
 CATHODE RAYS  (Discovery of e -)

In 1859, Julius plucker started the study of conduction of electricity through gases at low pressure  in a

discharge tube. When a high voltage of the order 10, 000  volts or more was impressed across the electrodes,

some sort of invisible rays moved from the –ve electrode to the +ve electrode. Since the –ve electrode is

referred to as cathode, these rays were called cathode rays.

 Properties of Cathode rays

(1) They travel in straight lines away from cathode with very high velocity ranging from 107 to 109 m/sec.

(2) A shadow of metallic object placed in the path is cast on the wall opposite to the cathode.

(3) They produce a green glow when strick the glass wall matter. Light is emitted when they strike the

zinc-sulphide screen.

(4) When a small pin wheel 10.0is placed in their path, the blades of the wheel are set in motion. Thus the

cathode rays consist of material particles which have mass and velocity.

(5) They are deflected by the electric and magnetic fields. When the rays are passed between two electrically

charged plates, these are deflected towards the positively charged plate. It shows that cathode rays

carry -ve charge. These particles carrying negative charge were called negatrons by Thomson.
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The name negatron was changed to 'electron' by Stoney

(6) They produce heat energy when they collide with the matter. It shows that cathode rays posses Kinetic

energy which is converted into heat energy when stopped by matter.

(7) These rays affect the photographic plate.

(8) Cathode rays can penetrate the thin foil of solid materials.

(9) Cathode rays can ionize the gases through which they pass.

(10) The nature of cathode rays is independent of

(a) The nature of cathode and

(b) The gas in discharge tube.

 MEASUREMENT OF e/m  FOR  ELECTRON :

In 1897, J.J. Thomson determined the e/m value (charge/mass) of the electron by studying the deflection

of cathode rays in electric & magnetic fields.

The value of e/m has been found to be    –1.7588 108 coulomb/g.

 By performing a series of experiments, Thomson proved that whatever gas be taken in the discharge

tube and whatever be the material of the electrodes the value of e/m is always the same.

 Electrons are thus common universal constituents of all atoms.

 DETERMINATION OF THE CHARGE ON AN ELECTRON :

The  absolute  value  of  the charge on an  e-  was

measured by R.A. Milikan in 1909 by the Milikan's

oil drop experiment.

 The  apparatus  used  by him is shown in fig.

 An oil droplet falls through a hole in the upper

plate. The air between the plates is then

exposed to X-rays which eject electrons from

air molecules. Some of these e- are captured

by the oil droplet and it acquires a negative

charge.

The metal plates were given an electric charge, and as the electric field between the plates was

increased, it was possible to make some of the drops travel upwards at the same speed as they were

previously falling.
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By measuring the speed, and knowing things like the strength of the field and the density of the oil, radius of oil

drops, Milikan was able to calculate the magnitude of the charge on the oil drops. He found that the smallest

charge to be found on them was approximately 1.59 10–19 C. This was recognised as the charge on an e-.

The modern value is 1.602  10–19 C.

 MASS OF THE ELECTRON :

Mass of the e- can be calculate from the value of e/m and the value of e

m = 
e

e m/

.
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17588 10
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8  = 9.1096 10–28 g      or        = 9.1096  10–31 kg

This is termed as the rest mass of the electron i.e. mass of the electron when moving with low speed. The mass

of a moving e- may be calculate by applying the following formula.

Mass of moving e- =
restmassofe

v c



1
2

/b g
Where v is the velocity of the e- and c is the velocity of light.

When v = c   mass of e- = 
v > c   mass of e- = imaginary

 POSITIVE RAYS -  (DISCOVERY OF PROTON) :

 The first experiment that lead to the discovery of the +ve particle was conducted by 'Goldstein'.

 He used a perforated cathode in the modified cathode ray tube.

 It was observed that when a high potential difference was applied b/w the electrodes, not only cathode

rays were produced but also a new type of rays were produced simultaneously from anode moving

towards cathode and passed through the holes or canals of the cathode. These rays were termed canal

rays since these passed through the canals of the cathode.These were also named anode rays as these

originated from anode.

 When the properties of these rays were studied by Thomson, he observed that these rays consisted of

positively charged particles and named them as positive rays.

 The following characteristics of the positive rays we recognised :

(i) The rays travel in straight lines and cast a shadow of the object placed in their path.

(ii) Like cathode rays, these rays also rotate the wheel placed in their path and also have heating

effect. Thus, the rays passess K.E. i.e. mass particles are present.

Production of Anode rays or Positive rays



(iii) The rays are deflected by electric and magnetic fields towards the negatively charged plate showing

thereby that these rays carry +ve charge.

(iv) The rays produce flashes of light on ZnS screen

(v) These rays can pass through thin metal foil.

(vi) These rays can produce ionisation in gases.

(vii) Positive particles in these rays have e/m value much smaller than that of e-. For a small value of

e/m, it is definite that positive particles possess high mass.

(viii) e/m value is dependent on the nature of the gas taken in the discharge tube, i.e. +ve particles are

different in different gases.

 Accurate measurements of the charge and the mass of the particles in the discharge tube containing

hydrogen, the lightest of all gases, were made by J.J. Thomson in 1906. These particles were found

to have the e/m value as +9.579  104 coulomb/g. This was the maximum value of e/m

observed for any +ve particle.

 It was thus assumed that the positive particle given by the hydrogen represents a fundamental particle

of +ve charge. This particle was named proton by Rutherford in 1911. Its charge was found to be

equal in magnitude but opposite in sign to that of electron.

Thus

        charge on proton = + 1.602  10-19 columb  i.e.   one unit +ve charge

 The mass of the proton, thus can be calculated.

Mass of the proton = 
e

e m/

.
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4  = 1.672  10–24 g       =  1.672  10–27 kg

Mass of proton in amu = 
1672 10
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24
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
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
  = 1.00757 amu.

 NEUTRON

In 1920, Rutherford suggested that in an atom, there must be present at least a third type of fundamental

particles which should be electrically neutral and posses mass nearly equal to that of proton. He proposed the

name for such fundamental particles as neutron.

In 1932, chadwick bombarded beryllium with a stream of -particles. He observed that penetrating radiations were

produced which were not affected by electric & magnetic fields. These radiations consisted of neutral particles, which

were called neutrons. The nuclear reaction can be shown as

+

-particle Be-atom Carbon atom Neutron

Charge = +2 Atomic No. = 4 Atomic No. = 6 Charge = 0

Mass = 4 amu Mass = 9 amu Mass = 12 amu Mass = 1 amu

[ 4
2He                          + 9

4Be                          12
6C                                  + 1

0n]

Thus a neutron is a sub atomic particle which has a mass 1.675  10–24 g approximately 1amu, or nearly equal

to the mass of proton or hydrogen atom and carrying no electrical charge.

 The e/m value of a neutron is zero.



 ATOMIC STRUCTURE :

Atom is actually made of 3 fundamental particles :

1. Electron

2. Proton

3. Neutron

Fundamental Discovered By        Charge      Mass     
   

charge

mass

   particle                               (Specific Charge)

Electron J.J.Thomson –1.6×  10–19coloumb 9.1×  10–31kg 1.76×  108 C/g

(e– or ) –4.8×  10–10 esu 9.1×  10–28g

–1 Unit 0.000548 amu

Proton Goldstein +1.6×  10–19coloumb 1.672×  10–27kg

(P) +4.8×  10–10esu 1.672×  10–24g

(Ionized H 1.00757 amu 9.58×  104 C/g

atom, H+) +1 Unit

Neutron James Chadwick 1.675×  10–27kg

(0n
1)      0 1.675×  10–24g      0

1.00893 amu

 IMPORTANT POINT :

1. esu = electrostatic unit

 (1 cb = 3 ×  109 esu)

amu = atomic masss unit

1 amu = 1.6 ×  10–24 g = 1.6 ×  10–27 kg

2. Order of Mass

–e
m < mp < mn

 Order of Specific Charge

    –p e
n

e
< e/m < e/m

m
   

mass of proton

mass of electron
    –

p

e

m
=1837

m

 INTRODUCTION : Atom

A Tom (Greek word)

Not Divisible

Not divisible (According to Dalton)

 Atom is a Greek word
and its meaning Indivisible i.e. an ultimate particles which cannot be further subdivided.
John Dalton (1803 - 1808) considered that " all matter was composed of small  particle called atom.



 ACCORDING TO DALTON'S THEORY :

(1) Atom is the smallest indivisible part of matter which takes part in chemical reaction.

(2) Atom is neither created nor destroyed.

(3) Representation of atom :     ZXA.

Where : A  Mass number, Z Atomic number, X Symbol of atom.

 Mass Number :

It is represented by capital A. The sum of number of neutrons and protons  is called the mass number.

of the element. It is also known as number of nucleons because neutron & proton are present in

nucleus.

A = number of protons + number of neutrons

Note : It is always a whole number.

 Atomic Number :

It is represented by Z. The number of protons present in the Nucleus is called atomic number of an

element. It is also known as nuclear charge.

For neutral atom : Number of proton = Number of electron

For charged atom : Number of e– = Z – (charge on atom)

Z= number of protons only

For Eg:  
17Cl35

n = 18

p = 17

e = 17

Two different elements can not have the same Atomic Number

Number of Neutrons = Mass number – Atomic number

= A – Z

= (p + n) – p

= n

 Method for Analysis of atomic weight 
eg. 6C

12

P+   6 Weight of Proton = 6 × 1.00750

n0   6 Weight of Neutron = 6 × 1.00850

e–  6 Weight of Electron = 6 × 0.000549

Weight of C atom = 12.011 a.m.u.

Mass no. of C atom = 12 [P and n]

Note : Mass no. of atom is always a whole no. but atomic weight may be in decimal.

Q. If no. of protons in X–2 is 16.  then no. of e– in X+2 will be–

(1) 14 (2) 16 (3) 18 (4) None

Sol.    No. of proton in X–2 is = 16

  No. of electron in X+2  is = 14



Q. In C12 atom if mass of e– is doubled and mass of proton is halved, then calculate the percentage change in mass

no. of C12.

Sol.      6C
12

P+   3

e–   12

e– P+ n°

6 6 6 A 12

12 3 6 A 9

% change = 
3

12
× 100 = 25%

Q. Assuming that atomic weight of C12 is 150 unit from atomic table, then according to this assumption, the

weight of O16 will be :-

Sol.  12 amu  = 150

 1 amu  = 
150

12

 16 amu = 
150

12
 × 16 = 200 Unit

 Atomic Weight : The atomic weight of an element is the average of weights of all the isotopes of that

element.

 An element have three isotopes y1, y2 and y3 and their isotopic weights are w1, w2, w3 and their

percentage/possibility/probability/ratio of occurance in nature are x1, x2, x3 respectively then the

average atomic weight of element is –

ave. wt = 1 1 2 2 3 3

1 2 3

w x w x w x

x x x

 
 

Ex. Cl35 Cl37

Probability ratio 75% 25%

3                  : 1

35 3 37 1

3 1

  
  =  

142

4
 = 35.5

Q. 35Br79  :     35Br81

  1      :      1

79 1 81 1

1 1

  
  = 

160

2
 = 80

Q. An element have three isotopes and their isotopic weight are 11, 12 , 13 unit and their percentage of occurance

in nature is 85, 10, 5 respectively then calculate the average atomic weight of element.

Sol. Average Atomic weight =
11 85 12 10 13 5

85 10 5

    
 

= 
935 120 65

100

 

        Average wt. = 
1120

100
 = 11.2



Q. Average atomic weight of an element M is 51.7. If two isotopes of M, M50 , M52 are present then calculate the

percentage of occurance of M50 in nature.

Sol. M50 M52

x1          + x2 = 100%

x2 = (100 – x1)

wt = 
w x w x

x x
1 1 2 2

1 2




51.7 =
50 521 2

1 2

  


x x

x x

51.7 = 
50 52100

100
1 1

1 1

x x

x x

 
 

( )

( )
5170 = 50 x1 + 5200 – 52x1

5170 = – 2x1 + 5200

2x1 = 30

x1 = 15

M50 = 15% M52 = 85%

Q. Calculate the precentage of Deuterium in heavy water.

Sol. D2O

(1H
2)2 O

16

4 + 16 = 20 (Moleculer weight)

4

20
 × 100

Ans = 20%

 Isotopes : Given by Soddy

They are the atoms of a given element which have the same atomic number (Z) but different mass number (A)

i.e. They have same Nuclear charge (Z) but different number of Neutrons (A–Z).

For Eg.1 17Cl35
17Cl37

n = 18 n = 20

e = 17 e = 17

p = 17 p = 17

 Isotopes have same chemical property but different physical property.

 Isotopes do not have the same value of 
e

m

Number of electron

mass

     because mass varies.

(No. of electron  are same but mass varies).

For Eg.1 (Proteium Deuterium Tritium)

1H
1

1H
2

1H
3

e = 1 e = 1 e = 1

p = 1 p = 1 p = 1

n = 0 n = 1 n = 2

e/m 1/1 1/2 1/3

1H
1 is the only normal hydrogen which have n = 0 i.e. no nuetrons

Deuterium is also called as heavy hydrogen. It represent by D

Eg. 2

6C
12

6C
13

6C
14

e = 6 e = 6 e = 6

p = 6 p = 6 p = 6

n = 6 n = 7 n = 8



 Isobars :  Given by Aston

They are the atoms of different element which have the same mass number (A) but different Atomic number (Z)

i.e They have different number of Electron, Protons & Neutrons But sum of number of neutrons & Protons i.e.

number of nucleons remains same.

For Eg.1 1H
3

2He3

p = 1 p = 2

e = 1 


e = 2  

n = 2 n = 1

p + n = 3 p + n = 3

 Isobars do not have the same chemical & physical property

 They do not have the same value of e/m

For Eg.2 19 K
40

20 Ca40

p = 19 p = 20

n = 21 


 n +p = 40 n = 20 


 n +p = 40

e = 19 e = 20

19 + 21 = 40 20 + 20 = 40

        n + p = 40

Number of Nucleons same

 Isodiaphers :

They are the atoms of different element which have the same difference of the number of Neutrons & protons.

For Eg1. 5B11
6 C

13

p = 5 p = 6

n = 6 
 

   
n – p =1 n = 7 

  
n – p =1

e = 5 e = 6

For Eg 2. 7 N
15

9 F 19

p = 7 p = 9

n = 8  


n – p =1 n = 10 


  n – p =1

e = 7 e = 9

 Isotones/ Isoneutronic species / Isotonic :

They are the atoms of different element which have the same number of neutrons.

For Eg. 1. 1H
3

2He4

p = 1 p = 2

n = 2 n = 2

e = 1 e = 2

For Eg. 2. 19 K 39
20 Ca40

e = 19 e = 20

p = 19 p = 20

n = 20 n = 20

 Isosters :

They are the molecules which have the same number of atoms & electrons.

For Eg. 1 CO2 N2O

Atoms = 1 + 2 Atoms = 2 + 1

= 3 = 3

Electrons = 6 + 8 ×  2 Electrons = 7 ×  2 + 8

= 22 e– = 22e–



For Eg. 2 CaO KF

Atoms 2 2

Electrons 20 + 8 19 + 9

28 e– 28 e–

For Eg. 3 OF2 HClO

Atoms = 3 3

Electrons = 8 + 18 1 + 17 + 8

= 26 e– 17 + 9

26 e–

 Isoelectronic Species :

They are the atoms, molecules or ions which have the same number of electrons.

For Eg. 1 Cl– Ar

Electron 18 e– 18 e–

For Eg. 2 H2O NH3

e = 2 + 8 e = 7 + 3

10 e– 10 e–

For Eg. 3 BF3 SO2

e = 5 +9 × 3 16 + 8 ×  2

5 + 27 16 + 16

32 e– 32 e–

 Nuclear Isomer :

Nuclear isomers (isomeric nuclei) are the atoms with the same atomic number and same mass number but

with different radioactive properties.

Example of nuclear isomers is

Uranium–X (half–life 1.4 min) and

Uranium–Z (half–life 6.7 hours)

The reason for nuclear isomerism is the different energy states of the two isomeric nuclei.

Other examples are

30
69Zn 30

69Zn (T1/2 = 13.8 hr) (T1/2 = 57 min)

35
80Br 35

80Br (T1/2 = 4.4 hour) (T1/2 = 18 min)

 QUESTIONS BASED ON NUCLEAR STRUCTURE

Ex. If the mass of neutrons is doubled & mass of electron is halved then find out the atomic mass of

6C
12  and the percent by which it is increased.

Sol. Step-1 6C
12

e = 6

p = 6 = 6 amu n = 6 = 6 amu
= 12 amu

If the mass of neutrons is doubled and mass of e– is halved then.

n = 12 amu   p = 6 amu         
   
=18 amu

Imp. Note : mass of e– is negligible, so it is not considered in calculation of atomic mass.

Step-2

% Increment =
Finalmass - Initialmass

×100
Initialmass

=
18 12

100
12

  50%



Ex. If mass of neutron is doubled, mass of proton is halved and mass of electron is doubled then find out the

change in At. wt of 6C
12

1. Remain same 2. Increased by 25%

3. Increased by 37.5% 4. None of them

Sol. Step-1 6C
12

e = 6

p = 6 
  

= 12 amu
n = 6

If mass of neutron is doubled, mass of proton is halved and mass of electron is doubled,then new atomic
mass will be :

n = 12 amu    p = 3 amu
=

 
15amu

Step-2 % Increment =
Finalmass Initialmass

100
Initialmass

   =
15 12

100
12

  25%

 THOMSON'S MODEL OF ATOM [1904]

 Thomson was the first to propose a detailed model  of the

atom.

 Thomson proposed that an atom consists of a uniform sphere

of positive charge in which the electrons are present at some

places.

 This model of atom is known as 'Plum-Pudding model' .

 DRAWBACKS :

 An important drawback of this model is that the mass of the atoms is considered to be evenly spread

over that atom.

 It is a static model. It does not reflect the movement of electron.

 RUTHERFORD's  - SCATTERING  EXPERIMENT

-scattering experiment

 Ruther ford observed that :

(i) Most of the -particles (nearly 99.9%) went straight without suffering any deflection.

(ii) A few of them got deflected through small angles.

-
-

-

-
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-
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-

-
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


ZnS screen

Circular
fluorescent
screen

Slit system
[lead plate]

Thin gold foil (.00004 cm)

Most of – particles
strike here - Ray

Source  [Ra] of-rays = [
2
He4]+2

[doubly ionised He particle]





(iii) A very few -particles (about one

in 20,000) did not pass through the

foi l at all but suffered large

deflections (more than 90°) or even

come back in the direction from

which they have come i.e. a

deflection of 180°.

 Following conclusions were drawn from the above observations :

(1) Since most of the -particle went straight through the metal foil undeflected, it means that there must

be very large empty space within the atom.

(2) Since few of the -particles were deflected from their original path through moderate angles; it was

concluded that whole of the +ve charge is concentrated and the space occupied by this positive charge

is very small in the atom.

 Whenever -particles come closer to this point, they suffer a force of repulsion and deviate from their

paths.

 The positively charged heavy mass which occupies only a small volume in an atom is called nucleus.

It is supposed to be present at the centre of the atom.

(3) A very few of  the-particles suffered strong deflections on even returned on their path indicating that the

nucleus is rigid and -particles recoil due to direct collision with the heavy positively charged mass.

(4) The relation between number of deflected particles and deflection angle  is

µ =
4

1

sin
2
  [ increases µ decreases]

where µ = deflected particles  = deflection angle

 As atomic number increases, the number of protons increases which increases the repulstion and so

deflection angle  increases.

 APPLICATIONS OF RUTHERFORD  MODEL

On the basis of scattering experiments, Rutherford proposed the model of an atom, which is known as nuclear

atomic model. According to this model -

(i) An atom consists of a heavy positively charged nucleus where all the protons are present.

(ii) The volume of the nucleus is very small and is only a minute fraction of the total volume of the atom.

Nucleus has a radius of the order of 10-13 cm and the atom has a radius of the order of 10-8 cm

r

r

radiusof theatom

radiusof thenucleus
A

N

  


10

10

8

13  = 105,     rA = 105 rN

Thus radius (size) of the atom is 105 times the radius of the nucleus.

 The radius of a nucleus is proportional to the cube root of the no. of nucleons within it.

R A1/3      R = R0A
1/3 cm

Where R0 = 1.33 10-13(a constant) and, A = mass number (p + n)

R = radius of the nucleus.

R = 1.33 × 10–13 A1/3 cm



(iii) There is an empty space around the nucleus called extra nuclear part. In this part electrons are

present. The no. of electrons in an atom is always equal to no. of protons present in the nucleus. As

the nuclear part of atom is responsible for the mass of the atom, the extra nuclear part is responsible

for its volume. The volume of the atom is about 1015 times the volume of the nucleus.

vol of theatom

vol of thenucleus

r

r

A

N

.

.

FHG IKJFHG IKJ 




4
3
4
3

10

10
10

3

3

8 3

13 3
15




e je j
(iv) Electrons revolve round the nucleus in closed orbits with high speeds.

 This model was similar to the solar system, the nucleus representing the sun and revolving electrons as

planets.

 Drawbacks of Rutherford model :

(1) This theory could not explain the stability of an atom. According to

Maxwell electron loses it's energy continuously in the form of

electromagnetic radiations. As a result of this, the e- should loss

energy at every turn and move closer and closer to the nucleus

following a spiral path. The ultimate result will be that it will fall into

the nucleus, thereby making the atom unstable.

(2) If the electrons loss energy continuously, the observed spectrum should be continuous but the actual

observed spectrum consists of well defined lines of definite frequencies (discontinuous). Hence, the loss

of energy by electron is not continuous in an atom.

 Electromagnetic waves (EM waves) or Radiant Energy/Electromagnetic radiation :

 It is the energy transmitted from one body to another in the form of waves and these waves travel in

the space with the same speed as light ( 3 × 108 m/s) and these waves are known as Electromagnetic

waves or radiant energy.

 The radiant Energy do not need any medium for propogation.

Ex : Radio waves, micro waves, Infra red rays, visible rays, ultraviolet rays, x–rays, gama rays and cosmic rays.

+
Nucleus

e-

Cosmic
ray's

–rays x–rays Ultra
violet

Visible Infra red Micro
wave

Radio
waves

V I B G Y O R

Violet Indigo Blue Green Yellow Orange Red

3800 4300 4500 4900 5500 5900 6500 7600
(In A°)

10–4 0.01 0.1 150 3800 7600 6 × 106 3 × 109 3 × 1014In Å



A wave is characterized by following six characterstics.

The upper most point of the wave is called crest and the

lower most point is called trough.

Some of the terms employed in dealing with the waves are

described below.

1. Wavelength   (Lambda) :

It is defined as the distance between two nearest crest or nearest trough.

It is measured in terms of a A° (Angstrom), pm (Picometre), nm (nanometer), cm(centimetre),

m (metre)

1Å = 10–10 m, 1 Pm = 10–12 m, 1nm = 10–9 m, 1cm = 10–2m

2. Frequency () (nu)
Frequency of a wave is defined as the number of waves which pass through a point in 1 sec.

 It is measured in terms of Hertz (Hz ), sec–1 , or cycle per second (cps)

1 Hertz = 1 sec–1  = 1 cps.

3. Time period (T) : Time taken by a wave to pass through one point.

1
T    sec.

4. Velocity  (c)

Velocity of a wave is defined as distance covered by a wave in 1 sec.

C =   = C/
Since C is constants  1/

i.e. frequency is inversely proportional to
5. Wave number  (  ) ( nu bar)  It is the reciprocal of the wave length that is number of waves present

in 1cm 1 m = 100 cm

1  
1 100

cm m


(1cm–1 = 100 m-1)

 It is measured in terms of cm–1, m–1  etc,

6. Amplitude  (a)

The amplitude of a wave is defined as the height of crust or depth of trough.

C
C   

1    
 QUESTIONS BASED ON EM WAVES

Ex. The vividh Bharti station of All India Radio broadcast on a frequency of 1368 Kilo Hertz. Calculate the wave

length of the Electromagnetic waves emited by the transmitter.

Sol. As we know velocity of light (C)

C = 3 × 108 m/sec.

Given (frequency)

= 1368 kHz

Crest Crest

Trough Trough

Direction

 of propogation




a

a



= 1368 × 103 Hz

= 1368 × 103 sec–1

   C  8 1

3 1

3 10 msec

1368 10 sec




           = 219.3 m

Ex. Calculate   in cm–1 and  of yellow radiations have wavelength of 5800 Å

Sol. As we known 
1  

1

5800Å
 

8

1

5800 10 cm   {  1Å = 10–8 cm}

=
810

5800
 cm–1  =   17241.4 cm–1

 = c
= 3 × 1010 cm sec–1×  1.7 ×  104 cm–1

= 3 × 1.7 ×  1014

= 5.1 ×  1014 sec-1

Ex. A particular radiostation broadcast at a frequency of 1120 Kilo Hertz another radio station broadcast at a
frequency of 98.7 mega Hertz. What are the wave length of radiations from each station.

Sol. Station Ist

8 1

3 1

C 3 10 msec

1120 10 sec




     = 267.86 m

Station IInd

8 1

6 1

C 3 10 msec

98.7 10 sec




   
= 3.0395 m

Ex. How long would it take a radio wave of frequency 6 × 103  sec–1 to travel from mars to the earth, a distance
of 8 × 107 km ?

Sol. Distance to be travelled from mars to earth

= 8 × 107 km

= 8 × 1010 m

 Velocity of EM waves

= 3 × 108 m/sec

 Time = 
Dis tance

Velocity
  

10

8 1

8 10 m

3 10 m/ sec



= 2.66 × 102 sec.

Ex. What will be the frequency of photon of wavelength 2225 Å traveling in vacuum ?

Sol. Velocity of light in vacuum = 3 × 108 m sec–1

Wavelength = 2225 × 10–10 meter

Frequency = 
Velocity

Wavelength  = 
8

10

3 10 meter / sec

2225 10 meter


  = 5 13000
10 sec

2225


     = 1.349 × 1015 sec–1



 PLANCK'S QUANTUM THEORY

 According to planck's quantum theory :

1. The radiant energy emitted or absorbed by a body not continuously but discontinuously in the form
of small discrete packets of energy and these packets are called quantum.

2. In case of light, the smallest packet of energy is called as 'photon' but in general case the smallest
packet of energy called as quantum.

3. The energy of each quantum is directly proportional to frequency of the radiation i.e.

E   E = h or E = 
hc


c    

Proportionality constant or Plank's constant (h)

h = 6.626 ×  10–37 kJ sec.

or 6.626 × 10–34 J sec (1erg = 10–7J)

or 6.626 × 10–27 erg sec.

4. Total amount of energy transmitted from one body to another will be some integral multiple of
energy of a quantum.

E = nh
Where n is an integer and n = number of quantum

hc
E h hc    

Ex. Calculate the energy of a photon of sodium light of wave length 5.862 × 10 –16 m in Joules.
Sol. 5.886 × 10–16 m

c = 3 × 108 m sec–1

E = nh or
nhc

 {n = 1}

 E = 
hc


E =

34 1

16

1 6.6 10 Jules 3 10 m sec

5.862 10 m

  


   


  = 106.6 3
10

5.862
  Joules    =   3.38 × 10–10 Joules.

Ex. Calculate the frequency & energy of a photon of wave length 4000 Å

Sol. (a) Calculation of frequency :

 = 4000 Å

 = 4000 × 10–10 m


C  

 8

7

3 10 m / sec

4 10 m
  

= 0.75 × 1015 sec–1

= 7.5 × 1014 sec–1

(b) Calculation of energy :

E = h
= 6.626 × 10–34 Joule ×  7.5 × 1014 sec–1

= 4.96 × 10–19 Joule



Ex. Calculate the and frequency of a photon having an energy of 2 electron volt

Sol.  1ev = 1.602 × 10–19 J

 2ev = 3.204 × 10–19 J = E

(a) Calculation of wavelength () :

hc
E   or   

hc

E
 

= 
34 8 1

19

6.626 10 Js 3 10 msec

3.204 10 J

 


  


=  6.204 × 10–7 m

(b) Calculation of frequency () :

c   =  
8 1

7

3 10 m sec

6.204 10 m







=  0.48 × 1015 sec–1

=  4.8 × 1014 sec–1

Ex. Which has a higher energy ?

(a) A photon of violet light with wave length 4000 Å

or

(b) A photon of red light with wave length 7000 Å

Sol. (a) Violet light :

Eviolet = 
hc


= 

34 8 1

10

6.626 10 Jsec 3 10 msec

4000 10 m

 


  


=  4.97 × 10–19 Joule

(b) Red light :

Ered  = 
hc



= 
34 8 1

10

6.626 10 Jsec 3 10 msec

7000 10 m

 


  


= 2.8 × 10–19 Joule

So, Eviolet > Ered

Ex. How many photons of lights having a wave length of 5000 Å are necessary to provide 1 Joule of energy.

Sol.  E =
nhc


 E

n
hc

 

=
10

34 8 1

1Joule 5000 10 m

6.626 10 Joule sec 3 10 msec


 

 
  

= 2.5 × 1018 photons



Ex. Calculate the energy associated with the photon passing through vacuum with wavelength 9900 Å.

Sol. For vacuum, velocity of photon = 3 × 108 m/sec

h =6.6 × 10–34 Joule sec

 = 9900 × 10–10 meter

E = h = h 
c

 = 



  


34 8

10

6.6 10 J.sec 3 10 msec

6600 10 m
 = 

1619.8 10

9900


 = 2 × 10–19 Joule

 BOHR'S ATOMIC MODEL

Some Important formulae :

Coulombic force = 1 2
2

kq q

r

Centrifugal force = 
2mv

r

Angular momentum = mvr

 It is a quantum mechanical model. This model was based on quantum theory of radiation and Classical law

of physics.

 The important postulates on which Bohr's Model is based are the following :

1st Postulate :

 Atoms has a nucleus where all protons and neutrons are present.

 The size of nucleus is very small and it is present at the centre of the atom.

2nd Postulate :

 Negatively charged electron are revolving around the nucleus in the same way as the planets are revolving

around the sun.

 The path of electron is circular.

 The attraction force (Coulombic or electrostatic force) between nucleus and electron is equal to the centrifugal

force on electron.

i.e. Attraction force towards nucleus = centrifugal force away from nucleus.

3rd Postulate :

 Electrons can revolve only in those orbits whose angular momentum (mvr) is integral multiple of 
h

2 .

i.e. mvr = 
nh

2
n  =  Whole number

Where h  =  Plank's constant,

  =  Constant

 Angular momentum can have values such as 
h

2 , 
h

2
2 , 

h
3

2 , 
h

4
2 , 

h
5

2  ........but can not have frac-

tional values such as 
h

1.5
2 , 

h
1.2

2 , 
h

.5
2 .......



4th Postulate :

 The orbits in which electron can revolve are known as stationary Orbits because in these orbits energy of

electron is always constant.

5th Postulate :

 Each stationary orbit is associated with definite amount of energy therefore these orbits are also called as

energy levels and are numbered as 1, 2, 3, 4, 5, .... or K, L, M, N, O, ..... from the nucleus outwards.

6 th Postulate

 The emission or absorbtion of energy in the form of photon can only occur when electron jumps from one

stationary state to another & it is E = Efinal state – Einitial state

 Energy is absorbed when electron jumps from inner to outer orbit and is emitted when electron moves from

outer to inner orbit.

 Radii of various orbits of hydrogen atom :
Consider, an electron of mass 'm' and charge 'e' revolving around a nucleus of charge Ze (where, Z = atomic
number and e is the charge of the proton) with a tangential velocity v. r is the radius of the orbit in which
electron is revolving.
By Coulomb's law, the electrostatic force of attraction between the moving electron and nucleus is Coulombic

force = 
2

2

KZe

r

K =  0

1

4  (where is permittivity of free space)



v

m

rad
ius

K = 9 × 109 Nm2C–2

In C.G.S. units, value of K = 1 dyne cm2 (esu)–2

The centrifugal force acting on the electron is 
2mv

r
Since the electrostatic force balance the centrifugal force, for the stable electron orbit.

2 2

2

mv KZe

r r
.......(1)

(or) v2 = 
2KZe

mr
.......(2)

According to Bohr's postulate of angular momentum quantization, we have

mvr = 
nh

2

v = 
nh

2 mr

Shell 5
Shell 4
Shell 3

Shell 2

Shell 1

Shell K
Shell L

Shell M

Shell N
Shell O

Nucleus



v2 = 
2 2

2 2 2

n h

4 m r
.......(3)

Equating (2) and (3)

 
2 2 2

2 2 2

KZe n h

mr 4 m r

Solving for r we get r = 
2 2

2 2

n h

4 mKZe
where n = 1, 2, 3, ......, 
Hence, only certain orbits whose radii are given by the above equation are available for the electron. The

greater the value of n, i.e., farther the energy level from the nucleus the greater is the radius.

The radius of the smallest orbit (n = 1) for hydrogen atom (Z = 1) is r0.

r0 = 
2 2

2 2

n h

4 me K
 =

 
   



 
 

      
22 34

22 31 19 9

1 6.626 10

4 3.14 9 10 1.6 10 9 10
= 5.29 × 10–11 m = 0.529 Å

Radius of nth orbit for an atom with atomic number Z is simply written as

rn = 0.529 × 
2n

Å
Z

 CALCULATION OF ENERGY OF AN ELECTRON :

The total energy (E) of the electron is the sum of kinetic energy and potential energy.

Kinetic energy of the electron = ½  mv2

Potential energy =  columbic force.dr  =  2

2

KZe
.dr

r
 = 

 2KZe

r

Total energy = 1/2 mv2 – 
 2KZe

r
......(4)

From equation (1) we know that

2 2

2

mv KZe

r r

 ½  mv2 = 
2

2

KZe

r
Substituting this in equation (4)

Total energy (E) = 2 2KZe KZe

2r r
 =  2KZe

2r

Substituting for r, gives us

E = 
2 2 4 2

2 2

2 mZ e K

n h
where n = 1, 2, 3, .....

This expression shows that only certain energies are allowed to the electron. Since this energy expression

consist of so many fundamental constant, we are giving you the following simplified expressions.

E = –21.8 × 10–12 × 
2

2

Z

n
 erg per atom

  =  –21.8 × 10–19 × 
2

2

Z

n
 J per atom = –13.6 × 

2

2

Z

n
 eV per atom

(1 eV = 3.83 × 10–23 Kcal)

1 eV = 1.602 × 10–12 erg

(1 eV = 1.602 × 10–19 J)

[E = –313.6 × 
2

2

Z

n
 Kcal/mole (1 cal = 4.18 J)]



The energies are negative since the energy of the electron in the atom is less than the energy of a free

electron, i.e. the electron is at infinite distance from the nucleus which is taken as zero. The lowest energy

level of the atom corresponds to n = 1, and as the quantum number increases, E becomes less negative.

When n = ,  E = 0, which corresponds to an ionized atom, i.e. the electron and nucleus are infinitely

separated.

H H+ + e– (ionization)

 Calculation of velocity :

We know that

mvr = 
nh

;
2

 v = 
hn

2 mr
By substituting for r we are getting

v = 
 22 KZe

nh
where excepting n and Z all are constants

v = 2.18 × 108 
Z

n
cm/sec.

 QUESTIONS BASED ON BOHR'S MODEL

Ex. Calculate the radius of 1st,2nd,3rd,4th  Bohr's Orbit of hydrogen.

Sol. Radius of Bohr's orbit

r = 0.529 × 
2n

Z
(a) Radius of 1st orbit :

r = 0.529 × 
21

1
 = 0.529 Å

(b) Radius of 2nd orbit :

r = 0.529 × 
22

1
 = 0.529 × 4

= 2.116 Å

(c) Radius of 3rd orbit :

r = 0.529 × 
23

1
 = 0.529 × 9

= 4.761 Å

(d) Radius of 4th orbit :

r = 0.529 × 
24

1
= 0.529 × 16

= 8.464 Å

Ex. Calculate the radius ratio of 3rd & 5th orbit of He+

r = 0.529 × 
2n

Z
Å

At. Number of He = 2

Sol.  r3   =  0.529 × 
 23

2

= 0.529 × 
9

2

r5  =  0.529 × 
2(5)

2

= 0.529 × 
25

2



Therefore  

 
 3

5

2

2

3
0.529r 2

r 5
0.529

2




     
3

5

r 9

r 25
 r3 : r5 = 9 : 25

Ex. Calculate the radius ratio of 2nd  orbit of hydrogen and 3rd orbit of Li+2

Sol. Atomic number of H = 1

Atomic number of Li = 3

2nd orbit radius of hydrogen

(r2)H = 0.529 × 
22

1
3rd orbit radius of Li+2

(r3)Li+2 = 0.529 × 
23

3


   2

2

2 H
2

3 Li

2
0.529r 1

r 3
0.529

3





  =   
4

3
   2 H

r  :    23 Li
r   = 4 : 3

Ex. The ratio of the radius of two Bohr's orbit of Li+2  is 1:9. what Would be their nomenclature.

1. K & L 2.    L & M 3.      K & M 4.    K & N

Sol.

2
x

x
2

y y

n
0.529r 1 3

r 9 n
0.529

3

 


   
2
x
2
y

n

n
    

1

9

x

y

n 1

n 3
  = 

K Shell

M Shell

Ex. Calculate the radius of 2nd  excited state of Li+2.

Sol. 2nd excited state, means e– is present in 3rd shell so,

r3 =   0.529 × 
3 3

3


=   0.529 ×  3 Å

=    1.587 Å

Ex. Calculate the radius ratio of 2nd  excited state of H & 1st excited state of Li+2.

Sol. 2nd excited state, means e– is present in 3rd shell of hydrogen

r3   =   0.529 × 
 23

1
 = 0.529 × 9

1st excited state, means e– exist in 2nd shell of Li+2

r2    =   0.529 × 
 22

3

      =   0.529 × 
4

3
     

   2

3 H

2 Li

9
0.529r 1

4r 0.529
3






      =  
ndradius of 2  excited state of hydrogen

st +2radius of 1  excited state of Li
    

   2

3 H

2 Li

r 27

r 4




Ex. Calculate the energy of Li+2 atom for 2nd   excited state.

Sol. E = –13.6 × 
2

2

Z

n
 Z = 3 and e– exist in 2nd excited state, means e– present in 3rd shell i.e. n = 3

 E = –13.6 × 
  

2

2

3

3

   = – 13.6 eV/atom

Ex. Calculate the ratio of energies of He+  for 1St & 2nd excited state .

Sol. (He+) 1st Excited state : (He+)2 2
nd Excited state

i.e. (He+)2nd shell : (He+)3rd shell

–13.6 × 
  

2

2

2

2
: – 13.6 ×  

  
2

2

2

3

4

4
:

4

9

1

4
:

1

9

9 :  4

Ex. If the P.E. of an electron is –6.8 eV in hydrogen atom then find out K.E., E of orbit where electron exist &

radius of orbit.

Sol. 1. P.E.  =  –2K.E.

–6.8 =  –2K.E.

6.8

2
 =   K.E. K.E.  =   3.4 eV

2. E.     =  – KE.

        =  – 3.4 eV

3. Orbit =  2nd

E = – 13.6 × 
2

2

Z

n

3.4 = – 13.6 × 
2

2

1

n

n2 = 
13.6

3.4


  = 4

      i.e. n = 2

4. r  = 0.529 ×
2n

Z
Å

r  = 0.529 × 
 22

1
Å

= 0.529 ×  4Å

= 2.16 Å

Ex. The ionization energy for the hydrogen atom is 13.6 ev then calculate the required energy in ev to excite it

from the ground state to 1st  excited state.

Sol. Ionization energy = 13.6 eV



i.e. 1st energy state = – 13.6 eV

Energy of 1st excited state

i.e. 2nd orbit = –3.4 eV

so, E2 – E1 = – 3.4 + 13.6   =    10.2 eV

Ex. If the total energy of an electron is –1.51 ev in hydrogen atom then find out K.E, P.E, orbit radius and velocity

of the electron in that orbit.

Sol. Given E = –1.5 eV

(i) E = – KE

K.E   = – E { Z = 1}

         = 1.51 eV

(ii) PE  = –  2 × 1.51

      = – 3.02 eV

(iii) Orbit = 3rd

 E = – 13.6 × 
2

2

Z

n
 ev    – 1.51 = – 13.6 × 

2

2

1

n

2 13.6
n 9

1.51

 
 n = 3

(iv) r   =    0.529 × 
3 3

1


    =    0.529 × 9  = 4.761 Å

v   =    2.188 ×  108 × 1

3
cm/sec

     =    
82.188 10

3


 =   0.729 × 108 cm / sec

Ex. Calculate the velocity of an electron placed in the 3rd orbit of the Li2+ ion. Also calculate the number of revolutions

per second that it makes around the nucleus.

Sol. Radius of 2nd orbit = r1x 
2(n)

Z

= 0.529 × 10–8 × 
 23

3
 = 1.587 × 10–8 cm

Velocity of electron in 2nd orbit,

v = 2.18 × 108 
Z

n
 cm/sec = 

82.18 10 3

3

 
 = 2.18 × 108 cm/sec

No. of revolutions/sec = 
1

2 r / v
= 

v

2 r
=

8

8

2.18 10 cm/ sec

2 3.14 1.587 10 cm


    = 0.2187 × 1016

        = 2.187 × 1015 rev/sec

 SPECTRUM

Electromagnetic spectrum or EM spectrum :

The arrangement obtained by arranging various types of EM waves in ordes of their increasing frequency or

decreasing wave length is called as EM SPECTRUM



RWlow  high MW IR Visible

 Rays

U.V X-ray  Cosmic
low E high E

longer  Shorter 
 Spectrum :

When a radiation is passed through a spectroscope (Prism) for the dispersion of the radiation, the pattern

(photograph) obtained on the screen (photographic plate) is called as spectrum of the given radiation

Classification of Spectrum

(1) Emission (2) Absorption

(a) Continuous (b) line (c) band (a) line (b) band

( 1 ) Emissions spectrum :

When the radiation emitted from incandescence source (eg. from the candle, sun, tubelight, burner, bulb, or by

passing electric discharge through a gas at low pressure, by heating some substance at high temp) is passed

directly through the prism and then received on the screen then the obtained spectrum is called as emission

spectrum.

( a ) Emission continuous spectrum or continuous spectrum :

When a narrow beam of white light is passed through a prism, it is dispersed into 7 colours from violet

to Red.

( b ) Emission line spectrum :

When an atomic gas is raised to incandescence source or subjected to electrical excitation, it first

absorbs energy & then gives it out as radiation. On examining these radiation through a spectroscope

a spectrum is obtained which have well defined lines,each corresponding to a definite wave length &

these lines are separated from each other by dark space. This type of Emission spectrum is called as

Emission line spectrum.
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 Special Note :

1. No two elements will have identical line spectrum since no two elements have identical energy level

therefore the line spectrum of the elements are described as finger prints differing from each other like

the finger prints of the human beings.

2. Since line spectrum is obtained by the emission of energy through the atoms of the element therefore

line spectrum is also called as atomic spectrum.

(c ) Emission band spectrum :

If molecular form of the gas is used, it first absorbs energy for not only electron transition but for

rotational, vibrational and translational then emits radiations.

On examining these radiations through a spectroscope a spectrum is obtained on the screen, which

are group of closely packed lines called Bands, therefore this type of Emission spectrum is called as

emission band spectrum. Bands are separated from each other by dark space.

Note : Since band spectrum are caused by molecules therefore band spectrum are also called as molecular

spectrum.

(2 ) Absorption spectrum 
When white light is first passed through a solution or vapours of chemical substance or gas and then analyzed

by spectroscope, it is observed that some dark lines are obtained in otherwise continuous spectrum.

This type of spectrum is called as Absorption spectrum.

 If white light is passed through atomic gas then the obtained spectrum is called as Absorption line

spectrum.

 If white light is passed through molecular gas then the obtained spectrum is called as Absorption band

spectrum.

 Hydrogen line spectrum or Hydrogen spectrum :

When an electric excitation is applied on  atomic  hydrogen gas at Low pressure,a bluish light is emitted. when

a ray of this light is passed through a prism, a spectrum of several isolated sharp line is obtained.The wave-

length of various lines show that spectrum lines lie in Visible, Ultraviolet and Infra red region. These lines are

grouped into different series.
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Series Discovered by  regions       n2n1 Number of lines

lyman lyman U.V. region n2 = 2,3,4 ... / n1=1 n2 – 1

Balmer Balmer Visible region n2 = 3,4,5 ... / n1=2 n2 – 2

Paschen Paschen Infra red (I.R.) n2 = 4,5,6 ... / n1=3 n2 – 3

Bracket Bracket I.R. region n2 = 5,6,7 ... / n1=4 n2 – 4

Pfund Pfund I.R. region n2 = 6,7,8 ... / n1=5 n2 – 5

Humphery Humphery far I.R. region n2 = 7,8,9 ... / n1=6 n2 – 6

 QUESTIONS BASED ON SPECTRUM

Ex. In a hydrogen spectrum if electron moves from 7 to 1 orbit by transition in multi steps then find out the total

number of lines in the spectrum.

Sol. Lyman = (n1 – 1) = 7 – 1 = 6

Balmer = (n2 – 2) = 7 – 2 = 5

Paschen = (n2 – 3) = 7 – 3 = 4

Bracket = (n2 – 4) = 7 – 4 = 3

Pfund = (n2 – 5) = 7 – 5 = 2

Humphrey = (n2 – 6) = 7 – 6 = 1

Total = 21

Total number of lines can be calculated as follows :

Total number of lines = 
      2 1 2 1n - n n - n +1 7 -1 6 +1 42

= = = 21
2 2 2

  

Ex. In a hydrogen spectrum if electron moves from 6th to 2nd  by transition in multi steps then find out the number

of lines in spectrum

Sol. Total number of line =  4 + 3 + 2 + 1 + 0

= 10

Total number of lines = 
   2 1 2 1n n n n 1

2

      = 
  6 2 4 1

2

 
   

4 5
10

2

 

2
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3

4

5
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Ex. In a hydrogen spectrum if electron moves from 6th  to 3rd  orbit by transition in multi steps then find out the

following steps :

(a) Total number of lines in spectrum (b) Total number of lines in U.V. region

(c) Total number of lines in visible region (d) Total number of lines in IR region

Sol. (a) Calculation of total number of lines :

= 
   2 1 2 1n n n n 1

2

      = 
   6 3 6 3 1

2

     = 
3 4

2


= 6

(b) Calculation of number lines present in U.V. region.

e– moves from 6th to 3rd orbit in multisteps.

For U.V. region, e– should be comes into 1st shell. So the number of lines in U.V. region zero.

(c) Calculation of total number of lines in visible region.

For visible region, e– should be comes into 2nd shell, so the number of lines in visible region zero.

(d) Calculation of total number of lines in I.R. region.

In I.R. region, Paschen, Bracket and Pfund series are present.

Number of lines in Paschen series = n2 – 3

= 6 – 3

= 3

Number of lines in Bracket series = n2 – 4

= 6 – 4

= 2

Number of lines in Pfund series = n2 – 5

= 6 – 5

= 1

So total number of lines = 3 + 2 + 1 = 6

Ex. In Balmer series of H atom/spectrum, which electronic transitions represents 3rd  line ?

Sol. In Balmer series

3rd  to 2nd  1line

4th  to 2nd  2 line

5th  to 2nd  3 line

Infinite to 2nd  Last line or limiting line

So, Ans is 5th  to 2nd line  3rd line

Ex. In H atom if e–  moves, from nth  orbit to 1st  orbit by transition in multi steps, if there are total number of lines

in spectrum are 10 then find out the value of n.

Sol. Total number of lines = 
   2 1 2 1n n n n 1

2

    

So, 10 = 
   2 1 2n n n

2



n2
2 – n2 – 20 = 0

n2
2 – 5n2 + 4n2 – 20 = 0

n2 (n2 –5) + 4 (n2 – 5) = 0

(n2 + 4) (n2 – 5) = 0

n2 = 5

Ex. Calculate the wavelength of 1st  line of Balmer series in Hydrogen spectrum.

Sol. For first line of Balmer series

n1 = 2, n2 = 3



21 1 1
R(1)

4 9
        1 9 4

R
36

         1 5
R

36
     

=  
36

5R
    36 1

5 R
    = 

36
912 Å

5


=   6566.4 Å

Ex. Calculate the frequency of the last line of the lyman series in hydrogen spectrum.

Sol. For last line of Lyman series n1= 1, n2 = 
1

        = RZ2 
2 2
1 2

1 1

n n

   
1

 = R 
1

0
1
   

1

 = R

1

 = 109700 cm–1

 =
C


= C ×  

1


= C ×  R

= 3 × 108 m sec–1 × 109700 cm—1

= 3 × 1010 cm sec–1 ×  109700 cm–1

= 3.29 ×  1015  sec–1

Ex. Calculate wavelength of 3rd  line of Bracket series in hydrogen spectrum.

Sol. For 3rd line of Bracket series n1 = 4, n2 =7

1

 = RZ2    2 2

1 1

4 7

    
1

 = R
1 1

16 49
   

1

 = R
49 16

16 49

   
1

 = R 
33

784

1

 =
33R

784

Therefore,  =
784

33R
 784

912 21666 Å
33

 



Ex. What will be the shortest and longest wavelength of absorption lines of hydrogen gas containing atoms in

ground state ? Give Z = 1, R = 109737.5

Sol.
     

2
2 2
1 2

1 1 1
RZ

n n

For shortest wavelength E should be maximum for that n1 = 1, n2 = 
 11

109737.5cm  × 
   2

1 1
1

1
 = 109737.5 cm–1

 = 911 × 10–8 cm

For largest wavelength E should be minimum so n1 = 1, n2 = 2


1

 = 109737.5 cm–1 × 
   2 2

1 1

1 2
 = 1215 Å

Ex. A series of lines in the spectrum of atomic hydrogen lies at wavelengths 656.46, 482.7, 434.17, 410.29 nm.

What is the wavelength of next line in this series.

Sol. The give series of lines are in the visible region and thus appears to be Balmer series

Therefore, n1 = 2 and n2 =? for next line

If  = 410.29 × 10–7 cm and n1 = 2

n2 may be calculated for the last line


1

 = R 
   2 2

1 2

1 1

n n

 7

1

410.29 10
 = 109737 

   2 2
2

1 1

2 n

n2 = 6

Thus next line will be obtained during the jump of electron from 7th to 2nd shell, i.e.

     2 2

1 1 1
R

2 7
 = 109737 

   
1 1

4 49

 = 397.2 × 10–7 cm = 397.2 nm

Ex. The wave number of 1St  line of Balmer series of hydrogen spectrum is 15200 cm–1 . The wave number of 1St

line of Balmer series of Li+2 spectrum will be ?

Sol. Wave number of 1st line of  Balmer series of hydrogen spectrum.

2
2 2
1 2

1 1 1
RZ

n n

        

or
2

2 2
1 2

1 1
Z R

n n

        for H, Z = 1

2 2
1 2

1 1
R

n n

       = 15200 cm–1

Wave number of 1st line of Balmer series of Li+2 ion is.

2
2 2
1 2

1 1
Z R

n n

        {Z = 3 for Li+2 }

   = 32 × 15200 = 9 × 15200 = 136800 cm–1



Ex. Calculate the ratio of maximum of Lyman & Balmer series ?

Sol. E 1
st

st

Maximum  of Lyman series 1  line of Lyman series 

Maximum  of Balmer series 1 line of Balmer series

 

Lyman

Balmer
 L

B

1

1



 2 2

2 2

1 1
R

1 2
1 1

R
2 3

   
   


R

R

1
1

1
4

1
4

1
9













=
3

R
4

5
R

36

   
   

B

L


  27

5
 L

B

5

27

 
Ex. A certain electronic transition from an excited state to ground state of the Hydrogen atom in one or more steps

gives rise of 5 lines in the ultra violet region of the spectrum.How many lines does this transition produce in the

infra red region of the spectrum?

Sol. (Lyman Series) ultra violet region :  5 Lines i.e. e– is coming from 6th to 1st   Orbit

n2 –1  =  5 n2  =  6

Infrared region line

(i) Paschen series = (6 – 3) = 3

(ii) Bracket = (6 – 4) = 2

(iii) Pfund = (6 – 5) = 1

Total Number of lines are = 6

 Limitation of the Bohr's model :

1. Bohr's theory does not explain the spectrum of multi electron atom.

2. Why the Angular momentum of the revolving electron is equal to 
nh

2 , has not been explained by

Bohr's theory.

3. Bohr interrelate quantum theory of radiation and classical law of physics with out any theoritical

explanation.This was the biggest drawback of this model.

4. Bohr's theory does not explain the fine structure of the spectral lines. Fine structure of the spectral

line is obtained when spectrum is viewed by spectroscope of more resolution power.

5. Bohr theory does not explain the spiliting of spectral lines in the presence of magnetic field (Zemman's

effect) or electric field (Stark's effect)



 SOMMERFELD EXTENSION OF THE BOHR'S MODEL

 According to sommerfeld electron revolve around the nucleus in the Elliptical Orbits.

 Circular orbit is a special case of elliptical  orbit when the length of major axis becomes equal to the

length of minor axis then the shape of orbit will be circular.

 If electrons revolve in elliptical orbit then its angular momentum shows two components

1. Radial component :

Jr  = 
rn h

2
where nr = radial quantum number.

[nr = (n – 1).................0]

n = Shell number

2. Azimuthal Components:

J = n h

2
n = Azimuthal quantum number

[ n = 1, 2, 3, 4.............n]

n = Shell number

So total Angular momentum = Jn

Jn = Jr + J
nh

2 =
rn h

2  +  n
h

2
n = nr + n where n = principal quantum number

Ex. Let n = 4 n = nr + n
Then 4 = 3  + 1

4 = 2  + 2

4 = 1  + 3

4 = 0  + 4

 The length of major axis indicates by nr + ni.e. n and length of minor axis indicates by n
 The path of electron

K = 
rn n

n





=
n

n
= 

Length of major axis

Length of minor axis
 If n = 4 then n= 1, 2, 3, 4

K   =  
4

1
,

4

2
,

4

3
,

4

4

 3 Elliptical path       circular path

v

e

r 
Focus

r = constant

= Variable


Focus

r = Variable

= Variable

Major axis

r
1

r
2

Minor axis



 If n = 5 then n= 1, 2, 3, 4, 5

 K   = 
5

1
,     

5

2
,     

5

3
,  

5

4
,

5

5

4 Elliptical path      Circular path

 If n = 1 Then Elliptical path = ( n – 1) = ( 1 – 1) = 0

Circulars path = 1

In nth orbit : Number of elliptical path = (n – 1)

Number of circular path  = 1

In every atom, 1st orbit is always circular.

 THE DUAL NATURE OF MATTER (THE WAVE NATURE OF ELECTRON)

1. In 1924. a French physicist, Louis De Broglie suggested that if the nature of light is both that of a

particle and of a wave, then this dual behavior should be true for the matter also.

2. According to De Broglie, the wavelength of an electron is inversely proportional to its momentum p.

1

p
     or

1

mv
 

h

p
  Here h = Planck's constant

p = momentum of electron

 Momentum (p) = Mass (m) × Velocity (c)

 h

mv
   = 

h

2m(K.E.)

From the de-Broglie equation it follows that wavelength of a particle decrease with increase in velocity

of the particle. Moreover, lighter particles would have longer wavelength than heavier particles, provided

velocity is equal.

 If a charged particle Q is accelerated through potential difference V from rest then de-broglie wavelength

is
h

2mQV
 

 de-Broglie concept is more significant for microscopic or sub-microscopic particles whose wavelength

can be measured.

 The circumference of the nth orbit is equal to n times the wavelength of the electron.

n2 r n  
 Wavelength of electron is always calculated using De-broglie calculation.

Ex. Two particles X and Y are in motion. If the wavelength associated with particle X is 4 × 10–8 m, calculate

the wavelength associated with particle Y if its momentum is half of X.

Sol. According to de Broglie equation

x =
x

h

p
and y =

y

h

p

yx

y x

p

p

 
But py = ½  px (given)

x x

y x

1 / 2p

p

   = ½

B = 2A = 2 × 4 × 10–8m = 8 × 10–8m



Ex. Calculate the de Broglie wavelength of a ball of mass 0.1 kg moving with a speed of 30 ms–1.

Sol.  = 
34h 6.6 10

mv 0.1 30

 
 = 2.2 × 10–34 m

This is apparent that this wavelength is too small for ordinary observation.

Although the de Broglie equation is applicable to all material objects but it has significance only in case of

microscopic particles.

Since, we come across macroscopic objects in our everyday life, de Broglie relationship has no significance

in everyday life.

 HEISENBERG UNCERTAINTY PRINCIPLE

Bohr's theory considers an electron as a material particle. Its position and momentum can be determined

with accuracy. But, when an electron is considered in the form of wave as suggested by de-Broglie, it is not

possible to ascertain simultaneously the exact position and velocity of the electron more precisely at a given

instant since the wave is extending throughout a region of space.

In 1927, Werner Heisenberg presented a principle known as Heisenberg uncertainty principle which states

as : "It is impossible to measure simultaneously the exact position and exact momentum of a body as small as

an electron."

The uncertainty of measurement of position, x, and the uncertainty of momentum  p or mv, are related

by Heisenberg's relationship as : ( p = mv, p = mv)

x . p > 
h

4 or x . mv > 
h

4      or
h

x. v
4 m

   
where h is Planck's constant.

x v= uncertainty product

For an electron of mass m (9.10 × 10–28 g), the product of uncertainty is quite large.

x . v >  
276.624 10

4 m




>  
27

28

6.624 10

4 3.14 9.10 10





  

=  0.57 erg sec per gram approximately

When  x = 0, v= and vice-versa.

In the case of bigger particles (having considerable mass), the value of uncertainty product is negligible. If the

position is known quite accurately, i.e., x is very small, vbecomes large and vice-versa.

 In terms of uncertainty in energy E, and uncertainty in time t, this principle is written as,

h
E. t

4
   

 Heisenberg replaced the concept of definite orbits by the concept of probability.

Ex. Why electron cannot exist inside the nucleus according to Heisenberg's uncertainty principle ?

Sol. Diameter of the atomic nucleus is of the order of 10–15 m

The maximum uncertainty in the position of electron is 10–15 m.

Mass of electron = 9.1 × 10–31 kg.

x. p = 
h

4x × (m.v) = h/4



v =  
h 1

4 x.m
 = 




346.63 10
22

4
7

 ×   15 31

1

10 9.1 10

v = 5.80 × 1010 ms–1

This value is much higher than the velocity of light and hence not possible.

 DE BROGLIE RELATIONSHIP & HEISENBERG'S UNCERTAINTY PRINCIPLE

Ex. The mass of a particle is 1 mg and its velocity is 4.5 × 105 cm per second. What should be the wavelength of

this particle if h = 6.652 × 10–27 erg second.

(1) 1.4722 × 10–24 cm (2) 1.4722 × 10–29 cm (3) 1.4722 × 10–32 cm (4) 1.4722 × 10–34 cm

Sol. Given that

m = 1 mg = 1 × 10–3 g

c = 4.5 × 105 cm/sec.

h = 6.652 × 10–27 erg sec.

 h

mc
   = 

27

3 5

6.652 10

1 10 4.5 10





    = 

296.652 10

4.5


cm = 1.4722 × 10–29 cm

Ex. Which of the following should be the wavelength of an electron if its mass is 9.1× 10–31 kg and its velocity is

1/10 of that of light and the value of h is 6.6252× 10–24 joule second?

(1) 2.446 × 10–7 metre (2) 2.246 × 10–9 metre (3) 2.246 × 10–11 metre (4) 2.246 × 10–13 metre

Sol. Given that

m = 9.1 × 10–31 kg

1
c

10
  of velocity of light

or
1

c
10

  × 3 × 108 metre/second i.e. 3 × 107 metre/second

h = 6.6252 × 10–34 joule second

h

mc
  = 

34

31 7

6.6252 10

9.1 10 3 10





    = 
34

24

6.6252 10

27.3 10







or 0.2426 × 10–10 metre

or 2.426 × 10–11 metre

Ex. What should be the momentum (in gram cm per second) of a particle if its De Broglie wavelength is 1 Å and

the value of h is 6.6252 × 10–27 erg second ?

(1) 6.6252 × 10–19 (2) 6.6252 × 10–21

(3) 6.6252 × 10–24 (4) 6.6252 × 10––27

Sol. Given that

= 1 Å = 1 × 10–8 cm

h = 6.6252 × 10–27 erg second

or
27

8

6.6252 10
p

1 10




   = 6.6252 × 10–19 gram cm/sec.



Ex. What should be the mass of the sodium photon if its wavelength is 5894Å, the velocity of light is 3 × 108

metre/second and the value of h is 6.6252 × 10–34 kg m2/sec.?

(1) 3.746 × 10–26 (2) 3.746 × 10–30 (3) 3.746 × 10–34 (4) 3.746 × 10–36

Sol.
h

m c
     m = 

h

c
(= 5894Å = 5894 × 10–10 m)

34

8 10

6.652 10
m

3 10 5894 10


 

     or  
326.652

10
17682

 =  0.0003746 × 10–32

or 3.746 × 10–36 kg

Ex. What should be the uncertainty in the velocity of an electron if the uncertainty in its position is 0.005 nm, the

mass of electron is 9.109 × 10–31 kg and the value of h is 6.6252 × 10–34 joule/second?

(1) 2.316 × 105 (2) 1.158 × 107 (3) 2.316 × 109 (4) 2.316 × 1011

Sol. Uncertainty in position (x) = 0.005 nm = 0.005 × 10–9 m

= 5 × 10–12 m

Mass of electron (m) = 9.109 × 10–31 kg.

 v = 
h

4 m x    = 
34

12 31

6.6252 10

4 3.14 5 10 9.109 10


 


      m/sec.

or v = 
34

43

6.6252 10

4 3.14 5 9.109 10





   

 v = 1.15816 × 107 m/sec.

Ex. What should be the uncertainty in velocity of a particle of 1 kg mass if uncertainty in position is 1Å and the

value of h is 6.6252 × 10–34 Joule sec.?

(1) 1.055 × 10–22 (2) 1.055 × 1022 (3) 5.25 × 10–25 (4) 1.055 × 1024

Sol. Given that

x = 1Å = 1 × 10–10 m

m = 1 kg

h = 6.6252 × 10–34 Joule sec.

h
v

4 m x
      =  

34

10

6.6252 10

4 3.14 1 10





  

or
34

10

6.6252 10
v

12.56 10




    m/sec.

= 0.52525 × 10–24 m/sec.

= 5.25 × 10–25 m/sec.

Ex. What should be the uncertainty in position if uncertainty in momentum is 1 × 10–2 g cm/sec. and value of h

is 6.6252 × 10–34 Joule sec. ?

(1) 1.054 × 10–22 m (2) 1.054 × 10–25 m

(3) 0.525 × 10–27 m (4 ) 1.054 × 10–32 m

Sol. Given that

p = 1 × 10–2 g cm/sec. = 1 × 10–7 kg m/sec.

h = 6.6252 × 10–34 Joule sec.



x × p = 
h

4 x = 
h

4 p 

or
34

7

6.6252 10
x

4 3.14 10




     = 0.525 × 10–27 m

Ex. A ball weighs 25 g moves with a velocity of 6.6 ×  104 cm/sec then find out the De Broglie associated with

it.

Sol.  =  h

mv

=
34 7

4

6.6 10 10
ergsec

25 6.6 10 cm / sec

 
  =

3810
1

25


= 0.04 × 10–38  × 107

= 0.04 × 10–31  cm

= 4 × 10–33  cm

Ex. Which of the following has least De Broglie if they have same velocity.

1. e– 2. p 3. CO2 4. SO2

Sol.  = 
h

mv

mass of SO2
  is greater than the mass of e– , p, CO2

= h constant

= v Same

least will be SO2

  1

m

Ex. If uncertainty in position of an e–  is same as the x of He atom. If p of e–  is 32 ×105  then find p in He

atom.

Sol. x ×  p = 
h

4
Since x is same for both.

therefore p will be same by

h
e e 4

(He) He

x p

h
x P

4

   
    


He

Pe

P


 1

 Pe PHe

32 × 105 = 32 ×  105

PHe= 32 ×  105

Ex. Calculate the uncertainty in the position of a particle when the uncertainty in momentum is

(a) 1 × 10–3g cm sec–1 (b) Zero.

Sol. Given

p = 1 × 10–3 g cm sec–1

h = 6.62  × 10–27 erg sec.

= 3.142

According to uncertainty principle



 x p
h

. 
4

So,
h 1

x .
4 p

   
27

3

6.62 10 1

4 3.142 10




 
= 0.527 × 10–24 cm

(b) When the value of p = 0, the value of x will be infinity.

Ex. The uncertainty in position and velocity of a particle are 10–10 m and 5.27 × 10–24 ms–1 respectively. Calculate

the mass of the particle (h = 6.625 × 10–34 Joule Sec.)

Sol. According to Heisenberg's uncertainty principle,

h
x.m v

4
    or    

h
m

4 x. v
  

= 
34

10 24

6.625 10

4 3.143 10 5.27 10


 


   
= 0.099 kg

Ex. Calculate the uncertainty in velocity of a cricket ball of mass 150 g if the uncertainty in its position is

of the order of 1Å (h= 6.6 × 10–34 kg m2 s–1).

Sol. x . m v =
h

4
v = 

h

4 x.m
= 

34

10

6.6 10

4 3.143 10 0.150





  

= 3.499 × 10–24 ms–1

 QUANTUM NUMBERS :

The set of four intergers required to define an electron completely in an atom are called quantum numbers.The

first three have been derived from Schordinger wave equation.

(i) Principle quantum number (n) :

It describes the size of the electron wave and the total energy of the electron. It has integral values

1,2,3,4......., etc, and is denoted by K,L,M,N..........,etc.

The maximum number of electrons which can be present in a principal energy shell is equal to 2n2.

No energy shell in the atoms of known elements possesses more than 32 electrons.

(ii) Azimuthal quantum number ( )  :

It describes the shape of electron cloud and the number of subshells in a shell. It can have values

from 0 to (n – 1), i.e.,  = 0 (s-subshell),  = 1 (p-subshell),     = 2 (d-subshell),  = 3 (f-subshell).

(iii) Magnetic quantum number (m) :

It describes the orientations of the subshells. It can have values from –to + including zero, i.e.,

total (2 + 1) values. Each value corresponds to an orbital. s-subshell has one orbital, p-subshell three

orbitals (px, py and pz), d-subshell five orbitals (dxy, dyz, dzx, dx2 – y2, dz2) and f-subshell has seven orbitals.

The total number of orbitals present in a main energy level is 'n2'.



(iv) Spin quantum number (s) :

It describes the spin of the electron. It has values +1/2 and –1/2. (+) signifies clockwise spinning

and (–) signifies anticlockwise spinning.

 RULES FOR FILLING OF ORBITALS

1. Aufbau Principle :

Aufbau is a German word  and its meaning 'Building up'

Aufbau principle gives a sequence in which various subshell are filled up depending on the relative order of

the Energies of various subshell.

 Principle : The subshell with minimum energy is filled up first and when this subshell obtained

maximum quota of electrons then the next subshell of higher energy starts filling.

 The sequence in which various subshell are filled is the following.

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2, 4d10, 5p6, 6s2, 4f14, 5d10, 6p6, 7s2, 5f14, 6d10, 7p6

2. (n + ) rule :

According to it the sequence in which various subshell are filled up can also be determined with the help of

( n +) value for a given subshell.

 PRINCIPLE OF (n +  ) RULE :

The subshell with lowest( n +) value is filled up first, when two or more subshell have same (n+) value then

the subshell with lowest value of n is filled up first.

   Sub Shell   n    n +

1s 1 0 1

2s 2 0 2

2p 2 1 3 
(1)

3s 3 0 3 (2)

3p 3 1 4 
(1)

4s 4 0 4 (2)

3d 3 2 5 (1)

4p 4 1 5


(2)

5s 5 0 5 (3)

4d 4 2 6 (1)

5p 5 1 6


(2)

6s 6 0 6 (3)

1s 2s 3s 4s 5s 6s 7s

Starting

point 2p 3p 5p 7p6p

3d 6d

4p

4d 5d

4f 5f



3. Pauli's Exclusion principle :

In 1925 Pauli stated that no two electron in an atom can have same values of all four quantum numbers.

   
 An orbital can accomodates maximum 2 electrons with opposite spin.

4. Hund's Maximum Multiplicity Rule :

(Multiplicity : Many of the same kind)

 According  to Hund's rule electrons are distributed among the orbitals of subshell in such a way as to

give maximum number of unpaired electron with parallel spin. i.e. in a subshell pairing of electron

will not start until and unless all the orbitals of that subshell will get one electron each with same spin.

 SPIN MULTIPLICITY

It is given by 2S + 1 where S is the total spin.

(a) (b)

For (a), S = 
1 1

2 2
   = 0

Spin multiplicity = 2S + 1 = 0 + 1 = 1 (singlet)

For (b), S =  1 1

2 2
 = 1

Spin multiplicity = 2S + 1 = 2 × 1 + 1 = 3 (triplet)

Ex. Find out the angular momentum of an electron in

(a) 4s orbital (b) 3p orbital (c) 4th orbital

Sol. Angular momentum in an orbital =  h
1

2
  

(a)  = 0 for 4s orbital, hence orbital angular momentum = 0

(b)  = 1 for 3p orbital

 Angular momentum =     
h h

1 1 1
2 2

(c) Angular momentum in 4th orbit

=    
nh 4h 2h

2 2
Ex. Given below are the sets of quantum numbers for given orbitals. Name these orbitals.

(i) n = 4,  = 2, m = 0 (ii) n = 3,  = 1, m = ±1

(iii) n = 4,  = 0, m = 0 (iv) n = 3,  = 2, m = ±2

Sol. (i) 4dz2 (ii) 3px or 3py

(iii) 4s (iv) 2 2x y
3d  or 3dxy

 ELECTRONIC CONFIGURATION OF ELEMENTS

Based on the rules, we can easily determine the electronic configurations of most element. We just need

to know the atomic number of an element, the order in which orbitals are to be filled and the maximum

number of electrons in a shell, sub-shell or orbital. The configurtion so obtained can be represented in

two ways. As an illustration, let us consider fluorine (Z = 9) :

F(Z = 9) = 1s2, 2s2, 2px
2, 2py

2, 2pz
1 or

1s 2s 2px 2py 2pz

Importance of knowing the exact electronic configuration of an element lies in the fact that the chemical

properties of an element are dependent on the behaviour and relative arrangement of its electrons.



Electronic configurations of heavier elements (beyond Z = 56) deviate a little from the order mentioned

previously. These are listed below :

Lanthanides La (Z = 57) : [Xe]6s25d1 (not 4f1)

Ce (Z = 58) : [Xe]6s25d14f1

Pr (Z = 59) : [Xe]6s25d14f2

Actinides Ac (Z = 89) : [Rn]7s26d1 (not 5f1)

Th (Z = 90) : [Rn]7s26d15f1

Pa (Z = 91) : [Rn]7s26d15f2

Beyond Z = 103 Z = 104 : [Rn]5f146d27s2

Z = 105 : [Rn]5f146d37s2

Z = 106 : [Rn]5f146d47s2

Z = 112 : [Rn]5f146d107s2

 EXCEPTIONAL CONFIGURATIONS

Stabili ty of Half Filled and Completely Filled Orbitals

Cu has 29 electrons. its expected electronic configuration is 1s2,2s2, 2p6, 3s2, 3p6, 4s2, 3d9.

But a shift of one electron from lower energy 4s orbital to higher energy 3d orbital will make the distribution

of electron symmetrical and hence will impart more stability.

Thus the electronic configuration of Cu is 1s2, 2s2, 2p6, 3s2, 2p6, 4s1, d10

Fully filled and half filled orbital are more stable.

Ex. We know that fully filled and half filled orbital are more stable. Can you write the electronic configuration

of Cr(Z = 24) ?

Sol. Cr (Z = 24)

1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d5.

Since half filled orbital is more stable, one 4s electron is shifted to 3d orbital.

Ex. A compound of vanadium has a magnetic moment of 1.73 BM work out the electronic configuration of

the vanadium in the compound.

Sol. Magnetic moment =  n n 2

Where n is number of unpaired electrons

 1.73 =  n n 2  or (1.73)2 = n2 + 2n, n = 1

Vanadium atom must have the unpaired electron and thus its configuration is :

23V
4+ : 1s22s22p63s23p63d1

 WAVE MECHANICAL MODEL OF ATOM

Schrodinger wave equation :

General wave equation                                            

Nodes

 y = A sin t

where, y = displacement

 A = amplitude

 t = time



Developed by schrodinger, this model is based on the particle and wave nature of electron is known as

WAVE MECHANICAL MODEL of atom. The motion of electron around nucleus is round motion and may

be considered to be analogous to the STANDING WAVES, the waves which are generated by plucking the

stretched string. The amplitude of the standing wave is independent of time and is a function of the distance

from one fixed end. The derived eq. by schrodinger is

Schrodinger wave equation  
2 2 2 2

2 2 2 2

8 m
(E V) 0

x y z h

             
where  = Amplitude of e– wave (or wave function)

m = mass of e–

E = Total energy

V = Potential energy

or
2

2
2

8 m
(E V) 0

h

     

where 2 = Laplacian operator = 2 2 2x y z

                  
2

2

h

8 m 2+ (E – V)  = 0

2
2

2

h
V

8 m

      = E

H E  


2

2
2

h
H V

8 m

   Hemiltonion operator

 SCHRODINGER EQUATION IN CARTESIAN COORDINATE :

Z = rcos
y = rsinsin                            

y

x

rsin

rcos
  rsincos

z

R
rsin sin 



x = rsincos
The schrodinger equation can be written in terms of cartesian

coordinates (x, y, z) or in terms of spherical polar coordinates (r, , ).

However for most calculations it is simpler to solve the wave equation

in polar coordinates. When Schrodinger wave equation in polar

coordinates is solved for hydrogen atom the solution obtained can be

factorized into 2 separate parts, one being the function of r and other

the function of  and .

 (r, ) = R(r) f (, )

R(r) = Radial function

f (, ) = Angular function



 SIGNIFICANCE OF () :

The wave function may be regarded as amplitude of electron wave expressed in terms of coordinates

(x, y, z) or (r, , ). The wave function may have +ve or –ve values depending on the values of coordinates.

As such there is no physical significance of .

 SIGNIFICANCE OF ()2 :

In classical theory of electromagnetic radiation, the square of amplitude is proportional to the intensity of

light. A very similar concept was suggested by MAX BORN in QUANTUM MECHANICS according to

which the square of function  at any point is proportional to the probability of finding an electron at that

point 2 is known as PROBABILITY DENSITY and is always +ve.

The region of space in which there is maximum probability of finding an electron (say 90%) is termed as an

orbital.

 QUANTUM NUMBERS :

In an atom, a large no of orbitals are permissible. These orbitals are designated by a set of 3 numbers

known as QUANTUM NUMBERS (principle, azimuthal, magnetic) which arise as a natural consequence in

the solution of schrondinger wave equation. These quantum numbers describe energies of electron in an

atom, information about shapes and orientation of orbitals. In order to designate the electron an additional

quantum number called as SPIN QUANTUM NUMBER is needed to specify spin of the electron.

 GRAPHICAL REPRESENTATION OF  :

 = Amplitude of wave

2 = probability density  It gives us probability of finding an electron at a point or per unit volume.

2Probability dv  
 =  (x, y, z) =  (r, , )

 = R(r) ~ ()

R2 = radial probability density, r = radius

R2 = radial probability density of finding an electron at a distance R from the nucleus in any direction.

(i) r

R

Hyperbola

2
1s

0 0

1 2r
R(r) 2 e where

a na

     
a

0
 = 0.529 Å n = principal quantum number

            0

3
r

2 a
1s

0

1
R(r) 2 e

a

    

r

R2

           Graph between R2 and r will be same hyperbolic.



(ii)

3

2
2

2s
0

1 1
R(r) (2 )e

a2 2

     
After reaching 2a

0 
now curve would start decreasing and again goes up to cut at .

R(r)2s

r

2a0

             
R(r)2

2s

r

(iii) R(r)
3s 

 vs r

            R(r)3s

r

   R(r)2

3s

r

 RADIAL NODES : Points at which the probability of finding an electron is zero is known as radial nodes.

No. of radial nodes = n –  – 1

Electron cannot be present at 2a
0 
distance from nucleus. If we join all 2a

0 
points    

2a0

2a0

2a0

2a0

to form a sphere, we can say that electron cannot be present on surface of

sphere, however it may be present inside or outside. At 2a
0 
distance probability

of presence of electron is zero. Since a sphere is formed radial nodes are also

called SPHERICAL NODES.

Radial nodes are spherical in shape also known as spherical nodes or nodal sphere.

 GRAPHS FOR P-ORBITALS :

3

2
2

2p
0

1 1
R(r) e

a2 6

                 
R(r)2p

r

2p

R(r)3p

r

3p

          
r

R (r)2
3p

R(r)4p

r

4p

          

R(r)3d

r

3d



 RADIAL PROBABLITY DISTRIBUTION FUNCTION :

dr is very very less

volume = 3 34
((r dr) r )

3
    shell                    

r

dr

= 3 2 2 3 34
((r 3r dr 3r dr dr r )

3
    

dr2 and dr3 are neglected

= 24
(3r dr)

3
  = 4r2dr

Radial probability in given shell = 4r2drR2

Radial probability function = 4r2R2

The probability of finding an electron at a distance r from the nucleus in all the direction is called radial

probability function (RPF).

 GRAPHS BETWEEN RPF AND r :

R (r)
1s 

   = 2Ce


42R2r2 = 4r2C2 2e


           

4 Rr2 2 2

r(max)

1s

            = C'r2 0

2r

ae


42R2r2 = C'r2 0

2r

ae


For s-orbital, R and R2 at nucleus is not zero but probability is almost equal to zero because of very small size.

R2 dv  0 as dv  0  for nucleus

r
max

  distance at which the probability of finding an electron is max.

2 2
1sP 4 R r  0

r3/2
a

1s
0

1
R 2 e

a

    
now differentiate eq. by putting value of R

1s

P = 4r2 ×  0

2r3
a

0

1
4 e

a

   
P = 0

2r

a2Cr e


0 0

2r 2r

a a2dP
C(2r e r e )

dr

 
 

0

2r

a

0

dP 2r
Cr e 2 0

dr a

       
 0r a  Maxima

4 Rr 2 2

r

2s

Peaks of the curves are increasing

4 Rr 2 2

r rmax

3s

Here 1st peak is smaller than 2nd and 2nd smaller than 3rd.



4 Rr 2 2

r rmax

3p

ANTINODE POINT - Point at which probability of finding an electron is max.

 COMPARISON OF r
max. 

& r
avg

 FOR DIFFERENT ORBITALS :

Note : r
avg 

is always greater than r
max

Case I - when  is same but n is different.

As value of n increases r
max

 increases.                                
2s

(r )1s(max)

4 Rr 2 2

4 Rr 2 2

(r )2s(max)r

1s

r

Peaks are numbered according to value of (n – ).

As n increases r
avg 

increases if r
avg 

is more, electron will be more away from nucleus.

 PENETRATION POWER : Penetration power of orbital is a measure of its closeness to the nucleus.

1s > 2s > 3s

Case II - When 'n' is same but '' different.

As value of '' increases, r
avg

 increases

As value of '' increases, r
max 

decreases

   r
max. 

                    

3d

3p

3s

r

4 Rr 2 2

4 Rr 2 2

4 Rr 2 2   r
avg. 


Closeness to nucleus - 3s > 3p > 3d

 ENERGY COMPARISON :

For energy comparison Aufbau rule should be used. But for hydrogen atom, subshell belonging to particular

shell possess equal energy.

2p = 2s, 3s = 3p = 3d

 ANGULAR FUNCTION :

It gives us an idea about the shape, orientation of an orbital

eg.  = 1  m = –1, 0, +1

Px

     

Py

         

Pz

For s orbital, angular part is independent of  and .

 There would be zero angular nodes for s-orbital.

No.of angular nodes for any orbital  



 SHAPE OF ANGULAR NODE :

For P
x 
:

Angular Node 
        or 
  Nodal plane 

Angular node or nodal plane

 P
x
  yz plane

P
y
  xz plane

P
z
  xy plane

For d
xy 

:

x

y

 d
xy
  xz and yz

d
yz
  xz and xy

d
zx
  xy and yz

45°

dx –y2 2
  

We cannot predict the designation of angular nodes but can be said that at  an angle of 45° with axis.

 PHOTOELECTRIC EFFECT

Sir J.J. Thomson observed that when a light of certain frequency strikes the surface of a metal, electrons

are ejected from the metal. This phenomenon is known as photoelectric effect and the ejected electrons are

called photoelectrons.

A few metals, which are having low ionisation energy like Cesium, show this effect under the action of visible

light but many more show it under the action of more energetic ultraviolet light.

Light

electrons

Evacuated quartz tube

– +
A

V

+–



An evacuated tube contains two electrodes connected to a source of variable voltage, with the metal plate

whose surface is irradiated as the anode. Some of the photoelectrons that emerge from this surface have

enough energy to reach the cathode despite its negative polarity, and they constitute the measured current.

The slower photoelectrons are repelled before they get to the cathode. When the voltage is increased to

a certain value V0, of the order of several volts, no more photoelectrons arrive, as indicated by the current

dropping to zero. This extinction voltage (or also referred as stopping potential) corresponds to the maximum

photoelectron kinetic energy i.e. eV0 = ½  mv2

The experimental findings are summarized as below :

 Electrons come out as soon as the light (of sufficient energy) strikes the metal surface.

 The light of any frequency will not be able to cause ejection of electrons from a metal surface. There

is a minimum frequency, called the threshold (or critical) frequency, which can just cause the ejection.

This frequency varies with the nature of the metal. The higher the frequency of the light, the more

energy the photoelectrons have. Blue light results in faster electrons than red light.

 Photoelectric current is increased with increase intensity of light of same frequency, if emission is

permitted, i.e. a bright light yields more photoelectrons than a dim one of the same frequency, but

the electron energies remain the same.

Light must have stream of energy particles or quanta of energy (h). Suppose, the threshold frequency

of light required ejecting electrons from a metal is , when a photon of light of this frequency strikes a

metal it imparts its entire energy (h0) to the electron.

E=h0 E>h0

K.E.=0

Metal

K.E = h  – hmax 0 

"This energy enables the electron to break away from the atom by overcoming the attractive influence

of the nucleus". Thus each photon can eject one electron. If the frequency of light is less than 0 there

is no ejection of electron. If the frequency of light is higher than 0 (let it be ), the photon of this light

having higher energy (h), will impart some energy to the electron that is needed to remove it away from

the atom. The excess energy would give a certain velocity (i.e. kinetic energy) to the electron.

h = h0 + K.E.

h = h0 + ½  m2

½  m2 = h – h0

where  = frequency of the incident light

0 = threshould frequency

h0 is the threshold energy (or) the work function denoted by  = h0 (minimum energy of the photon to liberate

electron). It is constant for particular metal and is also equal to the ionization potential of gaseous atoms.

The kinetic energy of the photoelectrons increases linearly with the frequency of incident light. This, if

the energy of the ejected electrons is plotted as a function of frequency, it result in a straight line whose

slope is equal to Planck's constant 'h' and whose intercept is h0.



K.E.
of
Photoelectrons



Ex. A photon of wavelength 3000 Å strikes a metal surface, the work function of the metal being 2.20 eV.

Calculate (i) the energy of the photon in eV (ii) the kinetic energy of the emitted photo electron and (iii)

the velocity of the photo electron.

Sol. (i) Energy of the photon

E = h = 
hc

=
  34 8 1

7

6.6 10 Js 3 10 ms

3 10 m

 


 
 = 6.6 × 10–19 J

1eV = 1.6 × 10–19 J

Therefore E = 
19

19

6.6 10 J

1.6 10 J / ev





  = 4.125 eV

(ii) Kinetic energy of the emitted photo electron

Work function = 2.20 eV

Therefore, KE = 2.475 – 2.20 = 1.925 eV = 3.08 × 10–19 J

(iii) Velocity of the photo electron

KE =
1

2
mv2 = 3.08 × 10–19 J

Therefore, velocity (v) = 
19

31

2 3.08 10

9.1 10




 
  = 8.22 × 105 ms–1

Ex. Photoelectrons are liberated by ultra violet light of wavelength 2000 Å from a metallic surface for which

the photoelectric threshold is 4000 Å. Calculate the de Broglie wavelength of electrons emitted with maximum

kinetic energy.

Sol. K.E. = Quantum Energy – Threshold energy

= 
34 8

10

6.626 10 3 10

2000 10




  
  – 




  

34 8

10

6.626 10 3 10

4000 10

= 



  34 8

10

6.626 10 3 10

10

1 1

2000 4000
   

= 4.969 × 10–19 Joule.

21
mv

2
= 4.969 × 10–19 m2v2 = 2 × 4.969 × 10–19 × 9.1 × 10–31

mv = 9.51 × 10–25  = 
h

mv
 = 

34

25

6.626 10

9.51 10





  = 0.696 × 10–9 m



MEMORY TIPS

1. Frequency,  = 
c

2. Energy/photon,E = h = 
hc

Also, E = 
12375

eV , if  is in Å

3. Electronic energy change during transition, E = 
2 1n nE E

n2 > n1, emission spectra if electron jumps from n2 to n1 shell and absorption spectra if electron excites

from n1 to n2 shell.

4. Radius of nth Bohr orbit of H atom, rn = 
2 2

2 2

n h

4 me K
 (where K = 9 × 109)

r1 for H = 0.529 Å ; rn for H like atom rn = 0.529 × 
2n

Å
Z

5. Velocity of electron in nth Bohr orbit of H atom, v =
 22 KZe

nh

v = 2.18 × 108 
Z

cm/ sec
n

.

6. Energy of electron in nth Bohr orbit of H atom, E =
2 2 4 2

2 2

2 mZ e K

n h
where n = 1, 2, 3..........

[E = –13.6 × 
2

2

Z

n
kcal/mole (1 cal = 4.18 J)]

E1 for H = – 21.72 × 10–12 erg = – 13.6 eV, E1 for H like atom = E1 for H × Z2

7. Wavelength emitted during transition in H atom,

     H 2 2
1 2

1 1 1
R

n n
=

    
2 4

3 2 2
1 2

2 me 1 1

ch n n
 (in C.G.S.)

8. Photoelectric effect hv = w + 21
mu

2
or hv = I.E. + K.E.

9. Possible transitions for a jump from n2 to n1 =  2 1(n n )

10. Angular momentum of electron in an orbit = n. (h/2)

11. Angular momentum of electron in an orbital = (nh/2)      1

12. Total spin = ±    
1

n
2

 ; where n is no. of unpaired electrons.

13. Magnetic moment of an atom  n n 2 B.M.; where n is no. of unpaired electrons.

14. Nodal planes : Radial nodes = n –  – 1,    Angular nodes = 1,  Total nodes = (n – )

15. de Broglie equation :  =   
2h h

mu 2 K.E. m

where  is wavelength, m is mass and u is velocity of particle.

16. Heisenberg uncertainty principle :

p.x   
h

4

u.x   
h

4 m
where p, u and x are uncertainties in momentum, velocity and position respectively.  Planck's  constant

is h and m is mass of subatomic particle.



SOLVED PROBLEMS (SUBJECTIVE)

Ex 1. Find the wavelengths of the first line of He+ ion spectral series whose interval with extreme lines is

1 2

1 1  = 2.7451 × 104 cm–1

Sol. Extreme lines means first and last

1 2

1 1  =RZ2 2 2
1

1 1

n
     – RZ2 2 2

1 1

1 1

n (n 1)
   

or 
1 2

1 1  = 
2

2
1

RZ

(n 1)

2.7451 × 104 = 
2

2
1

109677.76 2

(n 1)




(n1 + 1) = 4

      n1 = 3

Wavelength of first line,

1

 = 109677.76 × 22 × 2 2

1 1

3 4
   

 = 4689 × 10–8 cm = 4689 Å

Ex 2. Find the wavelength emitted during the transition of electron in between two levels of Li2+ ion whose sum

is 5 and difference is 3.

Sol. Let the transition occurs between the level n1 and n2 and n2 > n1

Given that n1 + n2 = 5

n2 – n1 = 3

 n1 = 1 and n2 = 4

Therefore, 
1

= Rh × Z2    2 2

1 1

1 4

    
= 109678 × (3)2

15

16
   

  = 1.08 × 10–6 cm

Ex 3. The Lyman series of the hydrogen spectrum can be represented by the equation.

v = 3.2881 × 1015 s–1    2 2

1 1

1 n

    
(where n = 2, 3,.....)

Calculate the maximum and minimum wavelength of lines in this series.

Sol.
1    = 

c


 = 

15

8

3.2881 10

3 10


  m–1  2 2

1 1

n1

    
Wavelength is maximum  min  when n is minimum so that 2

1

n
 is maximum

 min
max

1   =
15

8

3.2881 10

3 10


    2 2

1 1

1 2

    



 max = 
8

15

3 10 4

33.2881 10

 
= 1.2165 × 10–7 m = 121.67 nm

Wavelength is minimum  max  when n is 
i.e. series converge

 max =
15

8
min

1 3.2881 10

3 10

 
 min = 0.9124 × 10–7m 91.24 nm

Ex 4. When certain metal was irradiated with light frequency 0.4 × 1013 Hz the photo electrons emitted had

twice the kinetic energy as did photo electrons emitted when the same metal was irradiated with light frequency

1.0 × 1013 Hz. Calculate threshold frequency (0) for the metal.

Sol. hv = h0 + KE

KE1 = h(1 – 0)

KE2 = h(2 – 0) = 1KE

2

 2 0

1 0

v

v

 
   = 

1

2
  13

0
13

0

1.0 10 1

20.4 10

       0 = 1.6 × 1013 Hz

Ex 5. Iodine molecule dissociates into atoms after absorbing light of 3000 Å. If one quantum of radiation is absorbed

by each molecule, calculate the kinetic energy of iodine atoms. (Bond energy of I2 = 240 kJ (mol).

Sol. Energy given to iodine molecule

34 8

10

hc 6.62 10 3 10

3000 10




     = 6.62 × 10–19 J

Also energy used for breaking up

I2 molecule = 
3

19
23

240 10
3.984 10 J

6.023 10
  

 Energy used in imparting kinetic to two atoms = (6.62 – 3.984) × 10–19 J

 KE of iodine atom =
  196.62 3.984

10
2

  = 1.318 × 10–19 J

Ex 6. Two hydrogen atoms collide head on and end up with zero kinetic energy. Each atom then emits a photon

of wavelength 121.6 nm. Which transition leads to this wavelength ? How fast were the hydrogen atoms

travelling before collision ?

Sol. Wavelength is emitted in UV region and thus n1 = 1

For H atom = H 2 2

1 1 1
R

1 n
     

 9

1

121.6 10 =1.097 × 107
2 2

1 1

1 n
   

 n = 2

Also the energy released is due to collision and all the kinetic energy is released in form of photon.

 21 hc
mv

2
 



 1

2
 × 1.67 × 10–27 × v2 = 

34 8

9

6.625 10 3 10

121.6 10




  


 v =  4.43 × 104 m/sec

Ex 7. Find the energy in kJ per mole of electronic charge accelerated by a potential of 2 volt.

Sol. Energy in joules = charge in coulombs × potential difference in volt

= 1.6 × 10–19 × 6.02 × 1023 × 2 = 19.264 × 104 J or 192.264 kJ

Ex 8. Which hydrogen like ionic species has wavelength difference between the first line of Balmer and first line

of Lyman series equal to 59.3 × 10–9 m ? Neglect the reduced mass effect.

Sol. Wave number of first Balmer line of an species with atomic number Z is given by

2
2 2

1 1
v ' RZ

2 3
     = 

25RZ

36

Similarly wave number of v  of first Lyman line is given by

v  = RZ2 2 2

1 1

1 2
     = 23

RZ
4

 ; 
1

v    and 
1

v '
'

 

 ' –  = 2 2

36 4

5RZ 3RZ
 = 2

1 36 4

5 3RZ
    = 2

88

15RZ

 Z2 =
9 7

88

59.3 10 15 1.097 10    = 9 or Z = 3

 Ionic species is Li2+

Ex 9. (i) What is highest frequency photon that can be emitted from hydrogen atom ? What is wavelength

of this photon ?

(ii) Find the longest wavelength transition in the Paschen series of Be3+.

(iii) Find the ratio of the wavelength of first and the ultimate line of Balmer series of He+ ?

Sol. (i) Highest frequency photon is emitted when electron comes from infinity to 1st energy level.

E = 
2

2

13.6Z
13.6 eV

1
  

or, 13.6 × 1.6 × 10–19 Joule = 2.176 × 10–18 Joule

E = h

  = 
E

h
 = 

18

34

2.176 10 J

6.626 10 Js





  = 0.328 × 1016 Hz

 =  
c

  = 
8

16

3 10

0.328 10


  = 9.146 × 10–8 m

(ii) 2
H 2 2

1 2

1 1
R Z

n n

      
For He ; Z = 4 ; For Paschen series n1 = 3

For longest wavelength n2 = 4



1

  = 109678 × (4)2 × 2 2

1 1

3 4
     = 109678 × 16 × 

1 1

9 16
     = 109678 × 16 × 

7

144

 = 1172.20 Å

(iii) Wave number of first line of Balmer,

2
1 2 2

1 1
RZ

2 3
       = 

5 4R 5R

36 9

 
 Wavelength of first line of Balmer = 

9

5R

Wave number of ultimate line of Balmer, 
2

2 2

1 1
RZ

2
      =

4R

4
=R

 Wavelength of ultimate line of Balmer =  
1

R

 Ratio = 
9

5

Ex 10. An electron beam can undergo difraction by crystals. Through what potential should a beam of electrons

be accelerated so that its wavelength becomes equal to 1.0 Å.

Sol. For an electron

21
mv eV

2
 where V is accelerating potential

 =
h

mv


2

1 h
m eV

2 m
    

 V =
2

2

1 h

2 m e
  =

 234

31 10 2 19

1 6.625 10

2 9.108 10 (1.0 10 ) 1.602 10


  
 

      = 150.40 volt

Ex 11. The angular momentum of an electron in a Bohr's orbit of H-atom is 4.2178 × 10–34 kgm2/sec. Calculate

the wavelength of the spectral line emitted when electrons falls from this level to next lower level.

Sol. mvr = 
nh

2
nh

2  = 4.2178 × 10–34

n = 
34

34

4.2178 10 2 3.14

6.625 10




  
  = 4

2 2
1 2

1 1 1
R

n n

     
The wavelength for transition from n = 4 to n = 3

2 2

1 1 1
109678

3 4
     

 = 1.8 × 10–4 cm.



Ex 12. The kinetic energy of an electron in H like atom is 6.04 eV. Find the area of the third Bohr orbit to which

this electron belongs. Also report the atom.

Sol. K.E. = 6.04 in 3rd orbit

Etotal = K.E. + P.E. = K.E. – 2 × K.E.

 –K.E. = – 6.04 eV

E1 for H = –13.6 eV and not for any orbit E = – 6.04 eV for H atom. Thus, atom for which K.E. is

given is other than H.

En H like atom = EnH × Z2

21
2

E
Z

n
  6.04  = 2

2

13.6
Z

3


Z2 = 3.99 4 Z = 2

 The atom is He+ rn = 0.529 × 
2n

Z
= 0.529 × 

23

2
= 2.3805 Å

Area, r2 =  2822
2.3805 10

7
   = 17.8 × 10–16 cm2

Ex 13. O2 undergoes photochemical dissociation into one normal oxygen atom and one oxygen atom 1.967 eV

more energetic than normal. The dissociation of O2 into two normal atom of oxygen

requires 498 kJmol–1. What is the maximum wavelength effective for photo chemical dissociation of

O2 ?

Sol. We know

P2 
hONormal + OExcited

O2 ONormal + ONormal

Energy required for simple dissociation of O2 into two normal atoms = 498 × 103Jmol–1

= 
8

1
23

498 10
Jmol

6.023 10



If one atom in excited state has more energy, i.e.. 1.967 eV

= 1.967 × 1.602 × 10–19 J

The energy required for photochemical dissociation of O2

= 
3

19
23

498 10
1.967 1.602 10

6.023 10
   

= 82.68 × 10–20 + 31.51 × 10–20 = 114.19 × 10–20 Joule

E = 
hc



114.19 × 10–20 =
34 86.625 10 3 10  


 = 1740.2 × 10–10 m = 1740.2 Å.



SOLVED PROBLEMS (OBJECTIVE)

Ex 1. The wave-mechanical model of atom is based upon :-

(A) de Broglie concept of dual character of matter

(B) Heisenberg's uncertainty principle

(C) Schrodinger wave equation

(D) All the above three

Sol. (D )

Ex 2. An orbital is correctly described by :-

(A) 2 (B)  (C) |2| (D) none

Sol. (A)

Ex 3. The orbital angular momentum of a d-electron is :-

(A) 6 (B) 2 (C)  (D) 2 

Sol. For d–electron,  = 2, orbital angular momentum =  1   =  2 2 1  = 6

So, (A) is the correct answer

Ex 4. The following electron configuration of an atom in the ground state is not correct because :-

3s            3p          3d

(A) the energy of the atom is not minimum (B) Pauli's exclusion principle is violated

(C) Hund's rule is violated (D) Aufbau principle is not followed

Sol. (C) is the correct answer.

Ex 5. In the first bohr orbit of H atom the energy of an electron is –13.6 eV. The possible energy value (s) of

excited state (s) for electron in Bohr orbit of hydrogen is/are :-

(A) –3.4 eV (B) –4.2 eV (C) 6.8 eV (D) +6.8 eV

Sol. En = 2

13.6
eV

n



For n = 2, E2 = 
13.6

3.4eV
4

  
So, (A) is the correct answer.

Ex 6. The electronic configuration of an element is 1s2, 2s2, 2p6, 3s2, 3p6, 3d5, 4s1. This represents its :-

(A) excited state (B) ground state (C) cationic form (D) anionic form

Sol. The given electronic configuration is ground state for chromium.

So, (B) is the correct answer

Ex 7. Which of the following sets of quantum number is/are incorrect ?

(A) n = 3,  = 3, m = 0, s = 
1

2
(B) n = 3,  = 2, m = 2, s = –

1

2

(C) n = 3,  = 1, m = 2, s = –
1

2
(D) n = 3,  = 0, m = 0, s = +

1

2

Sol. When n = 3,  cannot be 3  so (A) is incorrect when l = 1, m cannot be = +2.

So, (C) is incorrect

So, (A) and (C) is the correct answer.



Ex 8. Select the pairs of ions which have same electronic configuration ?

(A) Cr3+, Fe3+ (B) Fe3+, Mn2+ (C) Fe3+, Co3+ (D) Se3+, Cr3+

Sol. Fe3+ and Mn2+ have same electronic configuration

So (B) is the correct answer.

Ex 9. If an electron in H atom has an energy of –78.4 kcal/mol. The orbit in which the electron is present

is :-

(A) 1st (B) 2nd (C) 3rd (D) 4th

Sol. En = 2

313.6
kcal / mol

n


 –78.4 = 2

313.6

n


  n = 2

Ex 10. What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition,

n = 4 to n = 2 in the He+ spectrum ?

(A) n = 4 to n = 2 (B) n = 3 to n = 2 (C) n = 3 to n = 1       (D) n = 2 to n = 1

Sol. 2
2 2

1 1
RZ

2 4

         = 
3

R
4

In H–spectrum for the same   or  as Z = 1, n = 1, n2 = 2

So, (D) is the correct answer.

Ex 11. Principal, azimuthal and magnetic quantum numbers are respectively related to :-

(A) size, orientation and shape (B) size, shape and orientation

(C) shape, size and orientation (D) none of these

Sol. Principal gives size, i.e. azimuthal gives shape and magnetic quantum number gives the orientation.

So, (B) is the correct answer.

Ex 12. If the radius of 2nd Bohr orbit of hydrogen atom is r2. The radius of third Bohr orbit will be :-

(A) 2

4
r

9
(B) 4r2 (C) 2

9
r

4
(D) 9r2

Sol. r = 
2 2

2 2

n h

4 mZe
 

2
2

2
3

r 2

r 3
  r3 = 2

9
r

4

So, (C) is the correct answer.

Ex 13. Difference between nth and (n + 1)th Bohr's radius of H–atom is equal to its (n – 1)th Bohr's radius. The

value of n is :-

(A) 1 (B) 2 (C) 3 (D) 4

Sol. rn  n2

But rn + 1 – rn = rn – 1

(n + 1)2 – n2 = (n – 1)2

n = 4

So (D) is the correct answer

Ex 14. The dissociation energy of H2 is 430.53 kJ mol–1. If H2 is dissociated by illumination with radiation of

wavelength 253.7 nm. The fraction of the radiant energy which will be converted into kinetic energy is

given by :-

(A) 8.86% (B) 2.33% (C) 1.3% (D) 90%



Sol.
3

23

hc 430.53 10
K.E.

6.023 10

  
K.E. = 

34 8

9

6.626 10 3 10

253.7 10




  
  – 

3

23

430.53 10

6.023 10


  = 6.9 × 10–20

 Fraction = 
20

19

6.9 10

7.83 10





  = 0.088 = 8.86%

Ex 15. No. of wave in third Bohr's orbit of hydrogen is :-

(A) 3 (B) 6 (C) 9 (D) 12

Sol. Number of waves = 
Circumference

Wavelength

2 r 2 r

h / mv

   = 
2

(mvr)
h


 = 

2 nh

h 2

  
 n = 3

So, (A) is the correct answer.

Ex 16. In the hydrogen atoms, the electrons are excited to the 5th energy level. The number of the lines that may

appear in the spectrum will be :-

(A) 4 (B) 8 (C) 10 (D) 12

Sol. No. of lines produced for a jump from fifth orbit to 1st orbit is given by

= 
 n n 1

2


 = 

 5 5 1

2


 = 10

So, (C) is the correct answer.

Ex 17. Light of wavelength  shines on a metal surface with intensity x and the metal emits Y electrons per second

of average energy, Z. What will happen to Y and Z if x is doubled ?

(A) Y will be double and Z will become half (B) Y will remain same and Z will be doubled

(C) Both Y and Z will be doubled (D) Y will be doubled but Z will remain same

Sol. When intensity is doubled, number of electrons emitted per second is also doubled but average energy

of photoelectrons emitted remains the same.

So, (D) is the correct answer.

Ex 18. Which of the following is the ground state electronic configuration of nitrogen :-

(A) (B) 

(C) (D) 

Sol. In (A) and (D), the unpaired electrons have spin in the same direction.

So, (A) and (D) are the correct answer.

Ex 19. Select the wrong statement (s) from the following ?

(A) If the value of  = 0, the electron distribution is spherical

(B) The shape of the orbital is given by magnetic quantum number

(C) Angular momentum of 1s, 2s, 3s electrons are equal

(D) In an atom, all electrons travel with the same velocity

Sol. (B) is wrong because shape is given by azimuthal quantum number and magnetic quantum number tells

the orientation. (D) is wrong because electrons in different shells travel with different velocities.

So, (A) and (C) are the correct answer.



Ex 20. For the energy levels in an atom, which one of the following statement/s is/are correct ?

(A) There are seven principal electron energy levels

(B) The second principal energy level can have four sub-energy levels and contain a maximum of eight

    electrons

(C) The M energy level can have a maximum of 32 electrons.

(D) The 4s sub-energy level is at a lower energy than the 3d sub-energy level.

Sol. (A) and (D) are true. (B) is wrong because for n = 2,  = 0, 1 (two sub-energy levels). (C) is wrong because

M shell means n = 3. Maximum electrons it can have = 2n2 = 2 × 32 = 18

So, (A) and (D) is the correct answer.

Ex 21. Which of the following statement (s) is (are) correct ?

(A) The electronic configuration of Cr is [Ar]3d5, 4s1 (Atomic No. of Cr = 24)

(B) The magnetic quantum number may have a negative value

(C) In silver atom 23 electrons have spin of one type and 24 of the opposite type (Atomic No. of Ag  = 47)

(D) The oxidation state of nitrogen in HN3 is –3

Sol. Only (D) is wrong because oxidation state of N in HN3 is –1/3.

So, (A), (B) and (C) are the correct answer.

Ex 22. Many elements have non-integral atomic masses because :-

(A) they have isotopes

(B) their isotopes have non-integral masses

(C) their isotopes have different masses

(D) the constituents, neutrons, protons and electrons combine to give rational masses

Sol. Non-integral atomic masses are due to isotopes which have different masses.

So, (A) and (C) are the correct answer.


