15.CURRENT ELECTRICITY

1. ELECTRIC CURRENT

$$I_{av} = \frac{\Delta q}{\Delta t}$$
 and instantaneous current

$$i = \lim_{\Delta t = 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt}$$

2. ELECTRIC CURRENT IN A CONDUCTOR

$$I = nAeV.$$

$$v_d = \frac{\lambda}{\tau}$$
,

$$v_d = \frac{\frac{1}{2} \frac{eE}{m} \tau^2}{\tau} = \frac{1}{2} \frac{eE}{m} \tau,$$

$$I = neAV_d$$

3. CURRENT DENSITY

$$\vec{J} = \frac{dI}{ds} \vec{n}$$

4. ELECTRICAL RESISTANCE

$$I = neAV_d = neA \frac{eE}{2m} \tau = \frac{ne^2\tau}{2m} AE$$

$$E = \frac{V}{\ell} \qquad \text{so} \qquad I = \frac{ne^2\tau}{2m} \quad \frac{A}{\ell} \quad V = \frac{A}{\rho\ell} \quad V = V/R \qquad \qquad V = IR$$

 ρ is called resistivity (it is also called specific resistance) and $\rho = \frac{2m}{ne^2\tau} = \frac{1}{\sigma}$, σ is called conductivity.

Therefore current in conductors is proportional to potential difference applied across its ends. This is **Ohm's Law**.

Units: R ohm(Ω), ρ ohm-meter(Ω -m) also called siemens, σ $\Omega^{-1}m^{-1}$.

Dependence of Resistance on Temperature :

$$R = R_0 (1 + \alpha \theta).$$

Electric current in resistance

$$I = \frac{V_2 - V_1}{R}$$

5. ELECTRICAL POWER

$$P = V I$$

$$P = I^2 R = VI = \frac{V^2}{R} .$$

$$H = VIt = I^2 Rt = \frac{V^2}{R}t$$

$$H = I^2 RT$$
 Joule = $\frac{I^2 RT}{4.2}$ Calorie

9. KIRCHHOFF'S LAWS

9.1 Kirchhoff's Current Law (Junction law)

$$\Sigma I_{in} = \Sigma I_{out}$$

9.2 Kirchhoff's Voltage Law (Loop law)

$$\Sigma$$
 IR + Σ EMF =0 .

10. COMBINATION OF RESISTANCES:

Resistances in Series:

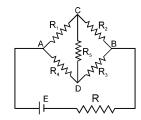
$$R = R_1 + R_2 + R_3 + \dots + R_n$$
 (this means R_{eq} is greater then any resistor)) and $V = V_1 + V_2 + V_3 + \dots + V_n$

$$V_1 = \frac{R_1}{R_1 + R_2 + \dots + R_n} V; V_2 = \frac{R_2}{R_1 + R_2 + \dots + R_n} V;$$

2. Resistances in Parallel:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

11. WHEATSTONE NETWORK: (4 TERMINAL NETWORK)



When current through the galvanometer is zero (null point or balance point) $\frac{P}{Q} = \frac{R}{S}$, then PS = QR

13. GROUPING OF CELLS

13.1 Cells in Series:

$$A \bullet \hspace{-1mm} \stackrel{\textstyle E_1, r_1}{\longmapsto} \stackrel{\textstyle E_2, r_2}{\longmapsto} \stackrel{\textstyle E_3, r_3}{\longmapsto} \stackrel{\textstyle E_n, r_n}{\longmapsto} B$$

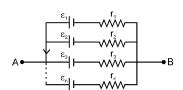
$$A \bullet \qquad \qquad |E_{eq}, r_{eq}|$$

$$E_{eq} = E_1 + E_2 + \dots + E_n$$
 [write EMF's with polarity]

Equivalent internal resistance $r_{eq} = r_1 + r_2 + r_3 + r_4 + \dots + r_n$

13.2 Cells in Parallel:

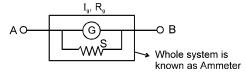
$$\mathsf{E}_{\mathsf{R}} = \frac{\sum_{\mathbf{i}} r_{\mathbf{i}} + \sum_{\mathbf{i}} r_{\mathbf{i}} + \dots + \sum_{\mathbf{i}} r_{\mathbf{i}}}{r_{\mathbf{i}} + r_{\mathbf{i}} + r_{\mathbf{i}} + \dots + r_{\mathbf{i}}} \quad [\mathsf{Use} \; \mathsf{emf} \; \mathsf{with} \; \mathsf{polarity}]$$



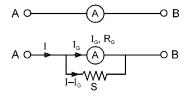
$$\frac{1}{r_{eq}} = \frac{1}{r_1} + \frac{1}{r_2} + \dots + \frac{1}{r_n}$$

15. AMMETER

A shunt (small resistance) is connected in parallel with galvanometer to convert it into ammeter. An ideal ammeter has zero resistance



Ammeter is represented as follows -



If maximum value of current to be measured by ammeter is I then

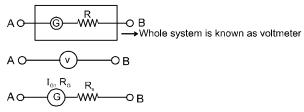
$$I_G \cdot R_G = (I I_G)S$$

$$\label{eq:second} S \,=\, \frac{I_G.R_G}{I-I_G} \qquad \qquad S \,=\, \frac{I_G~R_G}{I} \quad \text{when} \qquad I \,>>\, I_G.$$

where I = Maximum current that can be measured using the given ammeter.

16. VOLTMETER

A high resistance is put in series with galvanometer. It is used to measure potential difference across a resistor in a circuit.



For maximum potential difference

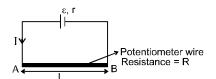
$$V = I_G . R_S + I_G R_G$$

$$R_S = \frac{V}{I_G} R_G \qquad \text{if} \qquad R_G << R_S$$

$$R_S = \frac{V}{I_G}$$

17. POTENTIOMETER

$$I = \frac{\epsilon}{r + R}$$



$$V_A V_B = \frac{\varepsilon}{R+r} . R$$

Potential gradient (x) Potential difference per unit length of wire

$$x = \frac{V_A - V_B}{L} = \frac{\varepsilon}{R + r} \cdot \frac{R}{L}$$

Application of potentiometer

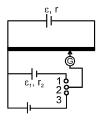
(a) To find emf of unknown cell and compare emf of two cells.

In case I,

In figure (1) is joint to (2) then balance length =
$$\ell_1$$
 ϵ_1 = $x\ell_1$ (1)

in case II,

In figure (3) is joint to (2) then balance length =
$$\ell_2$$
 ϵ_2 = $x\ell_2$ (2)
$$\frac{\epsilon_1}{\epsilon_2} = \frac{\ell_1}{\ell_2}$$



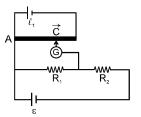
If any one of ϵ_1 or ϵ_2 is known the other can be found. If x is known then both ϵ_1 and ϵ_2 can be found

(b) To find current if resistance is known

$$V_{A} V_{C} = x\ell_{1}$$

$$IR_{1} = x\ell_{1}$$

$$I = \frac{x\ell_{1}}{R_{1}}$$



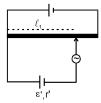
Similarly, we can find the value of R_2 also.

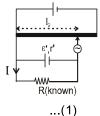
Potentiometer is ideal voltmeter because it does not draw any current from circuit, at the balance point.

(c) To find the internal resistance of cell.

Ist arrangement

2nd arrangement





by first arrangement $\epsilon = x\ell_1$

by second arrangement IR = $x\ell_2$

$$I = \frac{x\ell_2}{R}$$
, also $I = \frac{\varepsilon'}{r'+R}$

$$\therefore \frac{\epsilon'}{r'+R} = \frac{x\ell_2}{R}$$

$$\frac{x\ell_1}{r'+R} = \frac{x\ell_2}{R}$$

$$r = \frac{\ell_1 - \ell_2}{\ell_2} R$$

- (d) Ammeter and voltmeter can be graduated by potentiometer.
- (e) Ammeter and voltmeter can be calibrated by potentiometer.

18. METRE BRIDGE (USE TO MEASURE UNKNOWN RESISTANCE)

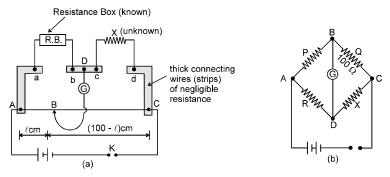
If AB = ℓ cm, then BC = (100 ℓ) cm.

Resistance of the wire between A and B , R ℓ

[: Specific resistance ρ and cross-sectional area A are same for whole of the wire]

or
$$R = \sigma \ell$$
 ...(1)

where σ is resistance per cm of wire.



If P is the resistance of wire between A and B then

P
$$\ell$$
 P = $\sigma(\ell)$

:.

Similarly, if Q is resistance of the wire between B and C, then

Q 100
$$\ell$$

Q = $\sigma(100 \ \ell)$ (2)
Dividing (1) by (2), $\frac{P}{Q} = \frac{\ell}{100 \ \ell}$

Applying the condition for balanced Wheatstone bridge, we get R Q = P X

$$\therefore \qquad x = R \; \frac{Q}{P} \qquad \qquad \text{or} \qquad X = \frac{100 - \ell}{\ell} \; R$$

Since R and ℓ are known, therefore, the value of X can be calculated.