EXAMINATION PAPER, 2020

Jharkhand Academic Council, Ranchi

PHYSICS-XI

me: 1 Hour.]

[Full Marks: 40

- 1. Write your Name, Roll Code, Roll No., Registration No., Faculty and Paper on the OMR Answer Sheet in the provided. Put your Full Signature on the OMR Answer Sheet in the space provided.
- 2. There are 40 Multiple Choice Questions in all.
- 3. All questions are compulsory. Each question carries 1 mark.
- 4. Four options are given for each question numbered 1 to 4. Choose the correct option and indicate it by

Point Pen. The use of	Pencil is not allowed. mination hall hand over the	Answer Sheet given separatel						
1. Which of the following is the dimensional formula of pressure ?								
(a) $[MLT^{-2}]$	(b) [ML ⁻² T ⁻²]	(c) [ML ⁻¹ T ⁻²]	(d) $[ML^{-1}T^{-1}]$					
2. 1 metre is equivalent to	:							
(a) 10^{10}Å	(b) 10 ⁸ Å	(c) 10 ⁶ Å	(d) 10^5Å					
3. The unit of torque is :								
(a) N-m	(b) kg $m^2 s^{-1}$	(c) kg m s ⁻¹	(d) $kg^2 m^2 s^{-1}$					
4. The dimensional formula of gravitational constant is :								
(a) $[M^{-2}L^3T^{-2}]$	(b) $[M^{-2}L^2T^{-1}]$	(c) $[M^{-1}L^3T^{-2}]$	(d) $[ML^2T^{-1}]$					
5. Which of the following is not a vector quality?								
(a) Displacement	(b) Force	(c) Angular momentum	(d) Electric current					
6. Maximum range of a pr	rojectile is :							
u^2	(b) $\frac{u^2}{2\sigma}$	(c) $\frac{u^2}{3\sigma}$	(d) $\frac{2u^2}{g}$					
(a) $\frac{u^2}{g}$	(b) $\overline{2g}$	$\frac{(c)}{3g}$	(d) $\frac{g}{g}$					
7. Area under velocity-tin	ne curve gives :							
(a) Acceleration	(b) Displacement	(c) Uniform Velocity	(d) None of these					
8. A ball is dropped from	the top of a tower and read	hes the ground in 4 seconds.	The height of the tower is :					
			$(g = 10 \text{m/s}^2)$					
(a) 40 m	(b) 60 m	(c) 80 m	(d) 100 m					
9. A force of 0.04 newton	A force of 0.04 newton acts on a body of mass 1 kg. The acceleration of the body is:							
(a) 0.04 Nkg^{-1}	(b) 0.4 Nkg ⁻¹	(c) 0.02 Nkg ⁻¹	(d) 0.2 Nkg ⁻¹					
10. The frictional force acting between two bodies is:								
(a) directly proportional to the normal reaction		(b) inversely proportional to the normal reaction						
(c) directly proportions	(c) directly proportional to mass (d) inversely proportional to mass							
11. The centripetal force acting on a body undergoing circular motion is:								
(a) $\frac{mw^2}{r}$	(b) <i>mwr</i>	(c) $\frac{mv^2}{r}$	(d) $mv^2 r$					

	12.	In the motion of rocket, th	e physical quantity conse	rved is:			
		(a) Angular momentum	(b) Linear momentum	(c) Force	(d) Work		
:	13.	A cyclist is moving in a circ	cular path of radius 80 m w	with a velocity of 10m/s. His	angle of bend with vertical;		
					$(\mathbf{g} = 10_{\mathbf{IL}_{2}^{\prime}})$		
			(1)	(1)			
		(a) $tan^{-1}(4)$	(b) $\tan^{-1}\left(\frac{1}{8}\right)$	(c) $\tan^{-1}\left(\frac{1}{4}\right)$	(d) $\tan^{-1}(2)$		
	14.	I. A body of mass m collides against a wall with velocity v and rebonds with the same speed. Its change momentum is:					
:	15.	(a) 2 mv Work is represented by	(b) <i>mv</i>	(c) – <i>mv</i>	(d) zero		
		(a) $W = \overrightarrow{F} \times \overrightarrow{S}$	(b) $W = \overrightarrow{S} \times \overrightarrow{F}$	(c) $W = \overrightarrow{F} \cdot \overrightarrow{S}$	(d) none of these		
:	16.	6. A body is constrained to move in Y-direction. It is acted upon by a force $\vec{F} = (-2 \hat{i} + 15 \hat{j} + 6 \hat{k}) N$. The w_0					
		_		ance of 10 m along Y-direction			
		(a) 190 J	(b) 160 J	(c) 150 J	(d) 20 J		
,	17.						
		•		energies. The ratio of their l			
		(a) $m_1 : m_2$	(b) $m_2 : m_1$	(c) $\sqrt{m_1} : \sqrt{m_2}$	(d) $\sqrt{m_2} : \sqrt{m_1}$		
,	18.	The stored potential energy energy stored is:	gy of a spring when stretch	ned by 2 cm is u. If it is stre	tched by 8 cm, the potential		
		(a) $\frac{u}{4}$	(b) 4 <i>u</i>	(c) 8 <i>u</i>	(d) 16u		
	19.	A box is pushed through 4	m on a floor offering a resis	stance of 100 N. The work do	ne by the resisting force is		
		(a) 400 J	(b) - 400 J	(c) 25 J	(d) - 25 J		
:	20.	Analogue of force in rotati	onal motion is :		(=) =00		
		(a) Moment of inertia	(b) Torque	(c) Radius of gyration	(d) Angular momentum		
:	21.	Moment of inertia of a soli	d sphere of mass M and ra	dius R about the diameter is	(d) Angular momentum		
					•		
		(a) $\frac{2}{5}$ MR ²	(b) $\frac{2}{3}$ MR ²	(c) $\frac{7}{5}$ MR ²	(d) $\frac{5}{2}$ MR ²		
	22.	When a torque acting on a	system is zero, which of the		. 0		
		(a) Force	(b) Linear momentum	(c) Impulse	(1) 37		
	23.	. The value of g at the centr		(c) Impulse	(d) None of these		
		Ç	or one out of its.				
		(a) zero	(b) $\frac{g}{4}$	(c) $\frac{g}{2}$	(1)		
	0.4	m	4	£	(d) <i>g</i>		
	24.	The escape velocity from th	ne surface of the earth is (F	R _e is radius of earth) :			
		(a) $\sqrt{gR_e}$	(b) $\sqrt{2gR_e}$	(c) $\sqrt{3gR_e}$	(d) $\sqrt{4gR_e}$		
2	25.	Kepler's third law is also k	nown as:		γ - γ - ο - ν ε		
		(a) Law of orbits	(b) Law of areas	(c) Law of periods	(4) 37		
2	6.	Gravitational potential at a	distance r from a body of	mass M is ·	(d) None of these		
	1	(a) G M/n	(b) G $\frac{M}{r^2}$	$(c) - G \stackrel{M}{=}$	(4) O M		
_		<i>r</i>	,	r	$(\mathbf{d}) - \mathbf{G} \; \frac{\mathbf{M}}{r^2}$		
27. Within the elastic limit the relation between stress and strain is:							
	(a) stress = strain	(b) stress ∝ strain	(c) stress $\propto \frac{1}{\text{strain}}$	(d) stress = $\frac{1}{\text{strain}}$		
					Strain		

		(b) $6 \times 10^{-8} Pa$	(c) $6 \times 10^4 \text{ Pa}$	(d) $6 \times 10^{-4} \text{ Pa}$				
29.	he molar specific heat at constant pressure of an ideal gas is (7/2) R. The ratio of specific heat at const ressure to that at constant volume is :							
	(a) $\frac{9}{7}$	(b) $\frac{7}{5}$	(c) $\frac{8}{7}$	(d) $\frac{5}{7}$				
30.	The temperature of a body in Celsius scale is 40° C. The temperature in Farenheit scale is :							
	(a) 32° F	(b) 72° F	(c) 104° F	(d) none of these				
31.	$(\gamma=1.4) \qquad .$	rmally to half of its volum	e. By what factor does the p	ressure of the gas increase?				
	(a)2	(b) 2.8	(c) 0.7	(d) 0.5				
32.	2. Energy associated with each degree of freedom per molecule is (K_B) is Boltzmann constant):							
		(b) $\frac{1}{2} K_{B} T$		(d) zero				
33.	The temperature of an idea	al gas is increased from 12	0 K to 480 K. The rms veloci	ty of gas molecules become :				
	(a) Half	(b) Double	(c) Quadrupled	(d) Cannot say				
34.	The kinetic energy of one r	mole of an ideal gas is E =	$\frac{3}{2}$ RT. The value if C_p is :					
	(a) 0.5 R	(b) 0.1 R	(c) 1.5 R	(d) 2.5 R				
35.	6. Oxygen and hydrogen gas are at same temperature and pressure. The mass of oxygen molecules are 16 times more than the mass of hydrogen molecules. The ratio of their rms speeds is:							
	(a) 2	(b) $\frac{1}{4}$	(c) 4	(d) 16				
36	. Avogadro's number is the	number of molecules in :						
	(a) one litre of a gas	(b) one mole of a gas	(c) one gram of a gas	(d) one kg of a gas				
37	. The frequency of a second	pendulum is:						
	(a) 0.5 Hz	(b) 1 Hz	(c) 0.25 Hz	(d) 2 Hz				
38	8. A progressive wave is represented by $y = 5 \sin (100 \pi t - 2 \pi x)$ where x and y are in metre and t in sec maximum particle velocity is:							
	(a) $100 \pi \text{m/s}$	(b) 200 π m/s	(c) 400 π m/s	(d) 500 π m/s				
39. The Doppler's effect is applicable for :								
	(a) Sound waves only		(b) Light waves only					
	(c) Both for sound waves and light waves		(d) None of these					
40	Speed of sound wave in air: (a) is independent of temperature (b)		(h) inamit					
(a) is independent of temperature (c) increases with the increase in humidity		(b) increases with increase in pressure (d) decreases with the increase in humidity						
				••				