CBSE Test Paper 03 CH-1 Number Systems

- 1. $\sqrt{8}+2\sqrt{32}-5\sqrt{2}$ is equal to
 - a. none of these
 - b. $\sqrt{32}$
 - c. $\sqrt{8}$
 - d. $5\sqrt{2}$

2. If $\sqrt{3}=1.732$ and $\sqrt{2}=1.414$, then the value of $rac{1}{\sqrt{3}-\sqrt{2}}$ is

- a. 3.146
- b. $\frac{1}{3.146}$
- c. 0.318
- d. $\frac{1}{\sqrt{1.732} \sqrt{1.414}}$
- 3. Which of the following is an rational number?
 - a. $\sqrt{180}$
 - b. 0.32322322232223......
 - c. $\sqrt{31}$
 - d. $\sqrt{196}$
- 4. Which of the following is a true statement?
 - a. π is irrational and $\frac{22}{7}$ is irrational
 - b. π is rational and $\frac{22}{7}$ is rational
 - c. π is irrational and $\frac{22}{7}$ is rational

- d. π is rational and $\frac{22}{7}$ is irrational
- 5. The value of $\left(2+\sqrt{3}
 ight)\left(2-\sqrt{3}
 ight)$ in

a. -1

- b. 2
- c. none of these
- d. 1
- 6. Fill in the blanks:

A number which can neither be expressed as a terminating decimal nor as a repeating decimal is called _____.

- 7. Fill in the blanks:
 - $16^{\frac{1}{4}}$ is equals to _____.
- 8. Rationalise the denominator of $\frac{3\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
- 9. Express 0.15 in the form $\frac{p}{q}$.
- 10. Write the decimal form and state its kind of decimal expansion. $\frac{3}{13}$
- 11. Simplify the following expression: $(3+\sqrt{3})(3-\sqrt{3})$
- 12. Simplify $(\sqrt{5} + \sqrt{2})^2$
- 13. If $\sqrt{2}$ =1.4142, find the value of $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$.
- 14. Show how $\sqrt{5}$ can be represented on the number line.
- 15. Simplify: $\frac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} \frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} \frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}$.

CBSE Test Paper 03 CH-1 Number Systems

Solution

1. (d) $5\sqrt{2}$

Explanation:

$$\sqrt{8} + 2\sqrt{32} - 5\sqrt{2}$$

 $\Rightarrow 2\sqrt{2} + 2 \times 4\sqrt{2} - 5\sqrt{2}$
 $\Rightarrow 10\sqrt{2} - 5\sqrt{2}$
 $\Rightarrow 5\sqrt{2}$

2. (a) 3.146

Explanation:

$$egin{aligned} rac{1}{\sqrt{3}-\sqrt{2}} \ &\Rightarrow rac{1}{\sqrt{3}-\sqrt{2}} imes rac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} \ &\Rightarrow rac{\sqrt{3}+\sqrt{2}}{3-2} = \sqrt{3}+\sqrt{2} \ &\Rightarrow 1.732+1.414 \ &\Rightarrow 3.146 \ &= --- \end{aligned}$$

3. (d)
$$\sqrt{196}$$

Explanation:

Because it is the square of 14 and can be

Written in the form of $\frac{p}{q}$

4. (c) π is irrational and $\frac{22}{7}$ is rational **Explanation**:

 π is irrational because $\frac{22}{7}$ is not the exact value of π

But, here $\frac{22}{7}$ is fraction so , it is rational

5. (d) 1

Explanation:

We know the formula $a^2 - b^2 = (a+b)(a - b)$ Here put a =2 and b= $\sqrt{3}$ So, 2² - ($\sqrt{3}$)² = 4 - 3 = 1

6. an irrational number

7. 2

8.
$$\frac{3\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} = \frac{3\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}$$
$$= \frac{15+3\sqrt{15}+\sqrt{15}+3}{(\sqrt{15})^2-(\sqrt{3})^2}$$
$$= \frac{18+4\sqrt{15}}{5-3} = \frac{2(9+2\sqrt{15})}{2}$$
$$= 9+2\sqrt{15}$$

9. We have,

 $0.15 = \frac{15}{100}$ $\Rightarrow 0.15 = \frac{15 \div 5}{100 \div 5}$ [Dividing numerator and denominator by the common divisor 5 of numerator and denominator]

$$\Rightarrow$$
 0.15 = $rac{3}{20}$

13) 3.0000000000 (0.230769230769......

10.

26
40
39
100
91
90
78
120
117
30
26
40
39
100
91
90
78

$$120$$

$$117$$

$$3$$

$$\therefore \frac{3}{13} = 0.230769230769 \dots = 0.\overline{230769}$$
The decimal expansion is non-terminating repeating.

11.
$$(3 + \sqrt{3})(3 - \sqrt{3}) = (3)^2 - (\sqrt{3})^2$$

= 9 - 3 = 6

12.
$$\left(\sqrt{5+\sqrt{2}}\right)^2 = \left(\sqrt{5}\right)^2 + \left(\sqrt{2}\right)^2 + 2\sqrt{5} \times \sqrt{2} = 5 + 2 + 2\sqrt{10} = 7 + 2\sqrt{2}$$

 $\left[(a+b)^2 = a^2 + b^2 + 2ab\right]$

13. Given,

$$\sqrt{2} = 1.4142$$

Now, $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}} = \sqrt{\frac{(\sqrt{2}-1)}{(\sqrt{2}+1)}} \times \frac{(\sqrt{2}-1)}{(\sqrt{2}-1)}$ [by rationalising]
$$= \sqrt{\frac{(\sqrt{2}-1)^2}{2-1}} = \frac{\sqrt{(\sqrt{2}-1)^2}}{1} [\because (a + b)(a - b) = a^2 - b^2]$$
$$= \sqrt{2} - 1 = 1.4142 - 1 [\because \sqrt{2} = 1.4142]$$
$$= 0.4142$$

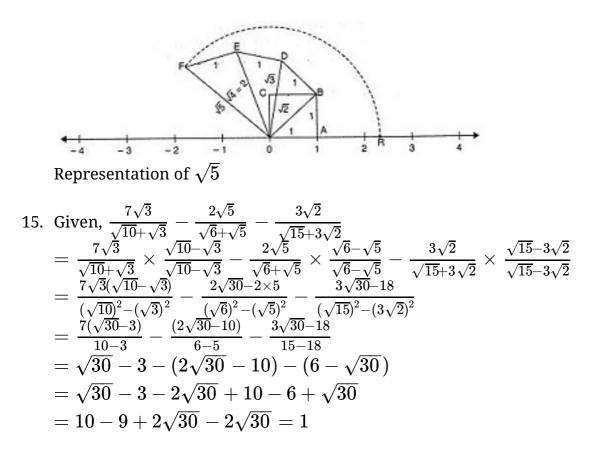
14. Representation of $\sqrt{5}$ on the number line

Consider a unit square OABC and transfer it onto the number line making sure that the vertex O coincides with zero.

Then OB =
$$\sqrt{1^2+1^2}=\sqrt{2}$$

Construct BD of unit length perpendicular to OB.

Then OD =
$$\sqrt{(\sqrt{2})^2 + 1^2} = \sqrt{3}$$


Construct DE of unit length perpendicular to OD.

Then OE =
$$\sqrt{(\sqrt{3})^2+1^2}=\sqrt{4}$$
 = 2

Construct EF of unit length perpendicular to OE.

Then OF =
$$\sqrt{2^2+1^2}=\sqrt{5}$$

Using a compass, with centre O and radius OF, draw an arc which intersects the number line in the point R. Then R corresponds to $\sqrt{5}$.

