11' 25''$

Question 3:

Let $\angle A = 36^{\circ}$ and $\angle B = 24^{\circ} 28' 30''$ Their difference = $36^{\circ} - 24^{\circ} 28' 30''$

Thus the difference between two angles is ∠A - ∠B = 11° 31′ 30″

Question 4:

- (i) Complement of $58^{\circ} = 90^{\circ} 58^{\circ} = 32^{\circ}$
- (ii) Complement of $16^{\circ} = 90 16^{\circ} = 74^{\circ}$
- (iii) $\frac{2}{3}$ of a right angle = $\frac{2}{3} \times 90^{\circ} = 60^{\circ}$

Complement of $60^{\circ} = 90^{\circ} - 60^{\circ} = 30^{\circ}$

(iv)
$$1^{\circ} = 60'$$

Complement of 46° 30′ = 90° - 46° 30′ = 43° 30′

$$(v) 90^\circ = 89^\circ 59' 60''$$

Complement of 52° 43′ 20″ = 90° - 52° 43′ 20″

- : Complement of (68° 35′ 45″)
- = 90° (68° 35′ 45″)
- = 89° 59′ 60″ (68° 35′ 45″)
- = 21° 24′ 15″

Question 5:

- (i) Supplement of $63^{\circ} = 180^{\circ} 63^{\circ} = 117^{\circ}$
- (ii) Supplement of $138^{\circ} = 180^{\circ} 138^{\circ} = 42^{\circ}$

- $\frac{3}{5} \text{ of a right angle} = \frac{3}{5} \times 90^{\circ} = 54^{\circ}$
- : Supplement of $54^{\circ} = 180^{\circ} 54^{\circ} = 126^{\circ}$

(iv)
$$1^{\circ} = 60'$$

Supplement of $75^{\circ} 36' = 180^{\circ} - 75^{\circ} 36' = 104^{\circ} 24'$

(v)
$$1^\circ = 60'$$
, $1' = 60''$

Supplement of 124° 20′ 40″ = 180° - 124° 20′ 40″

(vi)
$$1^\circ = 60'$$
, $1' = 60''$

: Supplement of $108^{\circ} 48' 32'' = 180^{\circ} - 108^{\circ} 48' 32''$

Question 6:

(i) Let the required angle be xo

Then, its complement = $90^{\circ} - x^{\circ}$

$$x^{0} = 90^{0} - x^{0}$$

 \therefore The measure of an angle which is equal to its complement is 45°.

(ii) Let the required angle be x^o

Then, its supplement = $180^{\circ} - x^{\circ}$

$$\Rightarrow \qquad \qquad x = \frac{180}{2} = 90$$

: The measure of an angle which is equal to its supplement is 90°.

Question 7:

Let the required angle be xo

Then its complement is 90° – x°

$$\Rightarrow \qquad \qquad x^{\circ} = \left(90^{\circ} - x^{\circ}\right) + 36^{\circ}$$

$$\Rightarrow \qquad x^{\circ} + x^{\circ} = 90^{\circ} + 36^{\circ}$$

$$\Rightarrow \qquad 2x^{\circ} = 126^{\circ}$$

$$\Rightarrow \qquad \qquad x = \frac{126}{2} = 63$$

$$\Rightarrow$$
 $x^{0} + x^{0} = 90^{0} + 36^{0}$

$$\Rightarrow \qquad \qquad X = \frac{126}{2} = 63$$

∴ The measure of an angle which is 36° more than its complement is 63°.

Question 8:

Let the required angle be xo

Then its supplement is $180^{\circ} - x^{\circ}$

$$\Rightarrow$$
 $\times^{\circ} = (180^{\circ} - \times^{\circ}) - 25^{\circ}$

$$\Rightarrow$$
 $\times^{\circ} + \times^{\circ} = 180^{\circ} - 25^{\circ}$

$$\Rightarrow \qquad \qquad x^{0} = \left(180^{\circ} - x^{\circ}\right) - 25^{\circ}$$

$$\Rightarrow \qquad x^{0} + x^{0} = 180^{\circ} - 25^{\circ}$$

$$\Rightarrow \qquad 2x = 155$$

$$\Rightarrow \qquad x = \frac{155}{2} = 77\frac{1}{2}$$

∴ The measure of an angle which is 25° less than its supplement is $77\frac{1}{2}^{\circ} = 77.5^{\circ}$.

Question 9:

Let the required angle be xo

Then, its complement = $90^{\circ} - x^{\circ}$

$$\Rightarrow \qquad \qquad x^{\circ} = 4(90^{\circ} - x^{\circ})$$

$$\Rightarrow \qquad \qquad x^{\circ} = 360^{\circ} - 4x^{\circ}$$

$$\Rightarrow \qquad \qquad 5x = 360$$

$$\Rightarrow \qquad \qquad x = \frac{360}{5} = 72$$

$$\Rightarrow \qquad \qquad X = \frac{360}{5} = 72$$

 \therefore The required angle is 72°.

Question 10:

Let the required angle be xo

Then, its supplement is 180° – x°

$$\Rightarrow \qquad \qquad x^{\circ} = 5\left(180^{\circ} - x^{\circ}\right)$$

$$\Rightarrow \qquad \qquad x^{\circ} = 900^{\circ} - 5x^{\circ}$$

$$\Rightarrow \qquad \times + 5x = 900$$

$$\Rightarrow \qquad 6x = 900$$

$$\Rightarrow \qquad \times = \frac{900}{6} = 150.$$

$$\Rightarrow \qquad \qquad \times = \frac{900}{6} = 150$$

∴ The required angle is 150°.

Question 11:

Let the required angle be xo

Then, its complement is 90° – x° and its supplement is 180° – x°

That is we have,

180° - x° = 4(90° - x°)
180° - x° = 360° - 4x°
4x° - x° = 360° - 180°
3x = 180
x =
$$\frac{180}{3}$$
 = 60°

∴ The required angle is 60°.

Question 12:

Let the required angle be xo

Then, its complement is 90° – x° and its supplement is 180° – x°

$$90^{\circ} - x^{\circ} = \frac{1}{3} \left(180^{\circ} - x^{\circ} \right)$$

$$90 - x = 60 - \frac{1}{3} \times x$$

$$x - \frac{1}{3} \times x = 90 - 60$$

$$\frac{2}{3} \times x = 30$$

$$x = \frac{30 \times 3}{2} = 45$$

 \therefore The required angle is 45°.

Question 13:

Let the two required angles be xo and 180o - xo.

$$\frac{x^{\circ}}{180^{\circ} - x^{\circ}} = \frac{3}{2}$$

$$\Rightarrow 2x = 3(180 - x)$$

$$\Rightarrow$$
 2x = 540 - 3x

$$\Rightarrow$$
 3x + 2x = 540

Thus, the required angles are 108° and 180° – x° = 180° – 108° = 72° .

Question 14:

Let the two required angles be x° and $90^{\circ} - x^{\circ}$.

Ther

$$\frac{x^{\circ}}{90^{\circ}-x^{\circ}} = \frac{4}{5}$$

$$\Rightarrow$$
 5x = 4(90 - x)

$$\Rightarrow$$
 5x = 360 − 4x

$$\Rightarrow 5x + 4x = 360$$

$$\Rightarrow$$
 9x = 360

$$\Rightarrow x = \frac{360}{9} = 40$$

Thus, the required angles are 40° and 90° – x° = 90° – 40° = 50° .

Question 15:

Let the required angle be xo.

Then, its complementary and supplementary angles are $(90^{\circ} - x)$ and $(180^{\circ} - x)$ respectively.

Then, $7(90^{\circ} - x) = 3(180^{\circ} - x) - 10^{\circ}$

$$\Rightarrow$$
 630° - 7x = 540° - 3x - 10°

$$\Rightarrow$$
 7x - 3x = 630° - 530°

$$\Rightarrow$$
 4x = 100°

Thus, the required angle is 25°.

Exercise 4B

Question 1:

Since ∠BOC and ∠COA form a linear pair of angles, we have

$$\Rightarrow$$
 x⁰ + 62⁰ = 180⁰

$$\Rightarrow$$
 x = 180 - 62

Question 2:

Since, ∠BOD and ∠DOA form a linear pair.

$$\therefore$$
 ZBOD + ZDOC + ZCOA = 180°

$$\Rightarrow$$
 (x + 20)° + 55° + (3x - 5)° = 180°

$$\Rightarrow$$
 x + 20 + 55 + 3x - 5 = 180

$$\Rightarrow$$
 4x + 70 = 180

$$\Rightarrow$$
 4x = 180 - 70 = 110

$$\Rightarrow x = \frac{110}{4} = 27.5$$

$$\therefore$$
 ZAOC = $(3 \times 27.5 - 5)^{\circ} = 82.5 - 5 = 77.5^{\circ}$

And,
$$\angle BOD = (x + 20)^{\circ} = 27.5^{\circ} + 20^{\circ} = 47.5^{\circ}$$
.

Question 3:

Since ∠BOD and ∠DOA from a linear pair of angles.

$$\Rightarrow$$
 ZBOD + **Z**DOA = 180°

$$\Rightarrow$$
 \angle BOD + \angle DOC + \angle COA = 180°

$$\Rightarrow$$
 $x^{0} + (2x - 19)^{0} + (3x + 7)^{0} = 180^{0}$

$$\Rightarrow$$
 6x = 180 + 12 = 192

$$\Rightarrow x = \frac{192}{6} = 32$$

⇒
$$\angle$$
AOC = $(3x + 7)^{\circ}$ = $(332 + 7)^{\circ}$ = 103°

⇒
$$\angle$$
COD = $(2x - 19)^{\circ}$ = $(232 - 19)^{\circ}$ = 45°

and
$$\angle BOD = x^0 = 32^\circ$$

Question 4:

$$x: y: z = 5: 4: 6$$

The sum of their ratios = 5 + 4 + 6 = 15

But
$$x + y + z = 180^{\circ}$$

[Since, XOY is a straight line]

So, if the total sum of the measures is 15, then the measure of x is 5.

If the sum of angles is 180° , then, measure of $x = \frac{5}{15} \times 180 = 60$

And, if the total sum of the measures is 15, then the measure of y is 4.

If the sum of the angles is 180°, then, measure of $y = \frac{4}{15} \times 180 = 48$

And
$$\angle z = 180^{\circ} - \angle x - \angle y$$

$$\therefore$$
 x = 60, y = 48 and z = 72.

Question 5:

AOB will be a straight line, if two adjacent angles form a linear pair.

$$\Rightarrow$$
 $(4x - 36)^{\circ} + (3x + 20)^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 4x - 36 + 3x + 20 = 180

$$\Rightarrow$$
 7x - 16 = 180°

$$\Rightarrow$$
 7x = 180 + 16 = 196

$$\Rightarrow x = \frac{196}{7} = 28$$

 \therefore The value of x = 28.

Question 6:

Since **Z**AOC and **Z**AOD form a linear pair.

$$\therefore$$
 ZAOC + **Z**AOD = 180°

$$\Rightarrow$$
 ZAOD = $180^{\circ} - 50^{\circ} = 130^{\circ}$

∠AOD and ∠BOC are vertically opposite angles.

∠BOD and ∠AOC are vertically opposite angles.

Question 7:

Since ∠COE and ∠DOF are vertically opposite angles, we have,

$$\Rightarrow$$
 $\angle z = 50^{\circ}$

Also ∠BOD and ∠COA are vertically opposite angles.

$$\Rightarrow$$
 \angle t = 90°

As ∠COA and ∠AOD form a linear pair,

$$\Rightarrow$$
 \angle COA + \angle AOF + \angle FOD = 180° [\angle t = 90°]

$$\Rightarrow$$
 t + x + 50° = 180°

$$\Rightarrow$$
 90° + x° + 50° = 180°

$$\Rightarrow$$
 x = 180 - 140 = 40

Since ∠EOB and ∠AOF are vertically opposite angles

$$\Rightarrow$$
 y = x = 40

Thus,
$$x = 40 = y = 40$$
, $z = 50$ and $t = 90$

Question 8:

Since ∠COE and ∠EOD form a linear pair of angles.

$$\Rightarrow$$
 5x + \angle EOA + 2x = 180

$$\Rightarrow$$
 5x + \angle BOF + 2x = 180

[\therefore **Z**EOA and BOF are vertically opposite angles so, **Z**EOA = **Z**BOF]

$$\Rightarrow$$
 5x + 3x + 2x = 180

$$\Rightarrow 10x = 180$$

Now
$$\angle AOD = 2x^0 = 2 \times 18^0 = 36^0$$

$$\angle$$
COE = $5x^{0} = 5 \times 18^{0} = 90^{0}$

and,
$$\angle EOA = \angle BOF = 3x^{0} = 3 \times 18^{0} = 54^{0}$$

Question 9:

Let the two adjacent angles be 5x and 4x.

Now, since these angles form a linear pair.

So,
$$5x + 4x = 180^{\circ}$$

$$\Rightarrow$$
 9x = 180°

$$\Rightarrow x = \frac{180}{9} = 20$$

 \therefore The required angles are $5x = 5x = 520^{\circ} = 100^{\circ}$

and
$$4x = 4 \times 20^{\circ} = 80^{\circ}$$

Question 10:

Let two straight lines AB and CD intersect at O and let ∠AOC = 90°.

Now, ∠AOC = ∠BOD [Vertically opposite angles]

Also, as ∠AOC and ∠AOD form a linear pair.

$$\Rightarrow$$
 ZAOD = $180^{\circ} - 90^{\circ} = 90^{\circ}$

Since, ∠BOC = ∠AOD [Verticallty opposite angles]

Thus, each of the remaining angles is 90°.

Question 11:

Since, ∠AOD and ∠BOC are vertically opposite angles.

Now, ∠AOD + ∠BOC = 280° [Given]

$$\Rightarrow$$
 \angle AOD + \angle AOD = 280°

$$\Rightarrow$$
 \angle AOD = $\frac{280}{2}$ = 140°

As, ∠AOC and ∠AOD form a linear pair.

So,
$$\angle AOC + \angle AOD = 180^{\circ}$$

Since, ∠AOC and ∠BOD are vertically opposite angles.

$$\therefore$$
 ZAOC = **Z**BOD

$$\therefore$$
 ZBOC = 140°, **Z**AOC = 40°, **Z**AOD = 140° and **Z**BOD = 40°.

Question 12:

Since ∠COB and ∠BOD form a linear pair

Also, as ∠COA and ∠AOD form a linear pair.

So,
$$\angle$$
COA + \angle AOD = 180°

$$\Rightarrow$$
 \angle AOD = 180° - \angle COB (2)

[Since, OC is the bisector of \angle AOB, \angle BOC = \angle AOC]

From (1) and (2), we get,

∠AOD = ∠BOD (Proved)

Question 13:

Let QS be a perpendicular to AB.

Because angle of incident = angle of reflection

$$\Rightarrow$$
 \angle PQS = \angle SQR = $\frac{112}{2}$ = 56°

Since QS is perpendicular to AB, ∠PQA and ∠PQS are complementary angles.

Thus,
$$\angle PQA + \angle PQS = 90^{\circ}$$

$$\Rightarrow$$
 ZPQA + 56° = 90°

$$\Rightarrow$$
 ZPQA = 90° - 56° = 34°

Question 14:

Given: AB and CD are two lines which are intersecting at O. OE is a ray bisecting the \angle BOD. OF is a ray opposite to ray OE.

To Prove: ∠AOF = ∠COF

Proof : Since \overrightarrow{OE} and \overrightarrow{OF} are two opposite rays, \overrightarrow{EF} is a straight line passing through O.

∴∠AOF = ∠BOE

and ∠COF = ∠DOE

[Vertically opposite angles]

But ∠BOE = ∠DOE (Given)

∴∠AOF = ∠COF

Hence, proved.

Question 15:

Given: \overrightarrow{CF} is the bisector of \angle BCD and \overrightarrow{CE} is the bisector of \angle ACD.

To Prove: ∠ECF = 90°

Proof: Since ∠ACD and ∠BCD forms a linear pair.

∠ACD + ∠BCD = 180°

∠ACE + ∠ECD + ∠DCF + ∠FCB = 180°

∠ECD + ∠ECD + ∠DCF + ∠DCF = 180°

because **Z**ACE = **Z**ECD

and **Z**DCF = **Z**FCB

2(∠ECD) + 2 (∠CDF) = 180°

2(**∠**ECD + **∠**DCF) = 180°

 $\angle ECD + \angle DCF = \frac{180}{2} = 90^{\circ}$

∠ECF = 90° (Proved)

Exercise 4C

Question 1:

Since AB and CD are given to be parallel lines and t is a transversal.

So, $\angle 5 = \angle 1 = 70^{\circ}$ [Corresponding angles are equal]

 $\angle 3 = \angle 1 = 70^{\circ}$ [Vertically opp. Angles]

 $\angle 3 + \angle 6 = 180^{\circ}$ [Co-interior angles on same side]

 \therefore **Z**6 = 180° - **Z**3

= 180° - 70° = 110°

∠6 = ∠8 [Vertically opp. Angles]

⇒ **∠**8 = 110°

 \Rightarrow $\angle 4 + \angle 5 = 180^{\circ}$ [Co-interior angles on same side]

 $\angle 4 = 180^{\circ} - 70^{\circ} = 110^{\circ}$

 $\angle 2 = \angle 4 = 110^{\circ}$ [Vertically opposite angles]

 $\angle 5 = \angle 7$ [Vertically opposite angles]

So, $\angle 7 = 70^{\circ}$

 \therefore $\angle 2 = 110^{\circ}$, $\angle 3 = 70^{\circ}$, $\angle 4 = 110^{\circ}$, $\angle 5 = 70^{\circ}$, $\angle 6 = 110^{\circ}$, $\angle 7 = 70^{\circ}$ and $\angle 8 = 110^{\circ}$.

Question 2:

Since $\angle 2 : \angle 1 = 5 : 4$.

Let $\angle 2$ and $\angle 1$ be 5x and 4x respectively.

Now, $\angle 2 + \angle 1 = 180^{\circ}$, because $\angle 2$ and $\angle 1$ form a linear pair.

So, $5x + 4x = 180^{\circ}$

 \Rightarrow 9x = 180°

 \Rightarrow x = 20°

 \therefore **\(1** = 4x = 4 \times 20^{\tilde{0}} = 80^{\tilde{0}}

And $\angle 2 = 5x = 5 \times 20^{\circ} = 100^{\circ}$

 $\angle 3 = \angle 1 = 80^{\circ}$ [Vertically opposite angles]

And $\angle 4 = \angle 2 = 100^{\circ}$ [Vertically opposite angles]

 $\angle 1 = \angle 5$ and $\angle 2 = \angle 6$ [Corresponding angles]

So, $\angle 5 = 80^{\circ}$ and $\angle 6 = 100^{\circ}$

 $\angle 8 = \angle 6 = 100^{\circ}$ [Vertically opposite angles]

And $\angle 7 = \angle 5 = 80^{\circ}$ [Vertically opposite angles]

Thus, $\angle 1 = 80^{\circ}$, $\angle 2 = 100^{\circ}$, $\angle 3 = \angle 80^{\circ}$, $\angle 4 = 100^{\circ}$, $\angle 5 = 80^{\circ}$, $\angle 6 = 100^{\circ}$, $\angle 7 = 80^{\circ}$ and $\angle 8 = 100^{\circ}$.

Question 3:

Given: AB || CD and AD || BC

To Prove: ∠ADC = ∠ABC

Proof: Since AB $\mid\mid$ CD and AD is a transversal. So sum of consecutive interior angles is

180°.

⇒ ∠BAD + ∠ADC = 180°(i)

Also, AD || BC and AB is transversal.

So, **Z**BAD + **Z**ABC = 180°(ii)

From (i) and (ii) we get:

ZBAD + ZADC = ZBAD + ZABC

⇒ ∠ADC = ∠ABC (Proved)

Question 4:

(i) Through E draw EG $\mid\mid$ CD. Now since EG $\mid\mid$ CD and ED is a transversal.

So, \angle GED = \angle EDC = 65° [Alternate interior angles]

Since EG || CD and AB || CD,

EG||AB and EB is transversal.

So, \angle BEG = \angle ABE = 35° [Alternate interior angles]

So, **Z**DEB = x^{o}

⇒ \angle BEG + \angle GED = 35° + 65° = 100°.

Hence, x = 100.

(ii) Through O draw OF||CD.

Now since OF || CD and OD is transversal.

ZCDO + **Z**FOD = 180°

[sum of consecutive interior angles is 180°]

$$\Rightarrow$$
 ZFOD = 180° - 25° = 155°

As OF || CD and AB || CD [Given]

Thus, OF || AB and OB is a transversal.

So, $\angle ABO + \angle FOB = 180^{\circ}$ [sum of consecutive interior angles is 180°]

$$\Rightarrow$$
 ∠FOB = 180° - 55° = 125°

Now,
$$x^0 = \angle FOB + \angle FOD = 125^0 + 155^0 = 280^\circ$$
.

Hence, x = 280.

(iii) Through E, draw EF || CD.

Now since EF || CD and EC is transversal.

[sum of consecutive interior angles is 180°]

$$\Rightarrow$$
 ∠FEC = 180° - 124° = 56°

Since EF || CD and AB || CD

So, EF | AB and AE is a trasveral.

[sum of consecutive interior angles is 180°]

Thus,
$$x^0 = \angle FEA + \angle FEC$$

$$= 64^{\circ} + 56^{\circ} = 120^{\circ}$$
.

Hence, x = 120.

Question 5:

Since AB || CD and BC is a transversal.

So,
$$\angle$$
ABC = \angle BCD [atternate interior angles]

$$\Rightarrow$$
 70° = \times ° + \angle ECD(i)

Now, CD || EF and CE is transversal.

So,
$$\angle$$
ECD + \angle CEF = 180° [sum of consecutive interior angles is 180°]

Putting \angle ECD = 50° in (i) we get,

 $70^{\circ} = x^{\circ} + 50^{\circ}$

 \Rightarrow x = 70 - 50 = 20

Question 6:

Through C draw FG || AE

Now, since CG $\mid\mid$ BE and CE is a transversal.

So, \angle GCE = \angle CEA = 20° [Alternate angles]

∴∠DCG = 130° - ∠GCE

 $= 130^{\circ} - 20^{\circ} = 110^{\circ}$

Also, we have AB || CD and FG is a transversal.

So, \angle BFC = \angle DCG = 110° [Corresponding angles]

As, FG || AE, AF is a transversal.

∠BFG = ∠FAE

[Corresponding angles]

 $\therefore x^{\circ} = \angle FAE = 110^{\circ}$.

Hence, x = 110

Question 7:

 $\mathsf{Given} \mathsf{:} \, \mathsf{AB} \, || \, \mathsf{CD}$

To Prove: ∠BAE - ∠DCE = ∠AEC

Construction: Through E draw EF || AB

Proof: Since EF | AB, AE is a transversal.

So, ∠BAE + ∠AEF = 180^O(i)

[sum of consecutive interior angles is 180°]

As EF | AB and AB | CD [Given]

So, EF || CD and EC is a transversal.

So, ∠FEC + ∠DCE = 180°(ii)

[sum of consecutive interior angles is 180°]

From (i) and (ii) we get,

∠BAE + ∠AEF = ∠FEC + ∠DCE

 \Rightarrow \angle BAE - \angle DCE = \angle FEC - \angle AEF = \angle AEC [Proved]

Question 8:

Since AB || CD and BC is a transversal.

So, \angle BCD = \angle ABC = x° [Alternate angles]

As BC || ED and CD is a transversal.

$$\Rightarrow$$
 ∠BCD = 180° - 75° = 105°

$$\angle$$
ABC = 105° [since \angle BCD = \angle ABC]

$$\therefore x^0 = \angle ABC = 105^0$$

Hence, x = 105.

Question 9:

Through F, draw KH || AB || CD

Now, KF || CD and FG is a transversal.

$$\Rightarrow$$
 \angle KFG = \angle FGD = r° (i)

[alternate angles]

Again AE || KF, and EF is a transversal.

$$\angle$$
 KFE = $180^{\circ} - p^{\circ}$ (ii)

Adding (i) and (ii) we get,

$$\Rightarrow$$
 ZEFG = 180 - p + r

$$\Rightarrow$$
 q = 180 - p + r

i.e.,
$$p + q - r = 180$$

Question 10:

Since AB || PQ and EF is a transversal.

So,
$$\angle$$
CEB = \angle EFQ [Corresponding angles]

$$\Rightarrow$$
 ZEFQ = 75°

$$\Rightarrow$$
 ZEFG + **Z**GFQ = 75°

$$\Rightarrow 25^{\circ} + y^{\circ} = 75^{\circ}$$

$$\Rightarrow$$
 y = 75 - 25 = 50

Also, \angle BEF + \angle EFQ = 180° [sum of consecutive interior angles is 180°]

$$\therefore$$
 ZFEG + **Z**GEB = **Z**BEF = 105°

⇒
$$\angle$$
 FEG = 105° - \angle GEB = 105° - 20° = 85°

In \triangle EFG we have,

$$x^{\circ} + 25^{\circ} + \angle FEG = 180^{\circ}$$

 $\Rightarrow x^{\circ} + 25^{\circ} + 85^{\circ} = 180^{\circ}$
 $\Rightarrow x^{\circ} + 110^{\circ} = 180^{\circ}$
 $\Rightarrow x^{\circ} = 180^{\circ} - 110^{\circ}$
 $\Rightarrow x^{\circ} = 70^{\circ}$

Hence, x = 70.

Question 11:

Since AB || CD and AC is a transversal.

So, \angle BAC + \angle ACD = 180° [sum of consecutive interior angles is 180°]

$$= 180^{\circ} - 75^{\circ} = 105^{\circ}$$

∠ECF = 105°

Now in **∆**CEF,

$$\Rightarrow 105^{\circ} + x^{\circ} + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 x = 180 - 30 - 105 = 45

Hence, x = 45.

Question 12:

Since AB | CD and PQ a transversal.

∠EGH and ∠QGH form a linear pair.

$$\Rightarrow$$
 \angle QGH = 180° - 85° = 95°

$$\Rightarrow$$
 ZGHQ = 180° - 115° = 65°

In Δ GHQ, we have,

$$x^{0} + 65^{0} + 95^{0} = 180^{0}$$

$$\Rightarrow$$
 x = 180 - 65 - 95 = 180 - 160

$$\therefore x = 20$$

Question 13:

Since AB || CD and BC is a transversal.

Also, AB || CD and AD is a transversal.

In \triangle ABO, we have,

$$\Rightarrow$$
 $x^{0} + 75^{0} + y^{0} = 180^{0}$

$$\Rightarrow$$
 35 + 75 + y = 180

$$\therefore$$
 x = 35, y = 70 and z = 75.

Question 14:

Since AB | CD and PQ is a transversal.

So, y = 75

[Alternate angle]

Since PQ is a transversal and AB || CD, so x + APQ = 180°

[Sum of consecutive interior angles]

$$\Rightarrow$$
 $x^0 = 180^\circ - APQ$

$$\Rightarrow$$
 x = 180 - 75 = 105

Also, AB | CD and PR is a transversal.

So, $\angle APR = \angle PRD$ [Alternate angle]

$$\Rightarrow$$
 \angle APQ + \angle QPR = \angle PRD [Since \angle APR = \angle APQ + \angle QPR]

$$\Rightarrow$$
 75° + z° = 125°

$$\Rightarrow$$
 z = 125 - 75 = 50

$$\therefore$$
 x = 105, y = 75 and z = 50.

Question 15:

 $\angle PRQ = x^0 = 60^\circ$ [vertically opposite angles]

Since EF | GH, and RQ is a transversal.

So, $\angle x = \angle y$ [Alternate angles]

⇒ y = 60

AB | CD and PR is a transversal.

So, $\angle PRD = \angle APR$ [Alternate angles]

$$\Rightarrow$$
 \angle PRQ + \angle QRD = \angle APR [since \angle PRD = \angle PRQ + \angle QRD]

$$\Rightarrow x + \angle QRD = 110^{\circ}$$

$$\Rightarrow$$
 ZQRD = 110° - 60° = 50°

In \triangle QRS, we have,

$$\angle QRD + t^{0} + y^{0} = 180^{0}$$

$$\Rightarrow$$
 50 + t + 60 = 180

Since, AB | CD and GH is a transversal

So, $z^{\circ} = t^{\circ} = 70^{\circ}$ [Alternate angles]

$$\therefore$$
 x = 60 , y = 60, z = 70 and t = 70

Question 16:

(i) Lines I and m will be parallel if 3x - 20 = 2x + 10

[Since, if corresponding angles are equal, lines are parallel]

$$\Rightarrow$$
 3x - 2x = 10 + 20

(ii) Lines will be parallel if $(3x + 5)^{\circ} + 4x^{\circ} = 180^{\circ}$

[if sum of pairs of consecutive interior angles is 180°, the lines are parallel]

So,
$$(3x + 5) + 4x = 180$$

$$\Rightarrow$$
 3x + 5 + 4x = 180

$$\Rightarrow$$
 7x = 180 - 5 = 175

$$\Rightarrow x = \frac{175}{7} = 25$$

Question 17:

Given: Two lines m and n are perpendicular to a given line l.

To Prove: m || n

Proof: Since m ⊥ I

Again, since n ⊥ l

$$\therefore$$
 \(\) 1 = **\(\)** 2 = 90°

But $\angle 1$ and $\angle 2$ are the corresponding angles made by the transversal I with lines m and n and they are proved to be equal.

Thus, m || n.

Exercise 4D

Question 1:

Since, sum of the angles of a triangle is 180°

$$\Rightarrow$$
 ZA + 76° + 48° = 180°

$$\Rightarrow$$
 ZA = 180° - 124° = 56°

Question 2:

Let the measures of the angles of a triangle are $(2x)^{\circ}$, $(3x)^{\circ}$ and $(4x)^{\circ}$.

Then, 2x + 3x + 4x = 180 [sum of the angles of a triangle is 180°]

$$\Rightarrow x = \frac{180}{9} = 20$$

∴ The measures of the required angles are:

$$2x = (2 \times 20)^{\circ} = 40^{\circ}$$

$$3x = (3 \times 20)^{\circ} = 60^{\circ}$$

$$4x = (4 \times 20)^{\circ} = 80^{\circ}$$

Question 3:

Let
$$3\angle A = 4\angle B = 6\angle C = x \text{ (say)}$$

Then,
$$3\angle A = x$$

$$\Rightarrow \angle A = \frac{x}{3}$$

$$\Rightarrow \angle B = \frac{x}{4}$$

and
$$6\angle C = x$$

$$\Rightarrow \angle C = \frac{x}{6}$$

$$\Rightarrow \frac{\frac{x}{3} + \frac{x}{4} + \frac{x}{6} = 180}{4x + 3x + 2x} = 180$$

$$\Rightarrow \frac{4x + 3x + 2x}{12} = 180 \times 12$$

$$\Rightarrow 9x = 180 \times 12$$

$$\Rightarrow x = \frac{180 \times 12}{9} = 240$$

$$\therefore \angle^{A} = \frac{x}{3} = \frac{240}{3} = 80^{\circ}$$

$$\angle B = \frac{\times}{4} = \frac{240}{4} = 60^{\circ}$$

$$\angle^{C} = \frac{\times}{6} = \frac{240}{6} = 40^{\circ}$$

Question 4:

But as ∠A, ∠B and ∠C are the angles of a triangle,

$$\Rightarrow$$
 C = 180° - 108° = 72°

$$\Rightarrow$$
 ZB = 130° - 72° = 58°

$$\Rightarrow$$
 \angle A + 58° = 108°

$$\Rightarrow$$
 $\angle A = 108^{\circ} - 58^{\circ} = 50^{\circ}$

$$\therefore$$
 ZA = 50°, **Z**B = 58° and **Z**C = 72°.

Question 5:

Since. ∠A, ∠B and ∠C are the angles of a triangle.

So,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

Now,
$$\angle A + \angle B = 125^{\circ}$$
 [Given]

$$125^{\circ} + 20^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 \angle A + 55° = 113°

$$\Rightarrow$$
 $\angle A = 113^{\circ} - 55^{\circ} = 58^{\circ}$

Now as
$$\angle A + \angle B = 125^{\circ}$$

$$\Rightarrow$$
 \angle B = 125° - 58° = 67°

∴
$$\angle A = 58^{\circ}$$
, $\angle B = 67^{\circ}$ and $\angle C = 55^{\circ}$.

Question 6:

Since, $\angle P$, $\angle Q$ and $\angle R$ are the angles of a triangle.

So,
$$\angle P + \angle Q + \angle R = 180^{\circ}$$
....(i)

Now,
$$\angle P - \angle Q = 42^{\circ}$$
 [Given]

$$\Rightarrow$$
 $\angle P = 42^{\circ} + \angle Q \dots (ii)$

and
$$\angle Q - \angle R = 21^{\circ}$$
 [Given]

$$\Rightarrow$$
 $\angle R = \angle Q - 21^{\circ}....(iii)$

Substituting the value of ∠P and ∠R from (ii) and (iii) in (i), we get,

$$\Rightarrow 42^{\circ} + \angle Q + \angle Q + \angle Q - 21^{\circ} = 180^{\circ}$$

$$\Rightarrow 3\angle Q + 21^{\circ} = 180^{\circ}$$

$$\Rightarrow 3\angle Q = 180^{\circ} - 21^{\circ} = 159^{\circ}$$

$$\angle Q = \frac{159}{3} = 53^{\circ}$$

$$\therefore \angle P = 42^{\circ} + \angle Q$$

$$=42^{\circ}+53^{\circ}=95^{\circ}$$

$$=53^{\circ}-21^{\circ}=32^{\circ}$$

Question 7:

Given that the sum of the angles A and B of a ABC is 116° , i.e., $\angle A + \angle B = 116^{\circ}$.

Since,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

So,
$$116^{\circ} + \angle C = 180^{\circ}$$

Also, it is given that:

Putting,
$$\angle A = 24^{\circ} + \angle B$$
 in $\angle A + \angle B = 116^{\circ}$, we get,

$$\Rightarrow 24^{\circ} + \angle B + \angle B = 116^{\circ}$$

$$\Rightarrow 2\angle B + 24^{\circ} = 116^{\circ}$$

$$\Rightarrow 2\angle B = 116^{\circ} - 24^{\circ} = 92^{\circ}$$

$$\angle B = \frac{92}{2} = 46^{\circ}$$

Therefore,
$$\angle A = 24^{\circ} + 46^{\circ} = 70^{\circ}$$

∴
$$\angle A = 70^{\circ}$$
, $\angle B = 46^{\circ}$ and $\angle C = 64^{\circ}$.

Question 8:

Let the two equal angles, A and B, of the triangle be x^o each.

We know,

$$\Rightarrow$$
 $x^0 + x^0 + \angle C = 180^0$

$$\Rightarrow 2x^{0} + \angle C = 180^{0}(i)$$

Also, it is given that,

$$\angle C = x^0 + 18^0(ii)$$

Substituting ∠C from (ii) in (i), we get,

$$\Rightarrow 2x^{0} + x^{0} + 18^{0} = 180^{0}$$

$$\Rightarrow$$
 3x° = 180° - 18° = 162°

$$x = \frac{162}{3} = 54^{\circ}$$

Thus, the required angles of the triangle are 54° , 54° and $x^{\circ} + 18^{\circ} = 54^{\circ} + 18^{\circ} = 72^{\circ}$.

Question 9:

Let ∠C be the smallest angle of ABC.

Then,
$$\angle A = 2\angle C$$
 and $B = 3\angle C$

So,
$$\angle A = 2\angle C = 2(30^{\circ}) = 60^{\circ}$$

$$\angle B = 3\angle C = 3(30^{\circ}) = 90^{\circ}$$

∴ The required angles of the triangle are 60°, 90°, 30°.

Question 10:

Let ABC be a right angled triangle and $\angle C = 90^{\circ}$

Since,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 $\angle A + \angle B = 180^{\circ} - \angle C = 180^{\circ} - 90^{\circ} = 90^{\circ}$

Suppose $\angle A = 53^{\circ}$

Then,
$$53^{\circ} + \angle B = 90^{\circ}$$

⇒
$$\angle$$
B = 90° - 53° = 37°

∴ The required angles are 53°, 37° and 90°.

Question 11:

Let ABC be a triangle.

Given,
$$\angle A + \angle B = \angle C$$

⇒
$$\angle C = \frac{180}{2} = 90^{\circ}$$

So, we find that ABC is a right triangle, right angled at C.

Question 12:

Given: \triangle ABC in which \angle A = 90°, AL \perp BC

To Prove: ∠BAL = ∠ACB

Proof:

In right triangle **∆**ABC,

$$\Rightarrow$$
 ZABC + 90° + **Z**ACB = 180°

$$\therefore$$
 ZABC + **Z**ACB = 90°

$$\Rightarrow$$
 \angle ACB = 90° - \angle ABC(1)

Similarly since Δ ABL is a right triangle, we find that,

$$\angle BAL = 90^{\circ} - \angle ABC$$
 ...(2)

Thus from (1) and (2), we have

Question 13:

Let ABC be a triangle.

So,
$$\angle A < \angle B + \angle C$$

Adding A to both sides of the inequality,

$$\Rightarrow 2\angle A < \angle A + \angle B + \angle C$$

$$\Rightarrow 2\angle A < 180^{\circ}$$
 [Since $\angle A + \angle B + \angle C = 180^{\circ}$]

$$\Rightarrow$$
 $\angle A < \frac{180}{2} = 90^{\circ}$

Similarly, ∠B < ∠A + ∠C

and
$$\angle C < \angle A + \angle B$$

 Δ ABC is an acute angled triangle.

Question 14:

Let ABC be a triangle and ∠B > ∠A + ∠C

Therefore, we get

Adding ∠B on both sides of the inequality, we get,

$$\Rightarrow$$
 $\angle B > \frac{180}{2} = 90^{\circ}$

i.e., $\angle B > 90^{\circ}$ which means $\angle B$ is an obtuse angle.

Question 15:

Since ∠ACB and ∠ACD form a linear pair.

Also,
$$\angle$$
ABC + \angle ACB + \angle BAC = 180°

$$\Rightarrow$$
 43° + 52° + **Z**BAC = 180°

$$\Rightarrow$$
 ZBAC = $180^{\circ} - 95^{\circ} = 85^{\circ}$

$$\therefore$$
 ZACB = 52° and **Z**BAC = 85°.

Question 16:

As ∠DBA and ∠ABC form a linear pair.

$$\Rightarrow$$
 ZABC = $180^{\circ} - 106^{\circ} = 74^{\circ}$

Also, ∠ACB and ∠ACE form a linear pair.

$$\Rightarrow$$
 ZACB = $180^{\circ} - 118^{\circ} = 62^{\circ}$

In ∠ABC, we have,

$$74^{\circ} + 62^{\circ} + \angle BAC = 180^{\circ}$$

$$\Rightarrow$$
 136° + ∠BAC = 180°

$$\Rightarrow$$
 ZBAC = $180^{\circ} - 136^{\circ} = 44^{\circ}$

: In triangle ABC, $\angle A = 44^{\circ}$, $\angle B = 74^{\circ}$ and $\angle C = 62^{\circ}$

Question 17:

(i) ∠EAB + ∠BAC = 180° [Linear pair angles]

$$\Rightarrow$$
 ∠BAC = 180° - 110° = 70°

Again, ∠BCA + ∠ACD = 180°[Linear pair angles]

$$\Rightarrow$$
 ZBCA = $180^{\circ} - 120^{\circ} = 60^{\circ}$

Now, in **∆**ABC,

$$x^{0} + 70^{0} + 60^{0} = 180^{0}$$

$$\Rightarrow$$
 x + 130° = 180°

$$\Rightarrow$$
 x = 180° - 130° = 50°

(ii)

In **Δ**ABC,

$$\Rightarrow$$
 30° + 40° + \angle C = 180°

Now ∠BCA + ∠ACD = 180° [Linear pair]

In **Δ**ECD,

$$\Rightarrow$$
 70° + 50° + \angle CED = 180°

$$\angle$$
CED = $180^{\circ} - 120^{\circ} = 60^{\circ}$

Since ∠AED and ∠CED from a linear pair

$$\Rightarrow$$
 $x^0 + 60^0 = 180^0$

$$\Rightarrow$$
 $x^{\circ} = 180^{\circ} - 60^{\circ} = 120^{\circ}$

(iii)

∠EAF = ∠BAC [Vertically opposite angles]

In \triangle ABC, exterior \angle ACD is equal to the sum of two opposite interior angles.

$$\Rightarrow 115^{\circ} = 60^{\circ} + x^{\circ}$$

$$\Rightarrow$$
 $x^0 = 115^{\circ} - 60^{\circ} = 55^{\circ}$

 $(i\vee)$

Since AB || CD and AD is a transversal.

In ∠ECD, we have,

$$\Rightarrow$$
 $x^0 + 45^0 + 60^0 = 180^0$

$$\Rightarrow$$
 $x^{0} + 105^{0} = 180^{0}$

$$\Rightarrow$$
 $x^{\circ} = 180^{\circ} - 105^{\circ} = 75^{\circ}$

(v)

In **Δ**AEF,

Exterior **Z**BED = **Z**EAF + **Z**EFA

$$\Rightarrow 100^{\circ} = 40^{\circ} + \angle EFA$$

$$\Rightarrow$$
 ZEFA = $100^{\circ} - 40^{\circ} = 60^{\circ}$

Also, ∠CFD = ∠EFA [Vertically Opposite angles]

Now in Δ FCD,

Exterior \angle BCF = \angle CFD + \angle CDF

$$\Rightarrow$$
 90° = 60° + x °

$$\Rightarrow$$
 $x^0 = 90^{\circ} - 60^{\circ} = 30^{\circ}$

(vi)

In \triangle ABE, we have,

$$\Rightarrow$$
 75° + 65° + \angle E = 180°

$$\Rightarrow$$
 ZE = 180° - 140° = 40°

Now, \angle CED = \angle AEB [Vertically opposite angles]

Now, in \triangle CED, we have,

$$\angle C + \angle E + \angle D = 180^{\circ}$$

$$\Rightarrow 110^{\circ} + 40^{\circ} + x^{\circ} = 180^{\circ}$$

$$\Rightarrow 150^{\circ} + x^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 $x^{0} = 180^{0} - 150^{0} = 30^{0}$

Question 18:

Produce CD to cut AB at E.

Now, in \triangle BDE, we have,

Exterior **Z**CDB = **Z**CEB + **Z**DBE

$$\Rightarrow$$
 $x^{\circ} = \angle CEB + 45^{\circ}$ (i)

In \triangle AEC, we have,

Exterior ∠CEB = ∠CAB + ∠ACE

$$= 55^{\circ} + 30^{\circ} = 85^{\circ}$$

Putting \angle CEB = 85° in (i), we get,

$$x^{\circ} = 85^{\circ} + 45^{\circ} = 130^{\circ}$$

Question 19:

The angle \angle BAC is divided by AD in the ratio 1:3.

Let \angle BAD and \angle DAC be y and 3y, respectively.

As BAE is a straight line,

∠BAC + ∠CAE = 180° [linear pair]

$$\Rightarrow$$
 ZBAD + **Z**DAC + **Z**CAE = 180°

$$\Rightarrow$$
 y + 3y + 108° = 180°

$$\Rightarrow$$
 4y = 180° - 108° = 72°

$$\Rightarrow$$
 y = $\frac{72}{4}$ = 18°

Now, in **∆**ABC,

$$y + x + 4y = 180^{\circ}$$

[Since,
$$\angle$$
ABC = \angle BAD (given AD = DB) and \angle BAC = y + 3y = 4y]

$$\Rightarrow$$
 5y + x = 180

$$\Rightarrow$$
 5 × 18 + x = 180

$$\Rightarrow$$
 90 + x = 180

$$\therefore x = 180 - 90 = 90$$

Question 20:

Given: A \triangle ABC in which BC, CA and AB are produced to D, E and F respectively.

To prove: Exterior ∠DCA + Exterior ∠BAE + Exterior ∠FBD = 360°

Proof: Exterior **Z**DCA = **Z**A + **Z**B(i)

Exterior \angle FAE = \angle B + \angle C(ii)

Exterior **Z**FBD = **Z**A + **Z**C(iii)

Adding (i), (ii) and (iii), we get,

Ext. **Z**DCA + Ext. **Z**FAE + Ext. **Z**FBD

$$=$$
 $\angle A + \angle B + \angle B + \angle C + \angle A + \angle C$

$$= 2 \times 180^{\circ}$$

[Since, in triangle the sum of all three angle is 180°]

= 360°

Hence, proved.

Question 21:

In \triangle ACE, we have,

In \triangle BDF, we have,

$$\angle B + \angle D + \angle F = 180^{\circ}$$
....(ii)

Adding both sides of (i) and (ii), we get,

$$\Rightarrow$$
 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 360^{\circ}$.

Question 22:

Given: In \triangle ABC, bisectors of \angle B and \angle C meet at O and \angle A = 70°

In \triangle BOC, we have,

⇒
$$\angle BOC + \frac{1}{2} \angle B + \frac{1}{2} \angle C = 180^{\circ}$$

⇒ $\angle BOC = 180^{\circ} - \frac{1}{2} \angle B - \frac{1}{2} \angle C$
= $180^{\circ} - \frac{1}{2} (\angle B + \angle C)$
= $180^{\circ} - \frac{1}{2} [180^{\circ} - \angle A]$
[∴ $\angle A + \angle B + \angle C = 180^{\circ}$]
= $180^{\circ} - \frac{1}{2} [180^{\circ} - 70^{\circ}]$
= $180^{\circ} - \frac{1}{2} \times 110^{\circ}$
∠BOC + ∠OBC + ∠OCB = 180°
= $180^{\circ} - 55^{\circ} = 125^{\circ}$

Question 23:

∴ ∠BOC = 125°.

We have a \triangle ABC whose sides AB and AC have been procued to D and E. A = 40° and bisectors of \angle CBD and \angle BCE meet at O.

In **∆**ABC, we have,

Exterior **Z**CBD = C + 40°

$$\Rightarrow$$

$$\angle CBO = \frac{1}{2} \text{ Ext. } \angle CBD$$

= $\frac{1}{2} \left(\angle C + 40^{\circ} \right)$
= $\frac{1}{2} \angle C + 20^{\circ}$

And exterior ∠BCE = B + 40°

⇒

$$\angle BCO = \frac{1}{2} Ext. \angle BCE$$

$$= \frac{1}{2} \left(\angle B + 40^{\circ} \right)$$

$$= \frac{1}{2} \angle B + 20^{\circ}.$$

Now, in \triangle BCO, we have,

$$\angle B \circ C = 180^{\circ} - \angle CBO - \angle BCO
= 180^{\circ} - \frac{1}{2} \angle C - 20^{\circ} - \frac{1}{2} \angle B - 20^{\circ}
= 180^{\circ} - \frac{1}{2} \angle C - \frac{1}{2} \angle B - 20^{\circ} - 20^{\circ}
= 180^{\circ} - \frac{1}{2} \angle C - \frac{1}{2} \angle B - 20^{\circ} - 20^{\circ}
= 180^{\circ} - \frac{1}{2} (\angle B + \angle C) - 40^{\circ}
= 140^{\circ} - \frac{1}{2} (\angle B + \angle C)
= 140^{\circ} - \frac{1}{2} [180^{\circ} - \angle A]
= 140^{\circ} - 90^{\circ} + \frac{1}{2} \angle A
= 50^{\circ} + \frac{1}{2} \angle A
= 50^{\circ} + \frac{1}{2} \times 40^{\circ}
= 50^{\circ} + 20^{\circ}
= 70^{\circ}
Thus, $\angle BOC = 70^{\circ}$$$

Question 24:

In the given \triangle ABC, we have,

$$\angle$$
A: \angle B: \angle C = 3:2:1
Let \angle A = 3x, \angle B = 2x, \angle C = x. Then,
 \angle A + \angle B + \angle C = 180°
 \Rightarrow 3x + 2x + x = 180°
 \Rightarrow 6x = 180°

Question 25:

In \triangle ABC, AN is the bisector of \angle A and AM \perp BC.

Now in \triangle ABC we have;

$$\angle A = 180^{\circ} - \angle B - \angle C$$

 $\Rightarrow \angle A = 180^{\circ} - 65^{\circ} - 30^{\circ}$
 $= 180^{\circ} - 95^{\circ}$
 $= 85^{\circ}$

Now, in \triangle ANC we have;

Ext.
$$\angle MNA = \angle NAC + 30^{\circ}$$

= $\frac{1}{2} \angle A + 30^{\circ}$
= $\frac{85^{\circ}}{2} + 30^{\circ}$
= $\frac{85^{\circ} + 60^{\circ}}{2}$
= $\frac{145^{\circ}}{2}$

Therefore,
$$\angle MNA = \frac{145^{\circ}}{2}$$

In $_{\Delta}$ MAN. we have;

$$\angle$$
 MAN = 180° - \angle AMN - \angle MNA
= 180° - 90° - \angle MNA [since AM \perp BC, \angle AMN = 90°]
= 90° - $\frac{145^{\circ}}{2}$ [since \angle MNA = $\frac{145^{\circ}}{2}$]
= $\frac{180^{\circ}$ - 145° 2
= $\frac{35^{\circ}}{2}$ = 17.5°

Thus, ∠MAN =

Question 26:

(i) False (ii) True (iii) False (iv) False (v) True (vi) True.