CHAPTER 3

SYSTEMS OF A SINGLE COMPONENT

§3.01 Single components and single phases

The present chapter is devoted to single component systems, both single
phase and multiphase. Most of the formulae of the present chapter which
relate to a single closed phase are applicable also to a multicomponent
closed phase. Formulae relating to an open phase or to a multiphase system
are on the contrary more complicated in a multicomponent system than in a
single component system. Such formulae will be dzrived in chapter 4.

§3.02 Dependence of entropy on temperature

The experimental determination of entropy and thermodynamic temperature
are interlinked. We have not yet described how either can be directly or con-
veniently measured. In §3.12 we shall describe an especially convenient
way of measuring thermodynamic temperature. Anticipating this result,
that is to say assuming we have a thermometer which measures thermo-
dynamic temperature, we shall now describe how we can determine the
dependence of entropy on temperature at constant pressure.
For a single closed phase, we have according to (1.28.8)

dH=TdS+VdP 3.02.1

or if we keep the pressure constant
dH=TdS (P const.). 3.02.2

If then we supply heat g to a single component system, since the change in
the system must be reversible, regardless of whether the process of supplying
the heat is reversible (see §1.13), we have

qg=dH=TdS (P const.). 3.02.3

Furthermore if we supply the heat by means of an electric element, the
82



SYSTEMS OF A SINGLE COMPONENT 83

heat will be equal to the electrical work done on the element. To be precise,
if the potential difference across the element is E and the current flowing
is 7, then in a time ¢ the heat given up by the element to the system is Eiz.
Since E, i, and ¢ are all measurable we can calculate g. We see then that,
apart from experimental difficulties, there is no difficulty in principle in
measuring increases of H. As already mentioned we are postulating, in
anticipation of §3.12, the availability of a thermometer which measures T.
We thus obtain a direct experimental relationship between T and H, or
rather changes in H which itself contains an arbitrary additive constant.
As an illustration we show in figure 3.1 the experimental data* for one
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Fig. 3.1. Enthalpy of one mole of H,O at one atmosphere
mole of H,O at a constant pressure of one atmosphere. The first curve on

the left applies to ice from 0 K to 273.15 K, at which temperature the ice
* Giauque and Stout, J. Amer. Chem. Soc. 1936 58 1144.
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melts; the value of the enthalpy then rises at constant temperature by an
amount equal to the proper enthalpy of fusion. As this change would run off
the paper the scale of the curve for the liquid has been shifted downwards
by 6.4 kJ mole™*. The curve on the right of the figure runs from 273.15 K to
373.15 K at which temperature the water boils; the value of the enthalpy
again rises at constant temperature and runs off the diagram.
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Fig. 3.2. Heat capacity of H,0O at one atmoshpere

In figure 3.2 we show the data in a somewhat different form, (0H/oT)p
for unit amount or (8H,,/0T), being now plotted against In 7. The three
separate curves apply to ice, liquid water, and steam respectively. From
(2) we have

Sp= f ds,,= f dH,|T= f (3H,/oT)pd In T. 3.02.4

We see then that apart from an arbitrary constant the proper entropy of
ice at a temperature T is equal to the area under the part of the curve to the
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left of T. In particular the proper entropy of ice at the fusion point exceeds
that at 0 K by an amount corresponding to the whole area under the ice
curve. This amounts to 38.09 J K~! mole ™.

When the ice changes to liquid water there is an increase of the proper
entropy called the proper entropy of fusion equal to the proper enthalpy of
fusion divided by the temperature. Thus

AS,=AH_/T=6007J mole™*/273.15 K=21.99 T K~ ! mole~".

Suppose we wish to know by how much the proper entropy of steam at
1000 K and 1 atm exceeds the proper entropy of ice at 0 K. We have to sum
the following contributions.

(a) Ice at 0 K—ice at 273.15K
AS,,=38.09T K™ ! mole™* (area under ice curve).

(b) Ice at 273.15 K-liquid water at 273.15 K
AS,=AH,/T=6007 J mole™!/273.15K=21.99 J K~ ! mole ™ ".

(¢) Water at 273.15 K—-water at 373.15K
AS,=23.52T K 'mole™"  (area under water curve).

(d) Water at 373.15 K—steam at 373.15K
AS_=AH,/T=40656 J mole™!/373.15K =108.95J K~ ! mole™".

(e) Steam at 373.15 K-steam at 1000 K
AS,=358J K 'mole™"  (area under steam curve).

By addition we obtain for the change
Ice at 0 K—steam at 1000 K (at 1 atm)
AS,=228.4J K™ ! mole™!.

In the case of some substances there may be several solid phases with
transition temperatures at which the proper entropy increase AS,, is equal
to the increase AH,, divided by 7. Such transitions cause no difficulty.

We see then that the determination of changes in the entropy of any
single substance through any range of temperature at constant pressure
becomes straightforward provided the heat input and thermodynamic tem-
perature can be measured.

§3.03  Heat capacity at constant pressure

In the previous section we saw that the determination of entropy requires

us to use the relation
T(0S/0T)p=(0H/OT)p. 3.03.1

This quantity is called the heat capacity at constant pressure of the system.
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The heat capacity per unit amount or the proper heat capacity at constant
pressure will be denoted by C, or by Cp when it is desired to emphasize the
contrast with another quantity C,, defined in §3.06. Thus

C=Cp=T(0S,/0T)p=(0H,[0T)p. 3.03.2

The importance of C is that it forms the connecting link between S and H.
One measures directly H as a function of T and then determines S by the
relation (1). Importance was in the past attached to C for a completely
different, accidental, and inadequate reason, namely that for many substan-
ces at the most usual temperatures C happens to be insensitive to the
temperature. For example we notice from figure 3.2 that C is nearly constant
for liquid water, only roughly constant for steam, but not at all constant
for ice.

The heat capacity at constant pressure per unit mass or the specific heat
capacity at constant pressure is denoted by cp.

§3.04 So-called mechanical equivalent of heat

Before the classical experiments of Joule, the relationship between work,
heat, and energy was not understood. These experiments established that
within the experimental error the work or energy input required to raise
the temperature of a given mass of water through a given temperature range
is independent of the particular mechanism used. The formulation of the
first law of thermodynamics is largely based on these experiments and later
repetitions and improvements of them. Since Joule’s experiments were
performed before the formulation of the first law, Joule’s terminology was
necessarily different from the terminology based on familiarity with the laws
of thermodynamics. Joule described some of his experiments as the ‘deter-
mination of the mechanical equivalent of heat’. Once the principles of ther-
modynamics are understood, this phrase becomes meaningless. What Joule
in fact did was

(a) to establish an experimental basis for the formulation of the first law
of thermodynamics;

(b) to measure the heat capacity of water.

Before the first law of thermodynamics was formulated or understood the
unit of heat was the quantity of heat required to raise the temperature of
one gramme of water by one degree and this unit was called the calorie.
Work was however measured in mechanical units. It is found that the specific
heat capacity of liquid water is approximately 4.18 J K~ !g™! but in fact
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varies appreciably with the temperature. Nowadays almost all accurate
thermal experiments involve measurements of volts, amperes, and seconds
leading to energy values in joules. Moreover.in 1948 the Conférence Générale
des Poids et Mesures adopted* a recommendation of the International Union
of Pure and Applied Physics that all accurate ¢alorimetric data should be
expressed in joules. It is difficult to understand why the use of the calorie as
a unit persists, except as a habit. The most careful experimental workers in
thermochemistry have abandoned the old definition of the calorie and have
replaced it by the more satisfactory definition

1 calorie=4.184 joules exactly.

The calorie thus defined is called the thermochemical calorie.

As already mentioned the specific heat capacity of liquid water is approxi-
mately, but by no means exactly, independent of the temperature. Its
value is very near 1 cal K™'g™! at 290 K. The best experimental values at
a few other temperatures are as follows':

At 0°C 42174JK"'g!
15°C 4.1855J K 'g™!
16°C 4.1846 T K™ g~!
17°C 4.1837J K~ 'g™!
20°C 4.1816 JK~!g™!
25°C 4.1793J K~ 'g™'.

§3.05 Dependence of entropy on pressure

In §3.02 we saw how the variation of entropy with the temperature at a
constant pressure is determined experimentally. In order to determine the
entropy as a function of temperature and pressure, this procedure has to be
supplemented by a determination of the dependence of entropy on pressure
at constant temperature. This dependence is given according to Maxwell’s
relation (1.48.2)

©S,,/0P)r=—aV 3.05.1

which when integrated becomes

2

Py

P

If we differentiate (1) with respect to T, keeping P constant, and multiply by

* C.R.Conférence Générale des Poids et Mesures 1948.
t Stille, Messen und Rechnen in der Physik, Vieweg 1955, p. 289.
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T we obtain
(0C[oP)y = — T{d(aV,,)[0T}p= — > TV, — T(0t/OT)pV,, - 3.05.3

For solids and liquids the second term on the right may be small
compared with the first; for gases on the contrary the two terms are nearly
equal and opposite.

§3.06 Heat capacity at constant volume

In §§3.02-3.05 we have collected the most important formulae required to
determine the entropy in terms of temperature and pressure. There is an
analogous set of relations for the alternative choice of temperature and
volume as independent variables. Except for gases these relations are con-
siderably less useful than those relating to the independent variables T, P.
We shall refer to them briefly, without giving detailed derivations; these are
in all cases analogous to those in the 7, P system.
For the dependence of entropy on temperature at constant volume, we
have
(dS/3T), =T~ 1(dU/[OT), 3.06.1

which when integrated becomes
T2
S(T,, V)—S(T,, V)=f (@U/PT),dIn T. 3.06.2
T

Correspondingly for the dependence of entropy on volume’ at constant
temperature, we have according to Maxwell’s relation (1.47.3)

@S/oV)r =Ky 3.06.3

which when integrated becomes
Va
S(T, V,)—S(T, V1)=f (a/kp)dV. 3.06.4
Vi

The quantity (0U/0T), in formula (1) is called the heat capacity at constant
volume of the system. The corresponding quantity referred to unit amount,
the proper heat capacity at constant volume, is denoted by C).. Thus

Cy=T(8S,/0T)y = (dU,,/0T),. 3.06.5

The heat capacity at constant volume per unit mass or the specific heat
capacity at constant rolume is denoted by cy.
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§3.07 Relation between heat capacities
According to the meaning of partial differential coefficients we have
(0S/0T)p=(0S/0T)y + (0S/0V ) (OV[OT)p. 3.07.1

Substituting from (1.46.2), (1.46.3), and from Maxwell’s relation (1.47.3)
into (1) we obtain
(BS/0T)p=(3S/0T )y +a*V/kr. 3.07.2

Applying (2) to unit quantity, multiplying by 7, and using the definitions
(3.03.2) and (3.06.5) of Cp and C, respectively we find

Cp=Cy+02TV,[Kr. 3.07.3

Since in a stable phase none of the quantities a?, T, V,,, k1 can ever be nega-
tive, it follows that Cp can never be less than Cy.

Cy is much more difficult to measure than Cp. If the value of Cy is required,
it is usual to measure Cp and then calculate Cy from (3). There seems to be
a widespread belief that in the comparison of a theoretical model with
experimental data the most suitable quantity for the comparison is Cy.
This is however a misconception. Any theoretical model susceptible to
explicit analytical treatment, such as for example Debye’s model of a crystal
discussed in §3.33, leads to an explicit formula for the Helmholtz function
and so by differentiation with respect to T to explicit formulae for the energy
and the entropy, both of which are directly measurable as a function of
temperature. These are clearly the most suitable quantities for comparison
between a theoretical model of a crystal and experimental data. There is no
reason or excuse for a further differentiation to obtain a heat capacity except
in the hypothetical case that the agreement between theory and experiment
is so good that a more sensitive test is required.

V3.08  Adiabatic compressibility

In §1.46 the isothermal compressibility xr was defined by
kr=—V "1 @V/oP);. 3.08.1
The adiabatic compressibility xg is similarly defined by
kg=—V " (dV/OP)s. 3.08.2
These two compressibilities are interrelated as follows.
ks _ (8V/[OP)s _ (8S/0P),(0P[0T)y - (8S/oT)y _G

= . 3.08.3
kr  (@V[oP)r  (85/0V)H(@V[oT)p  (8S[0T)p Cp
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The speed a of propagation of compressional sound waves in an isotropic
medium is given by
a*=Vy/Mkg 3.08.4

where M is the proper mass. From (3), (4), and (3.07.3) we deduce
Cp/Cy—1=a*TMa?*|Cp. 3.08.5

This is the most useful formula for determining C,/Cy since all the quantities
on the right, in contrast to Cy, and in solids k, are readily measurable,

§3.09 Condensed phases and gases

Solids and liquids, which we shall class together under the name condensed
Phases, are under most conditions sharply distinguished from gases by a
striking difference in compressibility. It is true that in the neighbourhood of
the critical point, as we shall see in §3.44 the distinction between liquid and
gas disappears, but at least for liquids or solids at temperatures well below
the critical temperature and for gases at pressures well below the critical
pressure the contrast is striking.

In a condensed phase at a given temperature the compressibility is small
and practically independent of the pressure. That is to say that to a first
approximation the volume is independent of the pressure and to a better
approximation decreases linearly with the pressure. In a gas on the other
hand the compressibility is much greater and far from independent of the
pressure. In fact it is at least roughly true that the volume of a gas varies
inversely as the pressure, according to Boyle’s Law. In other words it is PV,
not ¥, which to a first approximation is independent of P.

§3.10 Isothermal behaviour of a gas

It is reasonable to expect that the volume of any phase at constant tempera-
ture can be expressed as a power series in the density or the reciprocal of
the proper volume. In view of what was said in the previous section, the lead-
ing term will in the case of a gas be an inverse first power. We may accord-
ingly write

PVu=A(1+B,/Vya+Bs/VE+B V2 +...). 3.10.1
In principle the number of terms is indefinite, depending on the accuracy

aimed at. Up to quite high pressures, of say a hundred atmospheres, it is
often unnecessary to use more than three terms. At pressures up to 2
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few atmospheres even the third term is often negligible, only the first

two terms being required.
All the coefficients 4, B,, Bs, ... of course depend on the temperature,

but not on the volume.
B, is called* the second virial coefficient; B; is called the third virial

coefficient and so on.
For the sake of simplicity and brevity we shall replace (1) by the three

term expression
PV,=A(1+B,/V,+B;/V2). 3.10.2

There is in principle no difficulty in inserting further terms if required.
We can invert the series in (2) to obtain the expansion in powers of P

PV,=A+B,P+A"'(B;~B})P*+.... 3.10.3

It is mainly a question of convenience whether one uses a formula of type (2)
or of type (3). For our immediate purpose, it is more convenient to use (3).
Fortunately at ordinary pressures all terms beyond the second are usually
negligible and either formula then reduces to

V=A/P+B, (low pressures). 3.10.4
From (3) we readily obtain the proper Gibbs function G,, as a function of

pressure by substituting into (3) and integrating. We thus find

Gu(T, P)=Gp(T, P®) = A In(P|P®)+By(P— P®)+1A4™'(By ~ B})(P* — P°?)
3.10.5

where P° is a standard pressure, which may be chosen arbitrarily, but in this
book is always 1 atm. This does not imply that pressures must necessarily
be measured in atm. In other units we have for example

P®=1atm=76 cmHg="760 mmHg=
=1.01325 x 10° dyn cm~2=1.01325 x 10> J m~®=1.01325 bar.
We obtain for the proper enthalpy H,, by substituting (5) into (1.49.3)
H,(T, P)—~H,(T, P®)={d(T ~'4)/dT "'} In(P/P°)
+{d(T™'By)/dT~'}(P-P®)
+3{d(T 747 'By— T~ 'A7'B2)/dT ' }(P* - P°?). 3.10.6

* Onnes and Keesom, ‘Die Zustandsgleichung’. Commun. Phys. Lab. Univ. Leiden, 11:
Suppl. 23 1912; Encyk. Math. Wiss., 5: No. 10, p. 615.
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§3.11 Throttling

In the previous section we set up a formula for ¥V, as a function of P based
on experiment. From this we deduced a formula for G,, and thence a formula
for H,. We shall now consider the comparison between this formula for H,,
and experiment.

The experiment which supplies the most direct information concerning
the dependence of H on the pressure at constant temperature is known as
throttling. The first experiment of this type was performed by Joule and
Lord Kelvin (William Thomson); it is accordingly often called the Joule-
Thomson experiment. In this experiment a stream of gas in a thermally
insulated container is forced through a plug, the pressure being greater on
the near side than on the far side and the temperatures of the gas stream
approaching and leaving the plug are measured on an arbitrary scale; we
denote the temperatures on this scale by 6 to distinguish them sharply from
thermodynamic temperatures 7, which we do not yet know how to measure.
Consider now the whole system in a steady state such that in a given time a
certain mass of gas is pushed in at a pressure P; and during the same time
an equal mass of gas streams away at a pressure P,. We use the subscript 1
to denote the state of the gas being pushed in and the subscript 2 to denote
that of the gas streaming away. Then during the time considered a mass
of gas of pressure P,, volume V,, temperature 8,, and energy U, is displaced
by an equal mass of pressure P, volume V,, temperature 0,, and energy
U, . During this time the work done on the system is P, ¥, —P,V,. Since the
system is supposed thermally insulated this work must be equal to the in-
crease in energy of the system. Thus

UZ—U1=P1V1—P2V2. 3.1]1
Hence according to the definition of H in §1.28, we have

H2=H1 3.112

or choosing 6, P as independent variables
H(,,P)=H(,,P,). 3.11.3

Suppose that the effect of throttling is to cool the gas, so that 0, is a lower
temperature than 6, then there is no difficulty in principle in heating the
throttled gas at constant pressure so as to restore its temperature from
6, to 6,. If the heat required for this purpose is measured, we then know
the value of

H(0,, P,)—H(8,, P,) 3.11.4
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which according to (3) is equal to
H(OI’PZ)—H(OI’PI)- 3115

If on the contrary the effect of throttling is to warm the gas, then one must
do a subsidiary experiment to determine the heat required to raise the
temperature of the gas at the pressure P, from 6, to #,. We thus obtain an

experimental value of
H(ez,Pz)_H(al,Pz) 3_11,6

which according to (3) is equal to
H@,,P,)-H(@,,P,). 3.11.7

In either case we obtain experimental values of H(8,, P,)—H(6,, P,)
positive in the former case, negative in the latter. It is important to notice
that this experiment does not require any knowledge of how the arbitrary 6
scale of temperature is related to the thermodynamic scale or to any other
scale.

We shall now describe the experimental results obtained. It is found that,
whatever the temperature, H(P,)— H(P,) is at least approximately propor-
tional to P, —P, and is not sensitive to the absolute magnitude of P;. It is
quite certain that at low values of P,, the value of H(P,)— H(P,) does not
tend towards infinity, which is what one should expect from formula (3.10.6)
owing to the term in In P. In short the Joule-Thomson experiment shows
that the first term on the right of formula (3.10.6) is in fact missing and the
linear term in P is therefore the leading one.

§3.12  Measurement of thermodynamic temperature

In principle to determine 7, one should measure AH and AG for the same
isothermal process and by comparing these obtain a differential equation
for T. In particular, one can determine the coefficients 4, B,, B;, in the
formula for G simply by pressure measurements and one can obtain inde-
pendent measurements of the corresponding coefficients in H, from the
throttling experiment. By comparison we obtain information concerning 7,
but admittedly in a rather awkward form.

To our agreeable surprise the information is in a strikingly convenient
form in the case of the coefficient 4. The throttling experiment shows un-
mistakably that H contains no term tending to infinity as P tends to zero,
that is to say no term in In P. Hence from (3.10.6) we conclude that

d(T~'4)[dT " '=0 3.12.1
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which is equivalent to
AxT. 3.12.2

At last we have found a simple, direct, and reliable way of determining the
ratio of any two thermodynamic temperatures. We use as a thermometer a
fixed quantity of gas. We measure several pairs of values of P, V at the same
temperature and extrapolate the product PV to P=0, thus obtaining the
value of 4. We repeat this at another temperature thus obtaining another
value of 4. Then the ratio of these two values of A4 is equal to the ratio of the
two values of T. Having thus established a way of determining the ratio of
any two temperatures, the numerical values are fixed by the convention
described in §1.21 so that the triple point of water is 273.16 degrees Kelvin
and this is called the Kelvin scale.

§3.13 The gas constant and the mole

We have found that the coefficient 4 is directly proportional to the tempera-
ture. We accordingly write
A=RT 3.13.1

where R is independent of temperature and pressure. R also becomes inde-
pendent of the nature of the gas when the unit of amount is suitably chosen,
e.g. by choosing the mole. From a purely thermodynamic view-point the
amount of substance may be defined without any reference to molecular
theory by assigning a common value of R to all gaseous substances.

The accepted definition* of the mole is that amount of substance which
contains the same number of molecules as there are atoms in 0.012 kg of
12C, In this definition ‘molecules’ includes ions, radicals, electrons, etc. The
number of atoms in 0.012 kg of *2C is 0.60225 x 10*4, Consequently the
factor for transforming moles to molecules, called the Avogadro constant L, is

L=0.60225 x 10** mole !
and the factor for converting molecules to moles is
L™!'=1.66044 x 10~ 2% mole.

It can be shown by statistical mechanics or kinetic theory that the gas
constant has a common value for all gases and is related to the Boltzmann
constant k introduced in chapter 2 by

* L.LU.P.A.P. Symbols, Units and Nomenclature in Physics, 1961 p. 19, 1965 p.25;
LU.P.A.C. Information Bulletin Number 24 1965 p. 4.
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R=Lk
=6.0225x% 10%>* mole™ ! x 1.3805x 10723 J K !
=8.3143J K~ ! mole™ .

§$3.14 Isothermal equation of a gas
When we replace 4 by RT in (3.10.2) we obtain
PV,/RT =1+ B,/V,+B;/V2. 3.14.1

1t is convenient to call PV, /RT the compression factor. It is sometimes denoted
by Z. When the density is sufficiently low for B,/¥,,, and a fortiori Bs/Vz,
to be negligible the gas is called a perfect gas.

§3.15 Absolute activity

In chapter 2 we met a quantity called the absolute activity which plays an
important part in the statistical thermodynamics of open systems. We now
give a purely thermodynamic definition of the absolute activity. This is
somewhat out of place in the present chapter, but we could not give it earlier
because it involves the gas constant R. We accordingly define* the absolute
activity as related to the molar chemical potential u by '

A=exp(u/RT) 3.15.1
or
u=RTIn A 3.15.2

Whereas it is not necessary to use A as well as u, we shall find that the
absolute activity 4 is often a convenient function in the study of equilibria
of all kinds whether involving one species or several. In §1.44 we showed that
for the most general chemical reaction represented symbolically by

0=Y v3B 3.15.3
B

the condition for equilibrium is according to (1.44.13)
Y vaug=0. 3.15.4
B

We now see that this condition can equally be expressed in terms of absolute
activities in the form
[1(s)"=1. 3.15.5

B
We recall that each v is negative for a reactant and positive for a product
In the chemical equation for the process.

* Fowler and Guggenheim, Statistical Thermodynamics, Cambridge University Press
1939 p. 66.
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In particular the condition for the equilibrium distribution of a species i
between the phases o and B may be written

A=) 3.15.6
We can now rewrite formulae (1.28.12), (1.28.15), and (1.28.16) as
R™'dS=(RT)"'dU+(P/RT)dV — Y In Jdn, 3.15.7

~R™'d(F/T)=R™"'dJ=—(U/R)Y(T " ")+(P/RT)dV —Y In A,dn, 3.15.8
—R"d(G/T)=R"dY=—(H/R)d(T")—(V/RT)dP—Zln Adn;. 3.15.9

§3.16 Thermodynamic functions of a gas

When we set A=RT in formula (3.10.5) for a gas we obtain

Go(T, P)—G,(T, P®)=RT In(P/P°)+ B,(P—P®)
+3(RT)™Y(By—B3)(P*—P®?).  3.16.1

When we set

1% (T)=G,(T, P°)—B,P® —4(RT)™ (B, — B%)P®? 3.16.2
formula (1) simplifies to

U(T, P)=G(T, P)=p°(T)+RT In(P/P°)+ B, P+4(RT) ™ '(B;— B3)P>.
3.16.3
Substituting (3.15.2) into (3) we obtain
In(4/A®)=In(P/P®)+ B, P|RT + 4(B; — B2)(P/RT)* 3.16.4
where
1° =exp(u®/RT) 3.16.5

so that A° is a function of the temperature only.
From (3) we derive immediately

~8,=du®/dT +R In(P/P®)+(dB,/dT)P
+3P?*d(R™'T™'B;—R™'T™'BY))/dT  3.16.6

H,=p®—Tdu°/dT+(B,— TdB,/dT)P
+4P*R™'T™'By—R™'T™'B2—Td(R™'T " 'B,+R™'T™'B2)/dT}. 3.16.7

u° is called the standard chemical potential, —du®dT the standard proper
entropy of gas, and u® —Tdu®/dT the standard proper enthalpy of gas.

In general there does not exist any state in which simultaneously u=u°
and du/dT=du®/dT. For this reason expressions such as ‘entropy in the
standard state’ should be avoided.
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§3.17 Fugacity

It is often convenient to use a quantity p called the fugacity of the gas
defined* by

2/A° =p|P® 3.17.1
p/P—-1 as P-O0. 3.17.2
An alternative equivalent definition of p is
P
Inp=In P°°-|-J VadP 3.17.3
POO

where P is a pressure sufficiently small so that p=_P. In a perfect gas the
fugacity is equal to the pressure. For a real gas at moderate pressures
according to (3.16.4)

In p=In P+ B, P/RT+4(B;—B3)(P/RT)>. 3.17.4

The simplicity attained by the introduction of the fugacity is one of appear-
ance or elegance. It leads to nothing quantitative unless we express the
fugacity in terms of the pressure and then we are back where we started.

§3.18 Gases at high temperatures

By means of statistical mechanics the second, third, fourth, . . . virial coeffi-
cients can be expressed in terms of integrals, called ‘cluster integrals’, over
the position coordinates of clusters of two, three, four, ... molecules.

The evaluation of these cluster integrals, except that for the second virial
coefficient, is in general laborious. The effort required depends on the form
of the dependence of the interaction energy w on the distance r between
two molecules. The cluster integrals become much more tractable for the
simplest model of non-attracting rigid spheres defined by
Ww=00 r<a 3.18.1
w=0 r>a. 3.18.2
For this simple model the several virial coefficients are conveniently ex-
pressed in terms of a proper volume b defined by
b=%nLs> 3.18.3

as follows
B,b=1 3.18.4

* Lewis, Proc. Nat. Acad. Sci. U.S. 1901 37 49; Z. Phys. Chem. 1901 38 205.
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B,/b*=0.625 3.18.5
B,/b®=0.287 3.18.6
B,/b*=0.110. 3.18.7

This model and these virial coefficients describe the limiting behaviour of a
gas at high temperatures.

A very simple formula* giving a rough approximation to the accurate
virial expansion for non-attracting rigid spheres is

PV, JRT=(1—bj4V,)"*
=1+4(bj4V,)+10(b/4V,,)* +20(b/4V,)> +35(b/4V,)* 3.i8.8

as compared with the accurate expansion'

PV/RT =1+4(b/4V,))+10(bj4V,,)* +18.36(b/4V,,)* +28.2(b/4V,,)*. 3.18.9

§3.19 Slightly imperfect gases

We shall call a gas slightly imperfect when the pressure or density is suffi-
ciently low for all virial coefficients to be ignored except the second B,.
The thermodynamic properties of a slightly imperfect gas are given by the
following formulae where we have dropped the subscript from B,

f=Gn=p®+RT In(P/P®)+BP 3.19.1

In 2=In 4° +In(P/P®)+BP/RT 3.19.2
—Sn=du®/dT +R In(P/P®)+(dB/dT)P 3.19.3
H,=u®—Tdu®/dT +(B—TdB/dT)P 3.19.4
PV,=RT+PB 3.19.5
Cp=T(0S,/0T)p=(0H,/0T)= — Td*u®/dT*— TP(d*B/dT?) 3.19.6
Vi =(0V,/0T)p=R/P+dB/dT 3.19.7

K1 V= —(0V,,/OP);=RT/P>. 3.19.8

For the sake of brevity we shall use these formulae omitting all higher powers
of P; when higher terms are required there is no difficulty in inserting
them.

* Guggenheim, Molec. Phys. 1965 9 199,
t Rowlinson, Rep. Prog. Phys. 1965 28 180.



SYSTEMS OF A SINGLE COMPONENT 99

§3.20 Joule-Thomson coefficient

When we discussed throttling in §3.11 we stressed the fact that at that stage
we could not yet measure thermodynamic temperature. Now that we know
how to do this by means of a gas thermometer, it is profitable to return to a
discussion of throttling. We shall generalize this discussion by including the
possibility of absorption of heat by the outflowing gas. In place of formula
(3.11.3) we then have

H(Tz,Pz)"H(Tl,Pl)=q. 3.20.1

We first consider the isothermal case when ¢ is adjusted so that T, =T,.
Formula (1) then reduces to

H(P,))—H(P)=¢q (const. T) 3.20.2

so that measurement of g leads directly to the determination of (QH/0P)r.
In the adiabatic case when g=0 we have

H(Tz,Pz)_H(Tl,P1)=0. 3.20-3
If the pressure drop is small we may usefully replace (3) by
dH=(0H[0T)pdT+ (0H/OP);dP=0.

The ratio of the temperature fall to the pressure drop is called the Joule-
Thomson coefficient given by

(0T/0P)y = — (OH[OP)1/(OH[OT )p = — (OHu/OP) 1/ (OHn[OT )p

= — m(l —aT)/Cp 3.20.4
by use of (1.48.4) and (3.03.2).
When we use formula (3.19.4) we obtain
0T/oP)y=(—B+TdB/dT)/Cs. 3.20.5

§3.21 Temperature dependence of second virial coefficient

The second virial coefficient B, or B is negative at low temperature, increases
with temperature, and eventually becomes positive at a temperature called
the Boyle temperature and denoted by Ty.

It is impossible to fit the quantitative dependence of B on the temperature
by any two-parameter formula such as the van der Waals formula

B=b—al™! 3.21.1

or the Berthelot formula
B=p—cT 2 3.21.2
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The temperature dependence of B can be fitted quantitatively by various
three-parameter formulae of which the simplest is

B=b—aqT '—cT"2 3.21.3

This formula is purely empirical.

To obtain a theoretical formula we have to assume a particular form for
the interaction energy w between a pair of molecules as a function of their
distance apart r. The simplest model, commonly called a ‘square well’, is
described by

W= 00 (r<o) 3.21.4
w=—¢ (6<r<R) 3.2L1.5
w=0 (r>R) 3.21.6

with three adjustable parameters g, R, and ¢. This modelleads to the formula
for the second virial coefficient

B=b[1—(R*|o*—){exp(e/kT)—1}] 3.21.7
where
b=4nLg>. 3.21.8

The application to nitrogen is shown in figure 3.3 where the curve represents
formula (7) with

b=403cm3*mole™!  R/o=1.50 ¢/k=116K. 3.21.9

§3.22  Boyle temperature and inversion temperature

Boyle's law PV=f(T) is most nearly obeyed at the temperature at which
B=0. This temperature is accordingly called the Boyle temperature and it is
denoted by Tp. According to formulae (3.21.7) to (3.21.9) for nitrogen
T =330 K. This point is shown in figure 3.3.

The Joule-Thomson coeflicient for a slightly imperfect gas is positive at
the lowest temperatures (cooling by throttling) but is negative at high
temperatures (heating by throttling). The temperature at which the effect
changes sign is called the inversion temperature and is denoted by T;.
According to (3.20.5) the inversion temperature is determined by

dB/dT=B|T. 3.22.1

When Bis plotted against T the tangent through the origin touches the curve
at T=T;. For nitrogen this is shown in figure 3.3. According to formulae
(3.21.7) to (3.21.9) for nitrogen T;=633 K,
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Fig. 3.3. Second virial coefficient of nitrogen, + experimental data of Holborn and
Otto*, — formulae (3.21.7) to (3.21.9)

B/cm” mole

=150

§3.23 Relation between heat capacities of slightly imperfect gas

We have the general relation (3.07.3)

Cp"‘CV=a2TVm/KT. 3.23.1
Using formulae (3.19.5), (3.19.7), and (3.19.8) we deduce
Cp—Cy=R(1+R™'PdB/dT)>. 3.23.2

§3.24 Adiabatic change of a gas
For an adiabatic change we have from (3.08.2) and (3.08.3)

—dln V/dP=kg=k;C,/Cp (S constant). 3.24.1
This differential equation for an adiabatic change cannot be integrated
unless the right hand side can be expressed as an explicit function of P, ¥V

* Holborn and Otto, Z. Phys. 1925 33 5.
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and not necessarily even then. In the approximation of a perfect gas (1)

becomes
—dlIn V/dIn P=Cy/Cp (S constant). 3.24.2

In the special case of a gas with monatomic molecules
Cy/R=% Cp/R=4% (monatomic molecules) 3.24.3
so that (2) becomes
din¥V/dlnP=-% (monatomic molecules) 3.24.4

which can be integrated to
PV¥=constant. 3.24.5

In other cases (2) cannot be integrated explicitly.

§3.25 Temperature dependence of u® and 2°

In §3.16 we have expressed all the most important thermodynamic functions
of a gas in terms of u® or A° each of these being a function of temperature
only. We shall now consider this temperature dependence.

In the first place 4° contains an arbitrary constant term which we denote
by H°. There is a corresponding term H° in H,, and a corresponding factor
exp(H°/RT) in 2°. As long as chemical reactions are excluded we may
fix H° arbitrarily for each substance, for example by setting H°=0 at
25 °C. If on the contrary chemical processes are admissible then the values
of H® for all substances are not independent. We may however fix H°
arbitrarily for each element. The commonly accepted convention is H =0
for every element in its stable form at 25 °C.

There is also an arbitrary constant term in —du®/d7 which we denote by
S°. As long as chemical reactions are excluded we may fix S° arbitrarily
for each substance, for example by setting S—0 as T—0. If on the contrary
chemical reactions are admissible then the values of S° for all substances
are not independent. We may however fix S° arbitrarily for each element.
The accepted convention is S—0 as T7—0 for every element in its stable
form. There are complications in the case of hydrogen which will be
discussed in §3.56. When these conventions for H° and S° are used the
chemical potential is called the conventional chemical potential and the
entropy is called the conventional entropy.

In classical thermodynamics the accepted convention for S° is on a
par with that for H°, but statistical thermodynamics supplements the
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former convention in two ways. Firstly it provides a simple physical
interpretation of the convention for S° which will be given in §3.53.
Secondly by use of this interpretation of the convention it provides
explicit formulae for the conventional entropy of gases. These formulae
will be quoted without derivation in §§3.26-3.29 and interpreted later.

§3.26 Monatomic molecules

For gases having monatomic molecules, when we use the conventions speci-
fied in §3.25, it can be shown by statistical thermodynamics that

2° =exp(u® |RT)=exp(H°/RT) L*'h*P°g,(2nM)}(RT)?  3.26.1

where g, denotes the degree of degeneracy of the ground electronic level of
the free atom. The value of g, is 1 for the noble gases He, Ne, Ar, Kr, Xe,
Rn, and for Zn, Cd, Hg; its valueis 2 for the alkali metals Li, Na, K, Rb, Cs.

When we use (1) in the formulae of §3.19 the conventional values of g, 4,
and S, for a slightly imperfect gas are given by

p=Go=H°—RT in go+RT In{L*h*P®|2nM)}(RT)*} + RT In(P/P®) + BP

3.26.2
In A=H°/RT —In go+In{L*h*P®|2nM)}(RT)*} +In(P/P°)+ BP/|RT

3.26.3
Sm=R In go— R In{L*h*P°|2nM)}(RT)%} +3R— R In(P/P®)~ P(dB/dT).

3.26.4

If the gas is more than slightly imperfect it is a straightforward matter to
include terms in the higher virial coefficients B, B,, . . ..

§3.27 Numerical values in entropy constant

We shall now insert numerical values for the constants in the formulae of
§3.26 taking as our standard pressure P° =1 atm. We have
h =6.6256x10"3*Ts
R =8.3143J K ' mole™!
L =0.60225 x 10** mole ™"
P®=1atm=1.01325x10° T m™>.

With these values we obtain

P |(2nM)}(RT)* = 1.236(kg/mole)}(T/K) ~*
=39.03(g/mole)}(T/K)™* = (g/mole)¥(T/4.333 K) "%, 3.27.1
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Using (1) in the formulae of §3.26 we obtain
In2° =u®/RT=H°/RT —In g, — 3% In(M/g mole ™ *)—$ In(T/4.333K) 3.27.2

In A=u/RT=H°/RT —1n go—3% In(M/g mole™?)
—$1In(T/4.333 K)+In(P/atm)+ BP/RT  3.27.3
S,/R=1In go+3+3 In(M/g mole™ ')+ 3 In(T/4.333 K)
—In(P/atm)—(P/R)dB/dT
=In go+3 In(M/g mole™ ')+ 4% In(T/1.594 K)
—In(P/atm)—(P/R)dB/dT
=10.35+1In g, +% In(M/g mole™ ")+ % In(T/100 K)
—In(P/atm)—(P/R)dB/dT 3.27.4
H,=H°+3RT+(B—TdB/dT)P 3.27.5

Cp/R=%—T(d*B/dT?)PJR. 3.27.6

§3.28 Linear molecules

In the formulae for monatomic molecules the electronic degrees of freedom
were taken care of by g, while the remaining factor in 2° or term in u®
relates to the translational degrees of freedom. In polyatomic molecules
there are the same factors in A° and further factors to take care of the rota-
tional and vibrational degrees of freedom. We shall describe these factors
first for linear molecules and then for non-linear molecules.

For linear molecules the extra factor in A° due to the rotational degrees
of freedom is at ordinary temperatures

Aot =(O/T){1+ O, 3T+O}15T*}"  (T>06,) 3.28.1

where O, is a rotational characteristic temperature inversely proportional
to the moment of inertia I of the molecule and defined by
O, =h*/8n’Ik. 3.28.2

The factor s called symmetry number is 2 for a symmetrical linear molecule
and 1 for an unsymmetrical molecule.
The rotational term in u° is

Hrot=RT In 2., =RT In(s0,/T)—RT In{1+0,/3T +O/15T?}
=RT In(s0,/T)—1RO,— RO?/90T. 3.28.3

The constant term —4RO, may be absorbed into H° and (3) then becomes
Heo=RT In(s0,/T)~RO?/90T. 3.28.4
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The corresponding rotational contributions to S, H,, and C are

S.«=R—RIn(s0,/T)+RO’90T? 3.28.5
H,,=RT—RO?/45T 3.28.6
C..=R+ROZ45T?. 3.28.7

We now turn to the vibrational contributions. A linear molecule composed
of a atoms has 3a— S normal vibrational modes each having a characteristic
frequency v;. Associated with the frequency v; is a vibrational characteristic
temperature O,; defined by

k@v,~=hv,~. 3.28.8
The vibrational contributions to the several thermodynamic functions are
uvib":RTln )‘vib=RTZln{l_exp(_evi/T)} 3.28.9
Sev=R Y 0,/T{exp(0,/T)—1}-R Y In{l —exp(—0O,,/T)} 3.28.10
H,py=R Z 0,,/{exp(0,,/T)—1} 3.28.11
Civ=R Y {(6,4/2T)/sinh(0,;/2T)}". 3.28.12

We have still to discuss the electronic factor g,. For the vast majority of
linear molecules regarded as saturated g, is unity. The outstanding ex-
ceptions are O, and NO. The ground state of O, is *Z and go=3. The odd
molecule NO has a ground state *IT, and an excited state “Il; having an
excitation energy ¢ such that ¢/k is only 178 K. As a result of this the
constant g, has to be replaced by the temperature dependent factor

2+2exp(—178 K/T) 3.28.13
having an effective value 2 when 7«178 K and 4 when 73178 K.

Values of O,, 0,, s, and g, are given* in table 3.1 for the commonest
diatomic molecules and in table 3.2 for a few other typical linear molecules.

33.29  Non-linear molecules

Whereas a linear molecule has 2 rotational degrees of freedom, a non-linear
molecule has 3. For a non-linear molecule the rotational characteristic

* Values taken from Herzberg, Spectrd of Diatomic Molecules, Van Nostrand 1950.
Cf. Fowler and Guggenheim, Statistical Thermodynamics, Cambridge University Press 1939
p. 90. Cf. Slater, Introduction to Chemical Physics, McGraw-Hill 1939 p. 136, observing
that their O,,, is equal to twice our ©,.
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TABLE 3.1

Characteristic temperatures @r and Oy, symmetry numbers s, and electronic weights £
for typical diatomic molecules

Formula  Oy/K 10720,/K s £
H, 85.3 59.8 2 1
D, 42.7 43.0 2 1
N, 2.88 335 2 1
0, 2.07 224 2 3
CO 2.717 30.8 1 1
NO 2.44 27.0 1 -
HCl1 15.0 41.5 1 1
HBr 12.0 36.8 1 1
HI 9.29 32.1 1 1
Cl, 0.344 7.96 2 1
Br, 0.116 4.62 2 1
I, 0.0537 3.07 2 1

TABLE 3.2

Characteristic temperatures ©: and ©,;, symmetry numbers s, and electronic weights g,
for typical polyatomic linear molecules

Formula 6,/K 10—%20,/K s £

9.60
9.60
0oCo 0.560 20.0 2 1
33.8

8.47
8.47
NNO 0.602 18.5 1 1
320

8.80
8.80
10.5
HCCH 1.69 10.5 2 1
28.4
47.3
48.5

10.5
10.5

HCN 2.13 28.7 1 1
49.5
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temperature @, is related to the 3 principal moments of inertia I,, I,, I by

O,=h*[8n(1,1,15) k. 3.29.1
The rotational factor in A° at ordinary temperatures is given by
deoy =50} T, 3.29.2

The symmetry number s is defined as the number of indistinguishable orien-
tations of the molecule. For example s is 1 for NOCI, 2 for OH,, 3 for NH 3,
4 for C,Hy, 6 for BF3, and 12 for C4H,. The rotational contributions to
the several thermodynamic functions are

Proo=RT In 2,,=RT In(s@}/n*T%) 3.29.3
Si=3R—R In(s0}/n*T?) 3.29.4
Ui=3RT 3.29.5
Crot =3R. 3.29.6

The vibrational contributions are exactly as for linear molecules except
that there are 3a—6 normal vibrational modes instead of 3a-5. Thus we have

S,,=R Z 0,/T{exp(®,;/T)—1}—R Z In{l—exp(—0©,,/T)}. 3.29.7

The value of g, is unity for almost all non-linear molecules including OH,,
SH,, NH;, PH;, CH,, SO,, and all organic molecules. Its value for free
radicals such as CH;, C4H;, is 2.

TABLE 3.3

Characteristic temperatures ®; and O,;, symmetry numbers s, and electronic weights g,
for typical non-linear molecules

Formula G/K  1020,/K s )

4.8
* NOCI 8.6 1 1
25.9

229
OH, 22.3 52.5 2 1
54.0

13.7
23.4
NH, 12.3 23.4 3 1
48.0
49.1
49.1

* Landau and Fletcher, J. Molec. Spect. 1960 4 280.
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Values of @, 0,;, 5, and g, for a few non-linear molecules are given* in
table 3.3.

Table 3.4 gives the vibrational contributions of a single normal mode to
the several thermodynamic functions in terms of x=0,/T.

§3.30 Pressure dependence for condensed phases

We turn now from gases to condensed phases. Later we shall consider
equilibrium between a condensed phase and a gas. As we shall see in §3.44
there are conditions of temperature and pressure called critical at which the
distinction between gas and liquid disappears, but except at conditions close
to the critical there is a rather sharp contrast between the properties of a
gas and a liquid. The contrast between a crystal and a fluid, either gas or
liquid, is always a sharp one.

Whereas the isothermal compressibility of a gas is roughly equal to the
reciprocal of the pressure, the isothermal compressibility of a solid and that
of a liquid, except near the critical temperature, is much smaller than that
of a gas and is less dependent on the pressure. We accordingly use the
approximation

~ V-1 (0V[0P)r =kr=const. 3.30.1

We can integrate (1) at constant temperature, obtaining
Va=V"? exp{—kr(P—P°)} 3.30.2

where V© is the value of V,, at the standard pressure P°, usually one
atmosphere.

For typical liquids x7 is about 107 atm™! and for many solids is even
smaller. We may therefore, without appreciable loss of accuracy replace
(2) by the more convenient relation

Va=V{1—k(P—P°)}. 3.30.3

1

We can integrate again with respect to P at constant T obtaining
p=u®+Ve{(P—P°)—Lx (P—P®)?}. 3.30.4
[t is sometimes convenient to rewrite (4) as

p=u® +(P—P°) 4(Vut Vo). 3.30.5

* Values taken from Herzberg, Infra-red and Raman Spectra, Van Nostrand 1945.
Cf. Fowler and Guggenheim, Statistical Thermodynamics, Cambridge University Press
1939 pp. 113-114.



TABLE 3.4

Contributions of a single harmonic oscillator to the several thermodynamic quantities
expressed as functions of x = /kT = O,/T

x —u/RT Hmp/RT Sm/R C/R
= —In{l—exp(—x)} =x/(expx—1) = (Hu—p)/RT = {$x/sinh}x}?

0.01 4.610 0.995 5.605 1.000
0.05 3.021 0.975 3.996 1.000
0.1 2.352 0.951 3.303 0.999
0.2 1.708 0.903 2.611 0.997
0.3 1.350 0.857 2.208 0.993
0.4 1.110 0.813 1.923 0.987
0.5 0.933 0.771 1.704 0.979
0.6 0.796 0.730 1.526 0.971
0.7 0.686 0.691 1.377 0.960
0.8 0.597 0.653 1.249 0.948
0.9 0.522 0.617 1.138 0.935
1.0 0.459 0.582 1.041 0.921
1.1 0.405 0.549 0.954 0.905
1.2 0.358 0.517 0.876 0.888
1.3 0.318 0.487 0.805 0.870
1.4 0.283 0.458 0.741 0.852
1.5 0.252 0.431 0.683 0.832
1.6 0.226 0.405 0.630 0.811
1.7 0.202 0.380 0.582 0.790
1.8 0.181 0.356 0.537 0.769
1.9 0.162 0.334 0.496 0.747
2.0 0.145 0.313 0.458 0.724
2.1 0.131 0.293 0.424 0.701
2.2 0.117 0.274 0.392 0.678
2.3 0.106 0.256 0.362 0.655
2.4 0.095 0.239 0.335 0.632
2.5 0.086 0.224 0.309 0.609
2.6 0.077 0.209 0.286 0.586
2.7 0.070 0.195 0.264 0.563
2.8 0.063 0.181 0.244 0.540
2.9 0.057 0.169 0.225 0.518
3.0 0.051 0.157 0.208 0.496
3.2 0.042 0.136 0.178 0.454
34 0.034 0.117 0.151 0.413
3.6 0.028 0.101 0.129 0.374
38 0.023 0.087 0.110 0.338
4.0 0.018 0.075 0.093 0.304
4.5 0.011 0.051 0.062 0.230
5.0 0.007 0.034 0.041 0.171
55 0.004 0.023 0.027 0.125
6.0 0.002 0.015 0.017 0.090
6.5 0.002 0.010 0.013 0.064

7.0 0.001 0.006 0.007 0.045
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Differentiating (5) with respect to T at constant pressure we obtain

8= —du®/dT—(P—P®) 3(0V,/0T+0V°/oT)
= —du®[dT—(P—P°) 4(aV,+a°V®) 3.30.6

where o and a® are the coefficients of thermal expansion at pressures P
and P® respectively.
From (5) and (6) we derive

Ho=p+TSy=p° —Tdu®[dT+(P-P°) 3{V(1—aT)+V°(1-a®T)}
3.30.7
and
C=Td*u®[dT? - (P—P°®) 4T{V 4do/dT + V°da®/dT}. 3.30.8

§3.31 Temperature dependence for liquids

We have seen that the dependence of the thermodynamic properties of
condensed phases on the pressure is simple and usually small. We have now
to consider how these properties depend on the temperature.

As regards liquids there is nothing fundamental or general that can be
said except that u® can often be represented over quite a wide range of
temperature by an empirical relation of the form

1 =A—(B-C)T-CTInT (4, B, C const.). 3.31.1

From (1) we deduce
S§®=—-du®/dT=B+CInT 3.31.2
H®=A4+CT. 3.31.3

According to this empirical approximation the proper heat capacity C at the
standard pressure P° is independent of the temperature. We have already
mentioned in §3.03 that for many liquids, in particular water, C is nearly
independent of the temperature.

The approximate constancy of C and the consequent validity of relations
of the form (1), (2), (3) also hold for many solids at ordinary and higher
temperatures, but not at low temperatures. This accident has in the past
caused undue importance to be attached to the heat capacity, in contrast to
the enthalpy H and the entropy S. The only real importance of C is that it is
the connecting link between H and S, as explained in §3.02. This link is
especially simple when C is independent of T, but this occurrence, however
frequent, is of no fundamental importance.
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§3.32  Crystals at very low temperatures

It is predicted by statistical theory and borne out by experiment that at
very low temperatures the enthalpy of a crystalline solid varies linearly with
the fourth power of the thermodynamic temperature. That is to say, neglect-
ing the small dependence on pressure,

H,=H>+%aT* (small T) 3.32.1

where a is a constant and H_ is the limiting value of H,, as T—0. Corre-
spondingly we have for the entropy

Sa,=S%+%aT®> (small T) 3.32.2

where S2 is the limiting value of S,, as T—0. The formulae (1) and (2) are
not independent, but are related through the thermodynamic formula

(3.02.3)
TdS=dH  (const.P). 3.32.3

From (1) and (2) it immediately follows that
u=HY—TSp—75aT*  (small T). 3.32.4

We have not stated how small T must be for these formulae to hold, nor is
it possible to make any precise statement since the requirement is different
for different substances. For most substances investigated these formulae
appear to be at least approximately valid at temperatures below 15 K.

We shall see later that a comparison between the constant Sy in (2) and
the constant —du®/dT occurring in the formula for the proper entropy of a
gas is of considerable interest. For this reason it is important to be able to
extrapolate experimental data on the entropy from the lowest experimental
temperature down to 0 K. For this purpose one determines a suitable value
of the constant a from the relation (1) by plotting H against 7% in the lowest
temperature range in which experimental measurements have been made.
This value of a is then used in (2) to give experimental values of S(T)—S(0).
Provided the experimental data extend below 15 K, the contribution to S
from this extrapolation is usually so small that an accurate estimate of a
is not required.

Actually the most important feature of the formulae of this section is not
their precise form, still less the value of a, but the fact that S tends rapidly
towards a constant value as T decreases. This behaviour is in striking con-
trast with the formulae for the entropy of gases at ordinary temperatures
which contain terms in In 7.



112 SYSTEMS OF A SINGLE COMPONENT

§3.33 Crystals at intermediate temperatures. Debye’s approximation

In the previous section we have described the thermodynamic behaviour of
crystals at very low temperatures. In §3.31 we mentioned briefly that at
ordinary and higher temperatures the behaviour of many solids, as well as
liquids, is represented at least approximately by the formulae of that section
corresponding to a temperature-independent heat capacity. In the inter-
mediate range the heat capacity increases with tempzrature, but its rate of
increase falls rather rapidly. There is no precise quantitative theory except
for the simplest crystals consisting of monatomic molecules. Even for these
the accurate theory is so complicated as to be of little practical use and it is
in fact usually replaced by a much simpler approximation due to Debye.

We shall not here describs Debye’s model, still less discuss* its limitations,
but shall give the formulae which follow from it. The formulae contain apart
from the temperature T, two parameters namely the energy U2 of the crystal
at T=0 and a characteristic temperature @,. Both these parameters U2
and @y, are functions of the proper volume V,,, but are independent of the
temperature. In considering Debye’s model it is therefore expedient to regard
as independent variables 7, V instead of the usually more practically con-
venient 7, P. We accordingly begin by writing down Debye’s formula for
the proper Helmholtz function of a crystal

®p
Fp=U,—~TS,=Uo— TS +3RT J In{1—exp(—0/T)}(30*/03)d0 3.33.1
0

wherein we repeat that U2 and @, are functions of V,, whereas S on the
other hand is a constant indepzndent of V,, as well as of 7, and depends only
on the arbitrary zero of entropy.

From (1) we could derive the pressure by the relation

= —3F)oV. 3.33.2

We have however seen in §3.30 that the thermodynamic properties of a
condensed phase, in particular a crystal, are nearly independent of the
pressure; more precisely PV, << RT. We may consequently regard the pres-
sure as negligible and replace (2) by the condition

oF[oV=0 3.33.3

which gives an equilibrium relation between U° and @y,. From (1) and (3)
we find that this relation is

0 o 3
OUn _3p a@"j@ L 30 4, 3.33.4
oV, Wnlo exp(0/T)—1 0%

* Blackman, Rep. Progr. Phys. 1942 8 11.
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From (1) we can derive formulae for the other thermodynamic functions,
in particular

6o 0/T 362
sm—s,2,=—3Rf [m 1—exp(—0/T —___] 30 13,
. |In{l—exp(=0/T)} op0T)—1) 0390 3335
U,-U° 3Rf9° !—ﬁ—s do 3.33.6
mo e o exp(0/T)-1 O3 o
C 3RJQD{—9/—2T—]23402<19 3.33.7
7)o lsinh(82T)) 03 e

We may note that at very low temperatures, 7@, and we may without
sensible error replace the upper limits of integration in the above formulae
by c. We thus obtain

T* o 3£3d¢ 3n*RT*
f 3.33.8

0 il
Un=Un=3R"gs | expé—1_ 503
which, in view of the negligible difference between U,, and H,, is in agree-
ment with (3.32.1) with a given by
ta= 1@ 3.33.9
503
While we shall not here discuss the extent of agreement or disagreement to
be expected between these formulac and the bechaviour of real crystals,
we shall however devote some space to the consideration of how the com-
parison can most directly be made. Let us therefore consider which quanti-
ties are most directly measurable, bearing in mind that with all condensed
phases it is convenient to make measurements at constant pressure but
extremely difficult to make measurements at constant volume.

The usual calorimetric measurements determine directly how H depends
on T. Provided these measurements have been carried to a low enough
lemperature, the extrapolation to T=0 can be performed as described in
§3.32 so that we know H,(T)—H_ as a function of T. Then by using the
relation (3.32.3) we can without any further experimental data compute
Sm(T)—S3. We can now compare this experimental quantity with the right
side of (5), which is tabulated as a function of @p/T. We thus obtain for
each temperature T a value of @y, fitting the experimental value of S, —Sg.
These values of @, will be constant neither in practice, nor according
to Debye’s model. For we are considering data at constant pressure, conse-
Quently at varying volume, and, as the volume varies, so @y, varies. In fact
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TABLE 3.5
Comparison of proper entropy of gold with Debye’s formula

TIK  (Sy—SS)/R  Op/T Op/K
expt.
15 0.06 10.90 163
20 0.14 8.25 165
30 0.385 5.57 167
40 0.705 4.225 167
50 1.05 3.39 170
60 1.40 2.87 172
70 1.73 2.45 17
80 2.03 2.15 172
90 232 1.91 172
100 2.58 1.72 172
120 3.07 1.44 173
140 3.49 1.23 172
160 3.87 1.075 172
180 4.22 0.95 171
200 453 0.855 171
300 5.77 0.555 167
TABLE 3.6

Comparison of proper entropy of magnesium with Debye’s formula

TIK  (S,—S%)/R  Op/T Op/K
expt.
20 0.01 18.0 360
30 0.05 11.5 345
40 0.13 8.38 335
50 0.26 6.53 326
60 0.41 5.41 324
80 0.77 4.03 322
100 1.15 3.22 322
120 1.52 2.68 322
140 1.87 2.30 322
160 2.20 2.00 320
180 2.50 1.78 320
200 2.76 1.61 322
300 .77 1.06 318

as the volume increases, theory predicts that @ should steadily decrease.
If then it is found that as T increases, the value of @p, determined as des-
cribed above, slowly but steadily decreases then we may say that at least
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there is no contradiction between the experimental data and the model.
If on the other hand as T increases, the value of ©p, thus determined increases
or fluctuates, then we may say with certainty that the experimental data are
in disagreement with the model.

We give typical illustrations of this method of comparison in tables 3.5
and 3.6 for gold* and magnesium' respectively. We observe that for gold
O, rises from 163 K to 173 K and then falls again to 167 K. For magnesium
Oy, decreases steadily from 360K to 318 K. In a few cases, such as copper
and lead, ®p, varies even less than in the case of gold. In other cases, notably
lithium, @p varies by nearly 20 %.

We must emphasize that the entropy is the only simple thermodynamic
function for which we have both a closed formula and an experimental
value obtainable from a single set of calorimetric measurements performed
at constant pressure. In spite of the directness and simplicity of the above
method of comparison, it is not generally used. The usual procedure is,
from the experimental measurements of Hy, as a function of 7, first to compute
dH|dT=Cp; then by measured, or estimated values of a and xr to use
formula (3.07.3) or (3.08.5) to compute Cy from Cp; lastly to compare the
Cy so calculated with formula (7). There are two objections to this procedure
as compared with that recommended here. In the first place the computation
of Cp from H involves a differentiation and so increases any experimental
errors whereas in the computation of S from H the integration helps to
smooth out the errors introduced by the differentiation. In the second place
the computation of Cy from Cp by (3.07.3) or (3.08.5) requires either several
other pieces of difficult experimental measurement or else some guess work,
neither of which is required if one makes comparisons of entropy. When the
value of Cy, thus computed or estimated, is compared with formula (7)
we can calculate at each temperature a value of @p, which fits. Just as in the
comparison of entropies, these values of @, should, if the model is good, de-
crease slowly and steadily as the temperature, and so the volume, increases.
There appears to be a widespread, but mistaken, belief that @y should be
independent of temperature in spite of the thermal expansion.

Quite apart from the change in @ due to thermal expansion, variations
of @p, with temperature are to be expected owing to the limitations of Debye’s
model. In view of all the complications in the lattice theory, Debye’s theory
is remarkable not in the extent of its failure, but rather in the extent of

its success’.

* Clusius and Harteck, Z. Phys. Chem. 1928 134 243.
t Clusius and Vaughen, J. Amer. Chem. Soc. 1930 52 4686.
* Blackman, Rep. Progr. Phys. 1942 8 11.
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§3.34 Corresponding temperatures of crystals

We have seen that Debye’s model is only an approximate representation
of a simple crystal of monatomic molecules and further that even if it were
an accurate representation, the characteristic temperature @pshould still
vary with temperature owing to thermal expansion. Nevertheless it is an
experimental fact that Debye’s formulae with constant @, do give a remark-
ably good approximate representation over a wide temperature range of the
actual behaviour of many simple crystals, especially metals crystallizing in
the cubic system. For such substances the values of S, — S2, of (H,,—H?)/T,
and consequently of G, —G? are universal functions of 7/@p. Thus several
important thermodynamic properties of different crystals have the same
value when 7/Op has the same value. Temperatures of different substances
such that 7/@p has the same value are called corresponding temperatures.
The principle that certain thermodynamic properties have equal values
for different substances at corresponding temperatures is called a principle
of corresponding temperatures. It is to be observed that this principle for
simple crystals makes no reference to the pressure, which is tacitly assumed
to be low and to have no appreciable effect on the values of the properties
under discussion. In §3.48 we shall discuss a more interesting principle of
corresponding temperatures and corresponding pressures for liquids and
gases.

§3.35 Comparison of Debye’s functions with Einstein’s functions

Debye’s model was preceded by a simpler model due to Einstein leading to
the simpler formulae

Upn—TS,,=Up—TS%+3RT In{l —exp(— O/T)} 3.35.1
Un=Up+3ROg/{exp(Og/T)—1} 3.35.2
Sm=5Sn—3R[In{l —exp(Og/T)} — O/ T{exp(O¢/T) - 1}] 3.35.3
Cy =3R{(O/2T)/sinh(O/2T)}* 3.35.4

where O is Einstein’s characteristic temperature.

By comparing Debye’s formulae with Einstein’s we observe that the for-
mer contain integrals from zero to @p, where the latter contain merely simple
functions of @g. Thus Oy in a sense represents an average @ covering the
range from 0 to @p. Thus at any given tempzrature the value of @ which
fits is always smaller than the value of ©p which fits.

If one tries to fit the expsrimental data by Einstein’s formulae with a
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constant @ one fails completely at the lowest temperatures, but at higher
temperatures there is little to choose between Einstein’s formulae and
Debye’s provided the value chosen for O is suitably adjusted. In fact when
T> 10y the values of U, — U2 calculated from Debye’s formula do not differ
appreciably from the values calculated from Einstein’s formula provided
one uses for @g the value given by ©¢=0.730. Similarly when T>160p
the values of S, —S2 calculated from Debye’s formula do not differ appre-
ciably from the values calculated from Einstein’s formula provided one takes
O =0.710. The comparison is shown in table 3.7. The slight difference of

TABLE 3.7
Comparison of Einstein’s formulae with Debye’s assuming
O = 0.730p, for energies
and @ = 0.710p, for entropies

Op/T (Up—UBRT (Sm—So)/3R
Debye Einstein Debye Einstein
0.1 0.964  0.963 364 3.64
0.2 0929  0.929 2.945 2,95
0.4 0.860  0.861 226 226
0.6 0.794 0797 185 186
0.8 0733 0.736 1.575 158
1.0 0.675  0.679 136 137
1.2 0.620  0.625 119 119
1.4 0571 0.575 1.045 1045
1.6 0525  0.527 0925 0925
1.8 0.482  0.483 0.825  0.820
2.0 0.442  0.442 0.735  0.730
2.2 0.405  0.403 0.657  0.650
2.4 0.371  0.368 0.590  0.580
2.6 0.339  0.334 0.529  0.518
2.8 0310 0304 0.476  0.463
3.0 0.284  0.276 0.429 0414

about 2% between the best values of @ corresponding to a given Op
in the cases of the energy and the entropy is a measure of the accuracy lost
by the substitution. Since the experimental data cannot be fitted exactly by
a constant value of @p considerable simplification can often be attained
without significant loss of accuracy by using Einstein’s formulae rather than
Debye’s provided one is concerned only with temperatures greater than
$Op. At lower temperatures Debye’s formulae should be used in preference
to Einstein’s.
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§3.36 Equilibrium between two phases

Having discussed the thermodynamic properties of a single phase, we
now turn to consider two phases in equilibrium. If we denote the two phases
by superscripts * and P, the condition for equilibrium between the two
phases is according to (1.39.5)

wr=pt 3.36.1
or according to (3.15.6)
=28, 3.36.2

Since in any single phase of a pure substance the temperature 7 and pressure
P may be varied independently and u or A may be regarded as a function of
T, P, we may therefore regard (1) or (2) as expressing a relation between
T and P for equilibrium between the two phases. It follows that when the
two phases are in equilibrium, the temperature 7 and pressure P are not
independently variable but either determines the other. We accordingly say
that a single phase of one component has two degrees of freedom but a pair
of phases of one component has only one degree of freedom.

§3.37 Relation between temperature and pressure for two-phase
equilibrium

We now proceed to determine how the equilibrium pressure between two
phases o and B depends on the temperature T. Differentiating (3.36.1) we
have
dp*=dpub 3.37.1
or
(0p*dT)dT +(Bp*/doP)dP=(0puP/dT)dAT +(3uP/oP)dP. 3.37.2

Using (1.28.22) and (1.28.23), we obtain
(VE-v2)dP=(S8 —S2)dT. 3.37.3
Formula (3) can also bz obtained more directly from Maxwell’s relation
(0P[oT), =(0S/oV)r. 3.37.4

We apply this relation to a system consisting of the two phases o and B in
equilibrium with each other. Since for this equilibrium to persist P is com-
pletely determined by T and is independent of ¥, we may replace the partial
differential coefficient (OP/0T), by dP/dT. Moreover at constant temperature
and incidentally also constant pressure, S and ¥ can only change through
some amount of substance passing from the phase o to the phase B or
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conversely. Thus the ratio of the changes in S and in V is independent of
the amount transferred from the one phase to the other. If then we denote
by the symbol A the increase of any property when unit amount passes
from the phase o to the phase B, we have

(0S/0V)r=AS/AV 3.37.5

and so (4) becomes
dP/aT=AS/AV 3.37.6

which is formula (3) in different notation.
Since we may rewrite (3.36.1) as

H:—TS%=H! —TSP 3.37.7

it follows immediately that
TAS=T(S? —S%)=H? —H® =AH. 3.37.8
This relation has an obvious physical meaning, the same as that of (3.02.2).
If unit amount passes isothermally from the phase « to the phase B, the
heat g absorbed is equal to AH because the process occurs at constant pres-
sure and it is also equal to TAS because, the system being in equilibrium

throughout, the change is reversible.
If we now substitute from (8) into (6), we obtain

dP/dT=AH|TAV =(H% — H%)/T(VE-VZ) 3.37.9

which is known as Clapeyron’s relation. This can also be obtained more
directly by starting from

W T=ub|T 3.37.10
instead of (3.36.1). Differentiating (10) we obtain

{0(u*/T)/OT}dT+ T~ ' (0p*/0P)dP={0(uP/T)/dT}dT + T~ *(duP/oP)dP
3.37.11
and so using (1.28.24) and (1.28.23)

—(Hy/T)AT +(Vg/T)dP= —(H/T)dT +(VET)dP  3.37.12

whence (9) follows immediately. We have given these alternative derivations
of (9) because of its great importance, as the prototype of other similar
formulae in systems of more than one component.

§3.38 Clapeyron’s relation applied to two condensed phases

Let us consider the application of Clapeyron’s relation to the equilibrium
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between a solid and a liquid. Using the superscripts $ and * to denote these
two phases, we have for the variation of the equilibrium pressure with the
equilibrium temperature according to (3.37.9)

dP/[dT=(HE —H3)|T(VE=V3)=AH|T(VE—Va)=AS|(Ve—Va) 3.38.1

where A¢H is the proper enthalpy of fusion and AS is the proper entropy
of fusion. Since fusion is always an endothermic process, the numerator of
(1)is always positive, but the denominator may have either sign. It is negative
for water, but positive for most substances. Thus the melting point of ice is
decreased by increase of pressure, but that of most solids is increased.

The application of Clapeyron’s relation to the equilibrium between two
solid phases is analogous. In (1) we need only make the superscript * denote
the phase stable at the higher temperature and ° the phase stable at the lower
temperature, so that H: — HS is positive. The sign of dP/dT will then be the
same as that of V:—p3,

For condensed phases, both VX and V5 are small and their difference is
much smaller. Usually a pressure of some hundred atmospheres is required
to change the freezing point by a single degree. Let us take water as an
illustrative example. We have

—dP/dT=22J K~ ! mole™!/(19.6—18.0) cm® mole™'=22J K™ !/1.6 cm’
=220 atm/1.6 K=1.4x 102 atm/K. 3.38.2

As a second example, let us take sodium. We have

dP/dT=7.1J K~* mole™!/(24.6—24.2) cm® mole ™! =7.1 J K~'/0.4 cm’
=71 atm/0.4 K =1.8 x 10% atm/K. 3.38.3

Hence as long as the pressure does not exceed a few atmospheres, the freezing
point may for many purposes be regarded as unaffected by the pressure.

§3.39 Clapeyron’s relation applied to saturated vapour

Let us now consider the equilibrium between a liquid and a gaseous phase.
Using the superscripts L for the liquid and G for the gas we have according
to (3.37.9)

dP/dT=(HS—HE)|T(VS-Vy). 3.39.1

This exact relation can be transformed by making two approximations. In
the first place we neglect the proper volume of the liquid compared with
that of the vapour. In the second place we neglect the virial coefficients of
the gas and treat it as perfect. With these approximations we have
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VS __Vr~ RT/P 3.39.2
Substituting (2) into (1), we obtain
dInP/dT=(HS—~H%)/RT*=A H|RT? 3.39.3

where A H is the proper enthalpy of evaporation.
We denote equilibrium or saturated vapour pressure of a condensed
phase by P, and accordingly write in place of (3)

dIn P,/dT=A H/RT? 3.39.4

or

d In P,Jd(1/T)=—A, H/R. 3.39.5

It follows from (5) that if we plot In P, against 1/T the curve so obtained has
at each point a slope equal to —AH,/R. Actually A_H varies so slowly with
the temperature that this curve is nearly a straight line.

Formula (5) incidentally provides a method, rarely if ever mentioned, for
determining the proper mass in the vapour. For by measuring P, at several
known temperatures we can use (5) to calculate A,H. We can then make
direct calorimetric measurements to determine what mass of liquid is
converted to vapour when a quantity of heat equal to A H is absorbed. This
mass is then the proper mass of vapour.

The treatment of equilibrium between a solid and its vapour is preciscly
analogous. The saturated vapour pressure P, of the solid is related to the
lemperature by

dIn P/d(1/T)=—AH/R 3.39.6

where A H is the proper enthalpy of sublimation.

$3.40 Heat capacities of two phases in equilibrium

Consider two phases of a single component in mutual equilibrium. Suppose
now that we isolate unit amount of either of these phases and change its
lemperature, not at constant pressure, but adjusting the pressure to the value
corresponding to two-phase equilibrium at each temperature. The quantity
of heat absorbed in this phase will evidently, for a small temperature increase
dT, bz proportional to d7. We may therefore write for either of the two phases

g=C.qdT. 3.40. 1

C.q is the heat capacity at two-phase equilibrium. Since moreover the
change is reversible we may write instead of (1)

dSy=C.dTIT. 3.40.2
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But for the change in question
dS,,={(0Sn/0T)p+(0S,/OP)rdP/dT}dT. 3.40.3
Comparing (2) with (3) we see that
Ceq=T{(0S,,/0T)p+(0S,,/OP)dP/dT}=Cp—aV,TdP/dT 3.40.4

using the definition (3.03.2) of Cp and Maxwell’s relation (1.47.4). Now
substituting from (3.37.9) into (4) we obtain

Coq=Cp—aV AH|AV 3.40.5

where A denotes the increase when unit amount passes isothermally from
the one phase to the other; as regards sign the same convention must of
course be used for AH and AV.

§3.41 Heat capacities at saturation

The most important application of the formulae of the previous section is to
the equilibrium between a liquid and its vapour. The quantities C,, are
then called the heat capacities at saturation and are denoted by C,,. If we
neglect the second virial coefficient of the gas and also neglect the proper
volume of the liquid compared with that of the gas, formula (3.40.5) becomes

Coar=Cp—aA HPV,/RT 3.41.1

where A H is the proper enthalpy of evaporation.

Formula (1) is applicable either to the vapour or to the liquid, but the
importance of the second term on the right is very different in the two cases.
For the vapour we have, still neglecting the second virial coefficient,

a=T"' PV,=RT 3.41.2
so that, using the superscript © for the gas, we obtain
CS,=CS—AH|T=C$—AS. 3.41.3

The second term on the right may be numerically greater than the first,
in which case C3, is negative. For example for steam at its normal boiling
point
Cp=34T K ' mole!
A.S=A H/T=40.6 kI mole™!/373 K=109 J K~ mole™*
so that
€S =(34—109)J K™ ! mole™! = —75J K~ mole™!
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and we see that the heat capacity of steam at saturation is negative.

For the liquid phase on the other hand the second term on the right of (1)
is much smaller than for the gas because V,, is smaller by a factor of some-
thing like 10™2 or less. Consequently for the liquid phase we may neglect
this term and replace (1) by

ch,=Ck 3.41.4

where the superscript “ denotes the liquid phase.

The formulae of this section may also be applied to the equilibrium con-
ditions between solid and vapour. Formula (3) is then applicable to the
vapour and formula (4) to the solid.

§3.42 Temperature dependence of enthalpies of evaporation and

of fusion

Consider any phase change such as evaporation or fusion and let the symbol
A denote the increase in any property when unit amount passes isothermally
from the one phase to the other in the direction such that AH is positive, i.e.
from liquid to gas or from solid to liquid. Then we have

AH|T=AS. 3.42.1

Differentiating with respect to T, varying P so as to maintain equilibrium,
we have
d(AH|T)=d(AS)/dT=A(dS/dT)=AC,,/T 3.42.2
or
d(AH)/dT— AH|T=AC,, 3.42.3

For equilibrium between liquid and vapour, C.,=C,,, is given by (3.41.3)
for the vapour and by (3.41.4) for the liquid. Substituting these into (3) we
obtain

d(A.H)/[dT=C5—Cp 3.42.4

the terms A, H/T on either side cancelling. Formula (4) involves the several
approximations mentioned in §3.41. It is formally similar to the exact for-
mula for a process taking place between pressure limits independent of the
temperature.

To obtain the temperature coefficient of an enthalpy of fusion, we have
to go back to (3.40.5), which we rewrite in the form

Ceq=Cp—(3VnfOT)p(A; H/A V) 3.42.5

where A; denotes the increase of a proper quantity on fusion. Substituting
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(5) into (3), we obtain
d(AH)[AT =ACp+ A H/T—(AHIT)@In AV [0 In T)p, 3.42.6

a formula due to Planck*. The magnitude of the last term on the right is
usually unknown and it is often neglected. Formula (6) then reduces to

Of the two terms on the right, either may be numerically greater. We thus
have aformula not even approximately of the same form as the formula for a
process taking place between pressure limits independent of the tempera-
ture.

Evidently the formulae of this section may mutatis mutandis be applied
to the equilibrium between two solid phases.

§3.43 Triple point

We have seen that the equilibrium condition for a single component between
two phases o and B

YT, P)=u¥(T, P) 3.43.1

is equivalent to a relation between P and T which can be represented by a
curve on a P-T diagram. Similarly the equilibrium between the phases
a and y can be represented by a curve on a P-T diagram. If these two curves
cut, we shall have at the point of intersection

(T, P)= (T, P)= (T, P) 3.43.2

and the three phases o, B, y will be in mutual equilibrium. This point of
intersection is called a triple point and the values of T and P at the triple
point are called the triple-point temperature and the triple-point pressure.

We have seen that a single component in one phase has two degrees of
freedom since temperature and pressure can be varied independently and
that two phases in mutual equilibrium have only one degree of freedom since
temperature and pressure are mutually dependent. We now see that three
phases can exist in mutual equilibrium only at a particular temperature and
particular pressure. Thus three phases of a single component in mutual
equilibrium have no degree of freedom.

In figure 3.4 the conditions of mutual equilibrium for H,O are shown'
on the P-T diagram.

* Planck, Ann. Phys. Lpz. 1887 30 574.
t From Landolt-Bdrnstein Tables.



SYSTEMS OF A SINGLE COMPONENT 125

-40 -20 © 20 40 60 80 100
3'°I|r||1];]r‘11

L e o

7
o
I
£
S

Ry —Is
[<]
o
2

— 4

3

[«
]lllIlllllllllllllllIJIIIJIlllllllllllllllllllll

|

40 60 80 100
7/k-273:15

Fig. 3.4. Equilibrium between ice, water, and steam

Triple points can also exist for two solid phases and one liquid phase or
for two solid phases and a vapour phase or for three solid phases. More
rarely we may have two liquid phases and a vapour phase or a solid phase.
A triple point can occur in a region where all three phases are metastable.
The conditions of equilibrium for sulphur are shown* in figure 3.5. There
are three stable triple points

T,: equilibrium between monoclinic, liquid, and vapour
T,: equilibrium between rhombic, monoclinic, and liquid
T,: equilibrium between rhombic, monoclinic, and vapour

* From Landolt-Bornstein Tables.
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Fig. 3.5. Phase equilibria of sulphur

and one metastable triple point

T,: equilibrium between rhombic, liquid, and vapour, all three phases
being metastable and the monoclinic being the stable form.

§3.44 Critical points

The P-V,, isotherms of all pure substances fall into two classes according
as the temperature lies above or below a critical temperature T,. Examples
of each class are shown in figure 3.6 for carbon dioxide* and in figure 3.7
for xenon'.

* Michels, Blaisse, and Michels, Proc. Roy. Soc. A 1937 160 367.
t Habgood and Schneider, Can. J. Chem. 1954 32 98.
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Fig. 3.6. Isotherms of carbon dioxide

When the proper volume is sufficiently large both classes approximate to
the rectangular hyperbolae PV,,= RT of a perfect gas. As the proper volume
diminishes, the form of the two classes is quite different. At temperatures
greater than the critical, there is a smooth regular variation along the whole
isotherm, which can be expressed mathematically by saying that it is a
single analytic curve or expressed physically by saying that throughout the
1sotherm there is a single fluid phase. At temperatures below the critical on
the other hand, the isotherm consists of three analytically distinct parts
separated by discontinuities of the slope. The middle portion is a straight
line parallel to the ¥, axis. These parts represent respectively the pure gas,
the saturated vapour in equilibrium with the liquid, and the pure liquid.
The isothermal curve for the critical temperature T is the borderline between
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critical temperature

the two classes of isotherms. In this isotherm the horizontal portion is reduced
to a single point of horizonta! inflexion.

Both diagrams show the locus of the points representing on the left the
liquid phase under the pressure of its vapour and on the right the locus of the
points representing the saturated vapour. As the temperature increases the
proper volume of the liquid at the pressure of its vapour increases, while
the proper volume of the saturated vapour decreases. At the critical temper-
ature the isotherm has a point of horizontal inflexion where the liquid
and vapour phases cease to be distinguishable. The state represented by
this point is called the critical state; the pressure and proper volumein the
critical state are called the critical pressure P. and the critical volume V.
respectively.
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To recapitulate, above the critical temperature the substance can exist in
only one fluid state. Below the critical temperature it can exist in two states,
the liquid with a proper volume less than the critical volume and the gas
with a proper volume greater than the critical volume. The equilibrium
pressure between the two phases, liquid and vapour, can have values up to
but not exceeding the critical pressure.

$3.45 Continuity of state

The relation between pressure P and proper volume ¥, of a single component
at a temperature below the critical temperature is shown diagrammatically
in figure 3.8. The portion KL represents the liquid state, the portion VW
the gaseous state, and the straight portion LV the two-phase system liquid +
saturated vapour.

0‘6 p— —_

| -

02

e o o - =

|

PP o

(o)

] ]
o o

b N
e
|

l

1
0
[+ ]

l

U N TR R N R

Fig. 3.8. Continuity between liquid and gas phases

At the given temperature the substance can be brought from the liquid
state to the gaseous state, or conversely, only by a change during part of
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which two separate phases will be present. By varying the temperature,
however, it is possible to bring the substance from the gaseous state repre-
sented by W to the liquid state represented by K by a continuous change
throughout which there is never more than one phase present. It is only
necessary to raise the temperature above the critical temperature, keeping
the volume sufficiently greater than the critical volume, then compress the
fluid to a volume below the critical volume, keeping the temperature above
the critical temperature, and finally cool the liquid to its original temperature,
keeping the volume sufficiently below the critical volume. This possibility
of continuity between the liquid and gaseous states was first realized by
James Thomson*, and he suggested that the portions KL and VW of the
isotherm are actually parts of one smooth curve, such as KLMONVW.
In point of fact, states corresponding to the portion VN are realizable as
supersaturated vapour, and under certain circumstances the same may be
true of the portion LM representing superheated liquid. Each of these por-
tions represents states stable with respect to infinitesimal variations, but
metastable relative to the two-phase system liquid +saturated vapour. The
portion of the curve MON, on the other hand, represents states absolutely
unstable, since here

OV ,/0P)y>0 3.45.1

and, according to (1.38.4), such states are never realizable.

Although the states represented by points on the curve LMONYV are
either metastable or unstable, they have been treated' as equilibrium states.
It follows that the sequence of states represented by the curve LMONV
corresponds to a reversible process. The change in the chemical potential u
of the fluid in passing through this sequence of'states is, according to (1.28.23)
given by

G G
,ﬁ-;ﬁ:f (0u/oP)rdP= J V,.dP 3.45.2
L L

where the integrals are to be evaluated along the curve LMONYV. But, since
the two states represented by “ and © can exist in equilibrium with each other,
we have

uC=p" 3.45.3
From (2) and (3) we deduce
G
f VadP=0 3.45.4
L

where the integral is to be evaluated along the curve LMONYV. The geo-

* J. Thomson, Proc. Roy. Soc. 1871 20 1.
t Maxwell, Nature 1875 11 357.
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metrical significance of (4) is that the two shaded surfaces LMO and ONV
are of equal area. This condition is due to Maxwell*,

It is instructive to reconsider continuity of state in terms of the Helmholtz
function &. Imagine this to be plotted as vertical coordinate against
T and V as horizontal Cartesian coordinates. The resulting locus is a curved
surface. Consider now cross-sections of this surface by planes T'=const.
Examples of these are shown diagrammatically in figure 3.9 and since

(OF[3V)p=—P 3.45.5

the slope of each curve at each point is equal to —P.

X |

T constant along each curve

[

JE—7

Fig. 3.9. Stable and metastable isotherms

In the upper curve we see that as V increases, the negative slope steadily
decreases numerically and so P decreases steadily. This is typical of any
temperature above the critical.

In the lower curve we see that there are two portions K'L’ and V'W’ in
which the negative slope decreases steadily as ¥ increases and these are
joined by a straight line L'V’ touching K'L' at L’ and touching V'W' at V'.
These three portions correspond to liquid, to gas, and to a two-phase liquid-
vapour system. This is typical of a temperature below the critical. The

* Maxwell, Nature 1875 11 357.
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broken portion of curve L'M’ represents superheated liquid and the broken
portion V'N’ represents supersaturated vapour. We see immediately that al
states represented by these portions of curve are metastable, for any point
on either of them lies above a point of the same volume ¥ on the straight
line L'V’. This means that the Helmholtz function of the superheated liquid
or supersaturated vapour is greater than in a system of the same volume
consisting of a mixture of liquid L' and saturated vapour V.
The portions of curve L'M’ and NV’ have curvature concave upwards
so that
OPjOV=—0*F[dV?*<0. 3.45.6

Hence according to (1.38.4) they represent states internally stable, though
metastable with respect to a two-phase mixture. If however we wish to unite
these two portions into a single smooth curve, the middle portion would
necessarily have a curvature concave downwards. This would correspond
to a positive value of OP/0V and so to unstable states and we saw in §1.38
that such states are never realizable. It may therefore be argued that no
physical significance could be attached to this part of the curve. Nevertheless,
if the realizable parts K'L'M’ and N'V'W’ of the surface could be represented
by the same analytical function, it would be reasonable from a mathematical
point of view to consider the complete surface. Having constructed such a
surface and considering a section corresponding to a particular temperature
below the critical, we could then plot P= —04/0V against V" and so con-
struct a curve such as that in figure 3.8. From this construction it follows of
necessity that in figure 3.8 the area below the broken curve LMONYV and
the area below the straight line LV are both equal to the height of L' above
V' in figure 3.9. Consequently these two areas are equal. From this it follows
immediately that the two shaded areas are equal as already proved. Since the
portion MON of the curve cannot be realized experimentally, instead of
saying that the two-phase equilibrium is determined by the condition of
equality of the two shaded areas, it is perhaps more correct to say that, L and
V being known, if the connecting portion of the curve were sketched in such
a manner as to make the two shaded areas unequal it would be nonsensica!
for then —P would not be the slope of any conceivable curve in the plot of
A& against V.

§3.46 Two phases at different pressures

In our previous considerations of equilibrium between two phases of one
component, we have assumed the equilibrium to be complete so that the
two phases were at the same pressure. The distribution equilibrium of one
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component between two phases at different pressures is also of interest.
Let us denote the two phases by the superscripts “ and P, Then the equilibrium
condition determining the change from the one phase to the other is accord-

ing to (1.42.1)
W=yl 3.46.1

If we vary the common temperature T of the two phases and the pressures
P* and PP of the two phases, the condition for maintenance of equilibrium is

dp*=dyP 3.46.2

or
(0u*OT)AT + (0p*/oP*)dP*=(0pP/dT)AT + (0p*/0PP)dPP.  3.46.3

Substituting from (1.28.22) and (1.28.23) we obtain

—S2dT+V2dP*=—SPdT + VEdPP 3.46.4
or
VEdPP—VidP*=(SE —Si)dT= ASAT 3.46.5
a—p

where A ; is used to denote the increase of a quantity when unit amount
passes from the phase o to the phase P.
Since we may rewrite (1) as

H: —TS* =HE - TSP 3.46.6
it follows immediately that

TAS= AH 3.46.7
a=p a—=p
just as for two phases at the same pressure. In fact formula (3.37.8) is a
special example of (7) and the physical significance is the same in both cases.
If we now substitute from (7) into (5) we obtain
VEdPP—V2dP*= AHAT|T. 3.46.8
a—+p

It is evident that two of the three quantities T, P%, P® are independent and so
the system has two degrees of freedom. The most important application of
these formulae is to the equilibrium between a liquid and its vapour. We
then use the superscript © for the liquid and © for the vapour. In this no-

tation (8) becomes

VSdPC—VLdP =(A H|T)AT 3.46.9

Where A H is the proper enthalpy of evaporation. According to the definition
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(3.17.1) of fugacity p, we may replace (9) by
RTdIn p—VLdP"=(A H/T)dT. 3.46.10

In particular at constant temperature we have for the dependence of the
fugacity of the gas on the external pressure P on the liquid

dln p/dP=VL/RT (T const.). 3.46.11

If we treat the vapour as a perfect gas, we may replace p by PC.
If, on the other hand, we maintain constant the pressure P on the liquid,
we obtain from (10) for the dependence of the gas fugacity on the temperature

dlnp/dT=A.H|RT? (P const.) 3.46.12
or if we treat the vapour as a perfect gas
dIn P°/dT=A,H/RT? 3.46.13
or
dIn P°/d(1/T)= —A. H/R. 3.46.14

It is instructive to compare (14) with (3.39.5). The latter involves neglecting
the proper volume of the liquid compared with that of the vapour, but the
former involves no such approximation. The difference between the exact
formula (14) and the approximate formula (3.39.5) is usually negligible
owing to the fact that in order to affect the saturated vapour pressure P
appreciably by change of the hydrostatic pressure P" at constant temperature,
one requires according to (11) pressures considerably greater than the vapour
pressure itself.

The direct experimental application of these formulae would require the
separation of the liquid from the vapour by a membrane permeable to the
vapour, but not to the liquid. This is difficult to achieve, though not impossi-
ble. Consequently the formulae have not much direct practical application.
They have nevertheless a real importance, which will become clear when we
consider systems of two or more components. We shall find that these
formulae remain true in the presence of another component gas insoluble in
the liquid, provided we interpret P as the partial pressure of the vapour
when mixed with the inert gas. We cannot profitably say more at this stage,
but we shall return to this point in §4.13.

§3.47 Fugacity of a condensed phase

In §3.17 we defined the fugacity p of a gaseous pure substance in terms of its
absolute activity A. We now define the fugacity of a pure substance in any
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condensed phase as being equal to the fugacity in the gas phase with which
it is in equilibrium. Evidently when two condensed phases are in equilib-
rium with each other the fugacities must be equal in the two phases.

With this extended definition we may regard formula (3.46.10), namely

dIn p=(AH/RT*)dT +(VE/RT)dP 3.47.1

as expressing the dependence of p, the fugacity of a liquid, on the temperature
T and the external pressure P. A precisely analogous relation applies to
a solid.

§3.48 Corresponding states of fluids

The principle of corresponding states asserts that for a group of similar
substances the equation of state can be written in the form

where ¢ is the same function for all the substances of the group.
Whereas it is not possible to express the equation of state in any simple
analytical form, the principle of corresponding states is obeyed with a useful
degree of accuracy by a considerable number of substances. It is in fact
obeyed within the accuracy of expzriment by the three inert elements Ar,
Kr, Xe and to a high degree of accuracy by these substances together with
Ne, N,, 0,,CO,and CH, . It would be misleading to try to divide substances
sharply into two groups, those which do and those which do not obey the
principle. It is obeyed more or less accurately by a great variety of sub-
stances. Deviations occur due to any one or several of the following causes:
(a) quantal effects in the lightest molecules, especially H,, He, and to a
much smaller extent Ne;
(b) polarity of the molecule or presence of strong polar groups even though
the resultant dipole moment vanishes as in CO,, SFg;
(c) large departures of shape from rough spherical symmetry as in the
higher alkanes and alkenes.
The principle is not obeyed at all by substances whose molecules form
hydrogen bonds, especially those containing hydroxyl or amino groups, nor
those such as NO, whose molecules associate.
We shall now review* briefly some of the experimental data which show
directly or indirectly how well certain substances especially Ne, Ar, Kr, Xe,
N,, 0,, CO, CH, obey an equation of state of the common form (1).

* Guggenheim, J. Chem. Phys. 1945 13 253; cf. Pitzer, J. Chem. Phys. 1939 7 583.



136

SYSTEMS OF A SINGLE COMPONENT

TABLE 3.8
Corresponding states of gases and liquids

Formula Ne Ar Kr Xe N, 0O, CO CH,
1  Mjgmole? 20.18 39.94 83.7 131.3 28.02 32.00 28.00 16.03
2 TJ/K 44.8 150.7 209.4 289.8 126.0 154.3 133.0 1903
3  V./cm?mole? 41.7 75.3 92.1 118.8 90.2 74.5 93.2 98.8
4 Patm 26.9 48.0 54.1 57.6 33.5 49.7 34.5 45
5 P,V/RT, 0305 0292 0290 0288 0292 0292 0294
6 Tg/K 121 411.5 327 345 491
7 TyT, 270 273 2.59 2.6 258
8 TJ/K (P,=P50) 25.2 86.9 122.0 167.9 74.1 90.1 78.9 110.5
9 TT, 0.563 0577 0582  0.580  0.588  0.583  0.593 (.54
10 A.H/RK 224 785 1086 1520 671 820 727 1023
11 A H/RT, 8.9 9.04 8.91 9.06 9.06 9.11 9.22 9.26
12 V,/cm? mole-! 228.1 34.1 42.7
13 Val Ve 0.374 0.371 0.376

In table 3.8 the first row gives the proper mass M, the next three rows
the critical temperature T, critical volume V., and critical pressure P..
The fifth row gives values of P,V /RT, which according to the principle
should have a universal value. All the values lie close to 0.29. It is of interest
to note that the value for xenon based on recent measurements is closer to
0.29 than the best experimental value 0.278 quoted in 1945.

In figure 3.10 the experimental data on the second virial coefficients of
Ar, Kr, Xe, and CH, are shown in the form of B/V, plotted against T/T,.
The data for the four substances were shown by McGlashan and Potter* to
be well fitted from high values of T/T, down to T/T,=0.6 by the empirical

formula

B|V,=0.430—0.886(T,/T) —0.694(T,/T)?. 3.48.2

They are also well fitted from high values of T/T, down to 0.5 by the curve
in figure 3.10 which represents the formula®

B/V,=0.440 + 1.40{1 — exp(0.75T,/ T)} 3.48.3

which can be derived theoretically from an interaction energy w between a
pair of molecules distant r apart of the ‘square-well’ form given by

r<o w=00
o<r<l.5¢ W= —¢ 3.48.4
r>1.5¢ w=0

* McGlashan and Potter, Proc. Roy. Soc. A 1962 267 478.
t Guggenheim, Applications of Statistical Mechanics, Clarendon Press 1966 p. 36.
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when the parameters ¢ and & have the values given by
$nLo®=0.447V,
£=0.936kT.,.
The Boyle temperature Ty at which the second virial coefficient changes sign
is given in the sixth row of table 3.8. In the seventh row are given values of
Tg/T. and all these values lie near 2.7.

3.48.5
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Fig. 3.10. Reduced second virial coefficients
The left-hand and upper scales relate to the upper curve.
The right-hand and lower scales relate to the lower curve.
C@, Ar; LA, Kr; &, Xe; 4, CH;,.
@ Recent measurements communicated privately to the author by Rowlinson and by

Staveley.
A Recent measurements communicated privately to the author by Rowlinson.

If o" denotes the density of the liquid and o€ that of the vapour in mutual
equilibrium at the temperature 7, while o, denotes the density at the critical
point, then according to the principle of corresponding states we should
expect ¢"“/o. and ¢%/o, to be common functions of T/T,. How nearly this is
the case is shown in figure 3.11. The curve in the diagram is drawn according
to the empirical formulae

(e"+¢%)/20.=1+3(1-T/T,) 3.48.6
(@~ %/e=3(1-TIT)". 3.48.7
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It is a pure accident that the data can be represented by formulae with such
simple numerical coefficients. These formulae as displayed above are of high
relative accuracy, but if used to compute @€ the percentage inaccuracy
increases with decrease of temperature and becomes serious below T
0.65T,. It is therefore not recommended to use these formulae for computing
values of ¢©. There are however occasions when we require relatively accurate
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Fig. 3.11. Reduced densities of coexisting liquid and gas phases

values, not of o€ itself, but of (@"—0%)/e.; on such occasions formula (9)
in view of its extreme simplicity and surprisingly high accuracy, has much
to recommend it. An example of its use will occur in §3.65.

At temperatures considerably below the critical temperature say 7<0.657,
it is more useful to consider the saturated vapour pressure P, instead of ¢°.
According to the principle of corresponding states we should expect Py/P.
to be a common function of 7/T,. That this is approximately the case is
seen from figure 3.12, where In(P,/P,) is plotted against 7,/T for several
substances. It is clear that the relation is nearly linear, so that we may write

In(P,/P,y=A~BT,/T 3.48.8
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where A4, B are constants having nearly the same values for the several sub-
stances. In the diagram the straight line which best fits the data for argon,
krypton, and xenon has been drawn. For this line

A=5.29 B=5.31 (triple point to critical point). 3.48.9

The fact that A4 is nearly but not exactly equal to B, means that the straight
line goes near to but not through the critical point. A formula of the
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Fig. 3.12. Relation between vapour pressure and temperature

type (8) has a theoretical basis at low temperatures, where the vapour
does not differ significantly from a perfect gas and the proper enthalpy of
cvaporation is nearly independent of the temperature. Under these conditions
A.H/R=BT,. At higher temperatures where the vapour pressure is greater,
neither of these conditions holds; the vapour deviates appreciably from a
perfect gas and A.H decreases, becoming zero at T=7,. At such tempera-
tures formula (8) is empirical, but remains surprisingly accurate owing to a
compensation between the two deviations.
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In the temperature range between the triple point and the normal boiling
point a formula of the type (8) becomes almost if not quite as accurate ag
the experimental data, but the best value for the constants 4, B over this
temperature range are not quite the same as the best values for the whole
range from triple point to critical point. For argon an excellent fit of the
experimental vapour pressures between the triple point and the normal
boiling point and of the calorimetrically determined enthalpy of evaporation
is attained with the values

A=5.13 B=5.21 (temperatures below n.b.p.) 3.48.10
A H=521RT,. 3.48.11

In the eighth row of table 3.8 are given the temperatures T, at which the
vapour pressure has a value one fiftieth of the critical pressure. In the ninth
row are given values of the ratio T,/T,. These are all close to 0.58.

In the tenth row of this table are given values of the proper enthalpy of
evaporation in the low temperature range where it is nearly independent of
the temperature. In the eleventh row are given values of A H/RT,. All
these values lie near to 9.0. Since A H/T; is the entropy of evaporation, this
aspect of the principle of corresponding states may be formulated thus:
the entropy of evaporation at corresponding temperatures, e.g. temperatures
at which the vapour pressure is one fiftieth the critical pressure, has a com-
mon value. The older rule of Trouton that substances should have the same
entropy of evaporation at their normal boiling points is not in accord with
the principle of corresponding states and is in somewhat less good agree-
ment with the facts.

In the twelfth row of the table are given values of ¥V, the proper volume
of the liquid at temperatures just above the triple point and in the thirteenth
row values of the ratio V,/V.. These values are all near to 0.375.

§3.49 Corresponding states of solids

The principle of corresponding states has a much more restricted applica-
bility to solids. It however applies with high accuracy to the group of the
inert elements Ne, Ar, Kr, Xe. The relevant data for comparison are given
in table 3.9. In the first three rows are given values of T, ¥, and P,.

In the fourth row are given values of the triple point temperature 7, and
in the fifth row values of the ratio T,/T,. All these values are near to 0.555.

In the sixth row are given values of the proper enthalpy of fusion AcH
divided by R and in the seventh row values of the entropy of fusion AgS
divided by R. These are all near to 1.69.



SYSTEMS OF A SINGLE COMPONENT 141

In the eighth row are given values of P,, the triple point pressure, and in
the ninth row values of the ratio 100P,/P,. These are all near to 1.4.

Finally in the tenth and eleventh rows are given the proper volumes P*
and ¥ of the liquid and solid respectively both at the triple point. In the
twelfth row are given the ratios ¥*/¥5, all near to 1.15.

TABLE 3.9

Corresponding states of solids

Formula Ne Ar Kr Xe

1 T /K 44.8 150.7 209.4 289.8

2 V. cm®mole! 41.7 75.3 92.1 118.8

3 P.atm 26.9 48.0 54.1 58.0

4 T,/K 24.6 83.8 116.0 161.3

5 TT, 0.549 0.557 0.553 0.557

6 AH/RK 40.3 141.3 196.2 276

7 A¢HIRT, 1.64 1.69 1.69 1.71

8 P /atm 0.425 0.682 0.721 0.810

9 100P/P, 1.58 1.42 1.33 1.40
10 VL/cm3 mole-! 28.14 34.13 42.68
11 ¥S/cm3 mole-! 24.61 29.65 37.09
12 yvL/ys 1.144 1.151 1.151

§3.50 Two simple equations of state

Many attempts have been made in the past to represent the equation of
state of gas and liquid throughout the whole P-¥-T domain by an analytical
formula. It is now known that it is not possible so to represent the experi-
mental data accurately except by complicated and unwieldy formulae of
little interest. On the other hand the distinction between liquid and gas
and the existence of a critical point can be deduced qualitatively from various
quite simple equations of state. Of these we shall mention only two of the
simplest.

The earliest attempt to describe semi-quantitatively the behaviour of a
real fluid was made by van der Waals. His well-known formula is

(P+a/V2)(Va—b)=RT 3.50.1
but in the present context it is more convenient to write it as

PV,=RT(1-4y) ' —alV, 3.50.2
where

y=bJ4V,. 3.50.3
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Van der Waals assumed a model of spherical molecules of volume /41,
or yV,/L. He also assumed that the proper attractive potential energy
could be expressed as —afV,.

From (1) or (2) we derive for the proper total energy U,

Up=—0a/Vy 3.50.4
and for the proper entropy S,
—S./R=In{y/(1-4y)}. 3.50.5

In (4) the zero of energy is that at zero density. In (5) the arbitrary constant
in the entropy is chosen so that in the limit of low density S,,/R— —In y.

It is now known that formula (5) for the entropy is valid only for densities
so low that y? is negligible; in other words it leads to a correct contribution
to the second virial coefficient, but very inaccurate contributions to all higher
virial coefficients. Formula (4) for the energy by contrast is inaccurate at
low densities but is a useful approximation at high densities.

We shall compare and contrast equation (2) with the equally simple
formula*

PV,=RT(1-y) *—a|V, 3.50.6

from which follows
Up,=—alV, 3.50.7
—Sa/R=In{y/(1-y)}+ 3y(1—4p)[(1-y)*+y*3(1-y)>. 3.50.8

In the limit of high temperatures the term —a/V,, in (6) becomes unimpor-
tant compared with the term proportional to 7. It is known that the latter
termis correct up to y> in contrast to the van der Waals term RT(1 —4y) which
is correct only up to y. In the limit of high temperatures we have the virial
expansions according to van der Waals

PV, /RT=1+4y+16y*+64y> +256y*+1024y° +...  3.50.9
and according to (6)
PVo/RT=1+4y+10y*+20y> +35y* +56y° +. . . 3.50.10

whereas the accurate expansion for non-attracting rigid spheres is known
to be

PVo/RT=1+4y+10y*+18.36y> +29.4y* +. . .. 3.50.11

* Guggenheim, Molec. Phys. 1965 9 199; Longuet-Higgins and Widom, Molec. Phys.
1964 8 549.
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We shall now compare other consequences of formulae (2), (4), (5) on the
one hand and (6), (7), (8) on the other. Where possible we shall also compare
with experimental data on argon. The complete comparison is given in
table 3.10. We first derive formulae relating to the critical point. These
are determined by the simultaneous conditions

oPjoy=0 9’P[oy*=0 3.50.12

which lead to the values of y. and of V_/b and of a/RT,V, given in the first
three rows.

TABLE 3.10

Comparison of equations of state

Van der Modified

Waals equation Experiment

1y 0.083 0.126

2 Vb 3 1.98

3 a/RT.V, 1.125 1.37

4 Tg/T.,=a/RT b 3.38 2.72 2.73

5 (PV/RT), 0.375 0.33 0.29

6 a/RT, V,E; (8.56) (8.56) 8.56

7 L 0.221 0.416

8 V,%/b 1.13 0.600

9 Vn';/ V. 0.377 0.303 0.374
10 ln(PVn';/RT) —7.40 —6.01 —5.89
11 P_VLRT, 0.141 0.109 0.108

We next obtain the Boyle temperature 7y given by
RTy=alb 3.50.13
and the values of the ratio Ty/T, are given in the fourth row.
The fifth row gives values of (PV/RT), obtained from the values in the
first and third rows by means of the equation
(PV|RT).=1—4y.—a/RT_.V, 3.50.14
or the equation
(PVIRT).=(1—y.)*—a/RT,V,. 3.50.15

Hitherto we have not assumed any experimental values. To obtain quantita-
tive results concerning the liquid denoted by the superscript " at or near the
triple point denoted by the subscript , we equate a/RT, Vg, to the experimental
value for argon, or indeed any substance conforming to corresponding
States with respect to argon, of A, U/RT, where A U is the energy of evapora-
tion. This is shown in the sixth row. We now put PV==0 in (2) and in (6)
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to obtain the values of " in the seventh row and thence the values of V/b
in the eighth row. By combining the figures in the second and eighth rows
we obtain the values of V5/V, in the ninth row.

For the equilibrium between liquid and vapour at the triple point we have

puC=ut. 3.50.16

If we treat the vapour as aperfect gas and set PVu/RT=0 we have the
equations
In y®—1=a/RT,VE+In{y"/(1-4y")} 3.50.17

or alternatively
In y©—1=a/RT, Vg +In{y"/(1-y")} + 3y (1 = 3y")/(1 - y")*
+y"33(1-y4)3. 3.50.18

Using
Y|y =VEIVS=PVEIRT 3.50.19
we can rewrite (17) as
In(PVE/RT)=1+a/RT, Vs —In(1—4y") 3.50.20
and (18) as

In(PVE/RT)=1+a/RT,VE=In(1—y)+3y"3(1 - $y")/(1 - y*)?
+Y33(1—yh)>. 3.50.21

Using the values of a/RT, V% in the sixth row and of y* in the seventh row
we obtain the values of In(PVL5/RT,) in the tenth row.

We observe that the equation of state (6) in contrast to the van der Waals
equation (2) leads to remarkably good agreement with experiment except
for expressions containing V.. This is not surprising. Because 8V/0P— 0
at the critical point a small inexactitude in the P-¥ curve may affect P,
only slightly but will have a pronounced effect on V.. This is borne out by
multiplying (PV/RT), by V,/V,. and obtaining the values of P.V,/RT, in
the last line of the table.

§3.51 Zero-temperature entropy in crystals

In §3.26 we gave formula (3.26.4) for the conventional entropy of a slightly
imperfect gaseous element composed of monatomic molecules. This formula
is composed additively of contributions from

(a) translational degrees of freedom

(b) electronic degrees of freedom

(c) gas imperfection.
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In §3.28 we gave, for the conventional entropy of a slightly imperfect
gas composed of linear molecules, in formulae (3.28.5) and (3.28.10)
respectively, the further contributions from rotational and vibrational degrees
of freedom.

In §3.29 we gave formula (3.29.4) for the rotational contribution to the
entropy of a slightly imperfect gas composed of non-linear molecules and
formula (3.29.7) for the vibrational degrees of freedom.

Thus all the conventional formulae for a slightly imperfect gas include
contributions from

(a) translational degrees of freedom

(b) electronic degrees of freedom, if any

(c) gas imperfection

(d) rotational degrees of freedom, if any

(e) vibrational degrees of freedom, if any
All other possible contributions are excluded, in particular

(f) intranuclear degrees of freedom

(g) mixing of isotopes.

There are two good reasons for disregarding the contribution of intra-
nuclear degrees of freedom. In the first place they are in many cases not
known. In the second place under terrestrial conditions the nuclear contri-
bution of each nuclidic species is a constant independent of temperature,
pressure, phase, composition, and chemical change.

The contribution due to isotopic mixing is ignored because it remains
constant as long as the isotopic composition remains unchanged. Variations
in isotopic composition will be discussed in §3.55.

We have now reinterpreted what we mean by the conventional proper
entropy SS(7, P) of a slightly imperfect single gas at a chosen tem-
perature and pressure. Since any entropy change can be determined by
calorimetric and related measurements, we can in particular determine

SY(T, P)-S3(T', P') 3.51.1

where the superscript ® denotes the solid crystalline phase. If 7" is sufficiently
small we can use Debye’s approximation (3.32.2) to extrapolate 7'—0 so
as to obtain a value of S5(0, P’). The dependence of S,, on P is negligible,
and in fact vanishes as T—0, and we therefore abbreviate S3(0, P) to S3(0).
We thus have a calorimetric value of

SS(T, P)—S5,(0). 3.51.2

The quantity specified in (2) is often called the calorimetric entropy of the
gas at the given temperature and pressure, whereas the conventional
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entropy of a gas So(7, P) is often called the spectroscopic entropy of the
gas at the given temperature and pressure.

It is found experimentally that for all elements the calorimetric entropy
is equal to the spectroscopic entropy. (The exceptional behaviour of hydro-
gen will be discussed in §3.56.) Thus

ST, P)—S5(0)=SS(T, P)  (element) 3.51.3

and consequently
S5(0)=0  (element). 3.51.4

Formula (4) expresses our earlier definition of conventional entropy
given in §3.25. We have now verified that the convention used in §3.25 is
equivalent to the convention described in the present section.

It is found experimentally that the equations (3) and (4) also hold for
most compounds, but there are about half a dozen well-established excep-
tions.

§3.52 Two numerical examples

We shall now illustrate the content of §3.51 by two numerical examples.
We choose N, and CO.

To calculate the conventional or spectroscopic entropy of nitrogen we
use the following data. The proper mass is 28.02 g mole ™!, The rotational
characteristic temperature @, is 2.87 K and the vibrational characteristic
temperature @, is 3.35 x 103 K. The symmetry number s is 2. At the boiling
point 77.32 K and a pressure of 1 atm we have, using (3.27.4) and (3.28.5)

Sa(T,)/R=%+4% In(T,/4.333 K)+3 In(M/g mole™!) +1n(T,/sO.)
=7+3%1n(77.32/4.333) +3 In 28.02+1n{77.32/(2 x 2.87)}
=3.50+7.20+5.00+2.60 =18.30. 3.52.1

The contributions from the vibrational degree of freedom and from gas
imperfection are negligible.

We next calculate the calorimetric entropy. As usual we use superscripts *
for solid, * for liquid, and © for gas. We use subscripts ,, to denote a transi-
tion, ¢ to denote fusion, and . to denote evaporation. We use the follow-
ing data

Ter
f C%dIn T=6.49 cal K~ ! mole™!
(4]

including an extrapolation from 15K to 0 K,
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Te
J C3dIn T=5.59 cal K™ ! mole™!
Ttr

To
f C'd1In T=2.73 cal K™ ! mole™!
Te

T,=3561K  A,H=54.71cal mole™*
T;=63.14 K A;H=172.3 cal mole™!
T,=7732K A H=1332.9 cal mole™".

Hence the calorimetric entropy at the boiling point and at one atmosphere

SY(Ty)-S50)
=(6.49+54.71/35.6145.59+172.3/63.1442.73+1332.9/77.32) cal K™ mole™!
=(6.49+1.544+5.59+2.734+2.73+17.24) cal K" ! mole !

=36.32 cal K™ ! mole™*

and consequently
{SS(T,)—S%(0)}/R=18.3. 3.52.2
From (1) and (2) we conclude that the conventional entropy S5(0) of the
solid at 0 K is zero.
When we do precisely analogous calculations for carbon monoxide
we obtain at 1 atm
S(T,)/R=%+3%1n(81.61/4.333)+3 In 28.01 +1In(81.61/2.77)
=3.50+7.34+5.00+3.38=19.22 3.52.3
Sal(To) = Sm(0)
=(10.09+151.3/61.55+1.23+199.7/68.09
+2.61+1443.6/81.61) cal K™ ! mole ™"
=(10.09+2.46+1.23+2.93+2.61 +17.69) cal K™! mole~!
=37.01 cal K~! mole™!

and consequently
{SS(T,) - S5(0)}/R=18.6. 3.52.4

Comparing (3) and (4) we find for the conventional entropy of the crystal
at 0K
S5 (0)/R=0.6=In2 3.52.5

within the experimental accuracy.
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§3.53 Statistical-mechanical interpretation

We recall that by definition the vanishing of the conventional entropy of a
crystal extrapolated to 7—0
S3(0)=0 3.53.1

holds for all elements. The special behaviour of hydrogen is discussed in
§3.56. Formula (1) also holds for the vast majority of compounds. The
best established exceptions are CO, NNO, NO, H,O0.

Classical thermodynamics has nothing to add to this statement. It is
however instructive and interesting to discuss the statistical-mechanical
interpretation. The interpretation of (1) is that the lowest energy level of the
crystal is non-degenerate. This implies that the structure of the crystal is
perfectly regular showing no kind of randomness.

The condition (1) found for most crystals states that the conventional
zero-temperature entropy of the crystal is zero. This means that the contri-
butions to the entropy from the translational, electronic, rotational, and
internal vibrational degrees of freedom are all zero. In other words dis-
regarding intranuclear degrees of freedom and isotopic composition, we
may say that no other degrees of freedom contribute anything to the entropy.
Statistical theory tells us that this corresponds to the crystal being in a
perfectly ordered state, provided we disregard intranuclear degrees of
freedom and isotopic composition. Thus a combination of statistical theory
with experimental data tells us that as the temperature decreases, most
crystals tend towards a state of perfect order apart from intranuclear
phenomena and isotopic composition. More strictly we should say that this
is how the crystal appears to behave judged by the experimental data in
the region of 0 K.

§3.54 Simple typical exceptions

We shall now consider exceptions to the general rule S5(0) = 0. For this
purpose it is convenient to define a number o by

S3(0)=RlIno 3.54.1

so that usually o=1. The two simplest exceptions are CO and NNO. In
both cases within the experimental accuracy o=2. The statistical interpre-
tation of the value 2 for o is that instead of perfect order in the crystal,
there are two possible orientations for each molecule and the molecules are
randomly distributed between these two orientations. This is what we should
expect to happen in the case of a linear molecule whose field of force is
nearly but not quite symmetrical so that the molecule can be reversed end
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for end without an appreciable energy change. Statistical theory tells us
that the equilibrium distribution of directions will remain random down to
temperatures at which 7 is comparable with the energy difference in the
two orientations. At temperatures where k7 is much smaller than the energy
difference between the two orientations, then only one orientation will be
stable, but at such low temperatures it may well be that the molecules have
not sufficient energy to turn round. In simple words when the crystal is so
cold that the molecules have a preference for one orientation they have too
little energy (are ‘too cold’) to change their orientations. Such a crystal at
the lowest temperatures will remain in a state with 0=2 and this state is
metastable with respect to the ideal unrealizable state of ordered orientation
with o=1. It is believed that this is a true description of the behaviour of
crystalline CO and NNO at the lowest temperatures. It is interesting to
note that the SCO molecule is not sufficiently symmetrical to behave in
this way and the experimental data are consistent with o=1.

The case of NO is somewhat more complicated. It is suggested that at
the lowest temperatures the molecular unit is 5y and that owing to the simi-
larity between N and O atoms the two orientations he and o have nearly
equal energies. There would then be a random distribution over these two
orientations. This would lead to a value of 0=2 for the molecular unit
N,0,; the corresponding value of o expressed in terms of the molecule NO
is 2% and this value is in agreement with experiment within the estimated
accuracy.

The other well established case of 0> 1 believed due to simple orienta-
tional randomness is that of ice. To account for the experimental data the
following assumptions are made.

(1) In ice each oxygen atom has two hydrogens attached to it at distances
about 0.95 A forming a molecule, the HOH angle being about 105°
as in the gas molecule.

(2) Each HOH molecule is oriented so that its two H atoms are directed
approximately towards two of the four O atoms which surround it
tetrahedrally.

(3) The orientations of adjacent HOH molecules are such that only one H
atom lies approximately along each O-O axis.

(4) Under ordinary conditions the interaction of non-adjacent molecules
is not such as to stabilize appreciably any one of the many configura-
tions satisfying the preceding conditions relative to the others.

On these assumptions Pauling* calculated that theoretically o =3. Experi-
mentally this value is verified for both H,O and D,0.

* Pauling, J. Amer. Chem. Soc. 1935 57 2680.
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§3.55 Isotopic mixing

The presence of isotopes can have three effects, which we shall now consider.
The first effect is that In M must be replaced by the suitably weighted sum

Y x/In M, 3.55.1

where x; is the mole fraction of the particular isotope i having a proper
mass M;. Similarly In @, must be replaced by

Y x;In6, 3.55.2

where @, is the value of O, for the particular isotope i. The terms in O,
must similarly be replaced by suitably weighted averages. It should not
be necessary to give details, especially since in almost all cases it is suffi-
ciently accurate to replace these averaging rules by the simpler rules of
replacing

M by z x,'M,' 3.55.3
6, by Z x;0, 3.55.4
0, by Y x,0,. 3.55.5

It is only in the cases of H,, D,, and possibly other very light molecules
containing H, D that these simpler averaging rules may not always be
sufficiently accurate.

The term H° occurring in H,, and in g, but not in S,, must likewise be
replaced by the weighted average

Y x.H). 3.55.6

The second effect is that any phase whether solid, liquid, or gaseous, con-
sisting of a mixture of isotopic molecules in mole fractions x;, has a proper
entropy exceeding the proper entropy of similar phases of the pure isotopes
at the same temperature and pressure, and this excess is

—szi ln xi 3.55.7

which is always positive since x;<1. We shall meet formula (7) again in
chapter 4. In the present context we need only note that as long as the solid
and gas have the same isotopic composition, the terms of the form (7)
cancel and so contribute nothing to o.
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The third effect to be considered is that associated with difference in
symmetry. Let us consider the particular example of Cl,. There are three
kinds of molecules 33C133Cl, 37CI37Cl, and 3°C13"Cl. For the molecules
35C135C1 and 37C137Cl the symmetry number s is 2, while for the molecule
35CI37Cl it is 1. In the crystal, on the other hand, o for 3*CI137Cl will have
the value 2 because each molecule can be reversed to give a physically distinct
state of the crystal of effectively equal energy, whereas for 3*CI*3Cl and
37C137Cl there are not two distinguishable orientations of effectively equal
energy and so o is 1. Thus the product so has the same value 2 for all three
types of molecules. Ignoring the isotopic composition means then assigning
to 35CI137Cl a fictitious value of s=2 instead of s=1 and to o a fictitious
value o=1 instead of 0=2. When we compare the entropies of the gas and
the crystal, and it is only in such comparisons that the values assigned to S,
have any significance, the two errors cancel.

It is instructive to compare the behaviours of CO and N, with those of
35C137Cl and 33CI33Cl. We saw in §3.52 that for CO the value of o is 2 while
of course s=1. We should however obtain correct results if we assumed as
for N, that o=1 with s=2, using this effective symmetry number because
CO is an effectively symmetrical molecule.

The same principle holds in more complicated cases. For example com-
paring the isotopic molecules CH,, CH;3D, CH,D, we see that for the
first s=12, o=1, for the second s=3, 0=4 and for the third s=2, 0=6 so
that in all three cases the product so is 12.

§3.56 The exceptional case of hydrogen

Hydrogen is exceptional in several respects. This is due partly to its molecule
having such a small moment of inertia with a consequently high value of the
rotational characteristic temperature ©,=85.4 K. It is also partly due to
the molecules having an exceptionally small field of force so that even at
very low temperatures they still rotate in the crystal. We shall not here go
into the theory* of the behaviour of hydrogen as this would take us too far
afield. We shall merely state the facts sufficiently to show how the various
thermodynamic formulae must be used so as to obtain correct results.
For the sake of consistency we define the conventional zero of entropy
precisely as for all other molecules, so the formulae of §3.26 to §3.28 are
valid for the gas. As regards the physical meaning of this convention, instead
of completely neglecting the intranuclear degrees of freedom we ignore the

* Fowler and Guggenheim, Statistical Thermodynamics 1939, Cambridge University
Press § 531.
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contributions due to any intranuclear degrees of freedom other than result-
ant nuclear spin, and the contribution due to the spin of the two nuclei in a
hydrogen molecule is taken to be the same as if the nuclei were present in
independent atoms. Any actual deviation from this will then appear in o,

We shall first consider the gas. The usual formulae for gases with diatomic
molecules are applicable only at temperatures large compared with O,
and consequently for H, they are valid only above about 300 K.

At ordinary temperatures and a fortiori at lower temperatures the vibra-
tional degree of freedom in H, may be ignored. As the temperature decreases
from about 300 K to about 45 K the rotational contributions to the thermo-
dynamic functions drop from the values for a pair of classical degrees of
freedom to values for unexcited degrees of freedom. In particular at
temperatures around 45 K or lower

— ot/ RT=S,,/JR=%1n3 3.56.1
H, /RT=0. 3.56.2

The constant term £ In 3 in (1) is due to the fact that hydrogen behaves as a
mixture of } para hydrogen with a proper rotational entropy zero at low
temperatures and # ortho hydrogen with a proper rotational entropy R1ln 3
at low temperatures.

Turning now to the crystal, let us first ignore any experimental data
below 12 K and extrapolate smoothly the data between 20 K and 12 K in
the usual way. We thus obtain well determined values of

So(T)—S5(0)=S$(T)—R Ino. 3.56.3

We may use the usual formula for S$(T') with 7>300 K or alternatively
formula (1) for S9(7') with T<45 K; by either procedure we obtain a value
for o agreeing within the experimental error with

Ino=2%1In3. 3.56.4

We notice that the conventional zero-temperature entropy of the crystal
obtained by smooth extrapolation from 12 K is the same as the rotational
entropy in the gas below 45 K.

This would complete the picture of ordinary hydrogen were it not for
the existence of experimental data on the crystal between 12 K and 2 K.
In this range the entropy decreases with anomalous rapidity. In fact the
heat capacity not only is anomalously greater than corresponds to the form
aT?, but it actually increases as the temperature decreases below 6 K.
On theoretical grounds it is clear that the ortho molecules are somehow
beginning to ‘line up’ with a consequent decrease of entropy. There can be
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little doubt that if these experimental data extended to still lower tempera-
tures the heat capacity would eventually become normal again after there
had been a total loss of proper entropy 3R In 3. If we then determined
S3(0) from here instead of by extrapolation from 12 K, we should find

o=1. 3.56.5

Up to this point we have assumed that the crystal, like the gas, consists of
the ordinary metastable mixture of } para hydrogen and # ortho hydrogen.
For a mixture of this composition the contributions of nuclear spin to the
entropy are normal and so their conventional omission leads to no complica-
tions. If however the crystalline hydrogen were converted to stable pure para
hydrogen there would be a decrease in the contributions to the proper
entropy of #R In 3 from the nuclear spins and of —R(3 In3+1% In}) from
the mixing of the para and ortho molecules. This would manifest itself as

o=%. 3.56.6

The conventional zero-temperature entropy of stable para hydrogen has the
negative value
S$(0)=—RIn4  (para hydrogen). 3.56.7

For deuterium D, the general picture is similar with several differences of
detail. The gas behaves like other diatomic gases at temperatures exceeding
200 K. Between this temperature and about 25 K, the rotational contribu-
tions to the thermodynamic functions drop from their values for a pair of
classical degrees of freedom to values for unexcited degrees of freedom. In
particular below 25 K

— o/ RT=8,,/R=%1n3 3.56.8
H,/RT=0. 3.56.9

The constant term 4 In 3 in (8) is due to the fact that D, behaves as a mixture
of 4 ortho deuterium with a proper rotational entropy zero at low tempera-
tures and 4 para deuterium with a proper rotational entropy Rln 3 at low
temperatures.

For the crystal similarly, if one extrapolates in the usual way from a
temperature between 20 K and 10 K one obtains

S$(0))R=Ino=%1n3. 3.56.10

For the ordinary metastable mixture of 4 ortho deuterium and 4 para
deuterium the contributions of nuclear spin to the entropy are normal and
so their conventional omission leads to no complications. When, however,
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the crystalline deuterium is converted to stable pure ortho deuterium there
is a decrease of R(} In 3+ % In 6) in the contribution of nuclear spins to the
proper entropy and a decrease of — R(% In 4+ % In %) from the mixing of the
ortho and para molecules. If we assume that at the lowest temperature the
molecules line up, as we know to be the case with H,, this will manifest
itself as
0=3=4%.
The conventional zero-temperature entropy of stable ortho deuterium is then
S5(0)=RIn%

which is negative.

§3.57 Third law of thermodynamics and the Nernst heat theorem

We recall our formulation of the third law in §1.66 which we now repeat.

By the standard methods of statistical thermodynamics it is possible to
derive for certain entropy changes general formulae which cannot be derived
from the zeroth, first, or second laws of classical thermodynamics. In the
present chapter we have had three distinct examples of this type.

In the first place we have quoted in §§3.26-3.29 results of completely
general validity for the entropy of gases at sufficiently high temperatures.

In the second place we have quoted a result of completely general validity
for the increase of entropy when isotopes, or for that matter any other
very similar molecules, are mixed at constant temperature and pressure.

In the third place we have quoted a result concerning the conventional
zero-temperature entropy of a crystal, namely that its conventional value
is usually but not always zero.

This last result, in the form quoted, is not altogether satisfactory because
it admits exceptions without indicating how or when these occur. It is
therefore desirable to try to replace this statement by a more definite
statement not admitting exceptions. The following statement fulfils these
requirements.

If AS denotes the increase in entropy in any isothermal change which we

represent symbolically by
a—p 3.57.1

and we extrapolate AS to T=0 smoothly in the usual way, then if the states
o and B are both internally stable, or if any kind of internal metastability
present is not affected by the change a—B, then

lim AS=0. 3.57.2

T-0
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If on the other hand « is internally metastable, while B is stable, so that the
change a—p removes the metastability, then
lim AS <0. 3.57.3
T-0
The case where o is stable and P metastable does not arise, since the change
a— B would then be impossible. The above statements constitute an amended
form* of a theorem first stated by Nernst and usually known as the Nernst
heat theorem.
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Fig. 3.13. Melting curve of helium

We shall now verify that the behaviour already described of crystals in
the limit 7—0 is in accord with the above general statement.

We observe that the several exceptional crystals for which o is not unity
are in fact in internally metastable states with some form of randomness of
arrangement of the molecules. If by any means it were possible to change such
a crystal to the stable completely ordered modifications o would be reduced
from a value greater than unity to the value unity and so (3) is satisfied.

* Simon, Ergeb. Exakt. Naturw. 1930 9 222.
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Examples of changes satisfying (2) are allotropic changes such as

white tin—grey tin
monoclinic sulphur—rhombic sulphur.

In each of these examples, although at low temperatures and ordinary pres-
sures the first form is metastable with respect to the second, both forms are
completely stable with respect to internal changes. In each case for both
phases o=1 and so the equality (2) is obeyed.

Another interesting example is that of helium, the only substance which
remains liquid down to 7=0. The liquid is changed to solid under pressure.
The relation between the pressure and the freezing temperature is shown
in figure 3.13 from which it is clear that

lim dP/dT =0. 3.57.4

T-0
But according to the Clapeyron relation this is equivalent to

lim AS/AV =0. 3.57.5

T-0
But AV is certainly finite and so (5) implies
lim AS=0. 3.57.6

T-0

The most numerous and important examples of the relation (2) are those of
chemical reactions between solid phases, for example

Ag+I-Agl
These will be discussed in §6.11.

§3.58 Thermal expansion at low temperatures

It is an experimental fact that the coefficient of thermal expansion of solids
and of liquid helium tends towards zero as the temperature is decreased. But
according to Maxwell’s relation (1.47.4), this implies that

lim (3S/0P);=0. 3.58.1

T-0

If we integrate this from P, to P,, we obtain

lim {S(7; P,)— S(T, P,)} =0 3.58.2

T-0

which is in accordance with the general relation (3.57.2).
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This is the only example of the application of (3.57.2) to a simple physical
change which we can discuss at this stage. In chapter 11 we shall consider an
interesting application to variation of the strength of an applied magnetic
field.

§3.59 Unattainability of zero temperature

The general laws formulated in the preceding sections concerning the
behaviour of matter extrapolated to T=0 are equivalent to the following
theorem*,

It is impossible by any procedure, no matter how idealized, to reduce the
temperature of any system to zero temperature in a finite number of
finite operations.

We shall now prove this equivalence. Let us consider a process (e.g.
change of volume, change of external field, allotropic change) denoted
formally by

o—p. 3.59.1

We shall use the superscripts * and ® to denote properties of the system in the
states o and P respectively. Then the proper entropies of the system in these
two states depend on the temperature according to the formulae

T

St =8%+ f (CYT)AT 3.59.2
0
T

SE=52P+ f (CHT)YAT 3.59.3
0

where S, SO are the limiting values of S%, S for T—0. It is known from
quantum theory that both the integrals converge. Suppose now that we start
with the system in the state o at the temperature 7' and that we can make the
process a—f take place adiabatically. Let the final temperature after the
system has reached the state B be T''. We shall now consider the possibility
or impossibility of 7" being zero. From the second law of thermodynamics
we know that for an adiabatic process defined by its initial and final states
the entropy increases if there is any irreversible change and remains constant
if the change is completely reversible. It is therefore clear that the chances
of attaining as low a final T as possible are most favourable when the change
is completely reversible. We need therefore consider only such changes.
* Simon, Science Museum Handbook 1937 3 p. 61. All earlier discussions are unnecessa-

rily restricted. Cf. Fowler and Guggenheim, Statistical Thermodynamics, Cambridge
University Press 1939 § 538.
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For a reversible adiabatic change (1) we have then by (2) and (3)
S% 4 J:'(c"/r)dr= SoP 4 LT”(C”/T)dT. 3.59.4
If 7" is to be zero, we must then have
SO 8% = JOT,(C“/ T)dT. 3.59.5

Now if S% —$9*> 0t will always be possible to choose an initial 7" satisfying
(5) and by making the process a—p take place from this initial 7" it will be
possible to reach T''=0. From the premise of the unattainability of =0
we can therefore conclude that

SO < 80 3.59.6

Similarly we can show that if we can make the reverse process take place
reversibly and adiabatically then we could reach 7' =0 from an initial
temperature 7' satisfying

-
S0 _ 808 = f (C*/T)dT. 3.59.7
0

Further if S2*—S% >0, we can always choose an initial 7" satisfying (7).
From the unattainability of T=0 we can therefore conclude that

So < 508, 3.59.8
From (6) and (8) we deduce
S0 = g% 3.59.9

which is precisely formula (3.57.2) of Nernst’s heat theorem.

We can also show conversely that given (9), neither the process a—p nor
the reverse process B—o can be used to reach T=0. For, assuming (9) to be
true, we now have for the adiabatic process the initial temperature 7’ and
the final temperature 7' related by

- -
f (C“/T)dT:f (CHT)T. 3.59.10
0 0
To reach T"'=0 we should require
-
f (C*T)T =0. 3.59.11
0

But, since C*>0 always, for any non-zero T it is impossible to satisfy (11)-
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Hence the process cannot be used to reach T=0: The proof for the reverse
process f—a is exactly similar.

In the above argument we have assumed that the states « and  are connect-
ed by reversible paths. If all the phases concerned are phases in complete
internal equilibrium the changes concerned must presumably be regarded
as reversible. If any phase occurs naturally in metastable internal equilib-
rium, a process affecting it may or may not disturb the frozen metastability.
If it does not disturb it, then the change may still be regarded as reversible,
but otherwise it will be a natural irreversible change. We shall now verify that
by using internally metastable phases we are still unable to reach 7'=0.
In fact as foreshadowed above the irreversibility involved makes the task
more difficult.

Suppose for example that « is internally metastable, while B is internally
stable. Then according to the Nernst heat theorem

S 08, 3.59.12

But the change a— is a natural irreversible process and the opposite change
is impossible; hence the adiabatic change a—f takes place with increase of
entropy, so that

T T
sﬁ:+f (C“/T)dT<s,‘3,°+f (C*/T)dT. 3.59.13
0 0
Thus to attain 7"’=0 we must have
-
J (CYT)dT <SP —-8%<0 3.59.14
0

using (12). But since C*>0 always, it is impossible to satisfy (14) and so we
again find it impossible to reach 7=0.

We shall revert to the subject of the unattainability of 7=0 at the end
of chapter 11 on magnetic systems.

§3.60 Interfacial layers

We complete this chapter by a consideration of interfacial layers. In a one-
component system we cannot usually have more than one liquid phase and
so we need consider only the interface between a liquid and its vapour. The
interfacial tension of such an interface is called the surface tension of the
liquid.

As we have seen, a one-component system with two bulk phases has one
degree of freedom. We may accordingly treat the temperature as the inde-
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pendent variable; the pressure is then determined by the temperature. Thus
the properties of the interfacial layer, in particular the surface tension, will
be completely determined by the temperature. Our main task is therefore to
consider how the surface tension depends on the temperature.

§3.61 Temperature dependence of surface tension

We begin with formula (1.57.3) which for a single component reduces to
—dy=S%dT —tdP+TI'dy 3.61.1

where S denotes S°/A.

From the equilibrium between the liquid phase, denoted by the super-
script , and the gas phase, denoted by the superscript ¢, we have as in
§3.37

du=—-SLdT+VEdP=—SSdT+VIdP. 3.61.2
When we eliminate du and dP from (1) and (2) we obtain
—dy/dT=(S5—TSL)—(t—TVEXSS-SL)/(VE-VE).  3.61.3

This formula relates the temperature coefficient of the surface tension to
certain entropy changes. Before we examine this formula in any detail,
we shall show how it can be transformed to another relation involving energy
changes instead of entropy changes.
For the two bulk phases we have as usual
p=GL=UL~TS:E+PVE 3.61.4
u=GS=US—TSS+pPVs. 3.61.5

For the surface layer we have by applying to unit area the formulae of
§1.56

Iuy=G4=U3—-TSY+Pt—y 3.61.6

where G denotes G°/4 and Uj denotes U°/4. We now use (4), (5), and (6)
to eliminate S5, S$, and S° from (3). We obtain

—Tdy/dT=(Uy—TUL)+P(t—TV5)—y
—(=TVHUS-UL)I(VE-VE)-P(x—TVy). 3617
The terms containing P cancel and (7) reduces to

y=Tdy[dT=(U-TUL)—(r—=TVEXUS—UL)(VE-VE). 3.61.8
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§3.62 [Invariance of relations

We recall that according to the definition in §1.53 of a surface phase the
properties associated with it depend on the position of the boundaries AA’
and BB’ in figure 1.2. We shall henceforth refer to these as the Lo and the
Go boundaries respectively. Since the precise placing of these boundaries
is arbitrary, the values assigned to such quantities as 7, I', S°, U® are also
arbitrary. We can nevertheless verify that our formulae are invariant with
respect to shifts of either or both of the boundaries. It is hardly necessary
to mention that the intensive variables 7, P, and p are unaffected by shifts of
either boundary. It is also clear from the definition of 7 in §1.58 that its
value is invariant.

Let us now consider a shift of the plane boundary through a distance 57
away from the gas phase. Then I" becomes increased by the amount of liquid
in a cylinder of height 87 of cross-section unity and consequently of volume
7. Thus I' becomes increased by 8t/ V5. It follows immediately that t — ['V%
remains invariant. Similarly S§ becomes increased by the entropy in a
cylinder of liquid of volume &t that is to say by an amount SL&7/VL.
It follows immediately that S5—I'Sy remains invariant. Precisely similar
considerations show that U§—TI'UY remains invariant.

We have now to consider a similar shift of the Go boundary through a
distance 87 away from the liquid phase. Then I is increased by 81/¥'C and
so t—TI'V is increased by (VS — Vk)dt. Similarly S5— I'SL is increased by
(SS—Sk)8t. When we insert these values into (3.61.3) we see that the
resulting variation vanishes. The same holds for (3.61.8).

§3.63  Simplifying approximation

The formulae of §3.61 are strictly accurate and involve no assumptions or
approximations concerning the structure of the interfacial layer. We shall see
that they can be greatly simplified by making use of our knowledge concern-
ing this layer.

In §3.39 we mentioned that, at temperatures well below the critical,
PV, is small compared with RT and may usually be ignored. In the inter-
facial layer the density is comparable to that in the liquid phase so that
©'T" is comparable to ¥, and negligible compared with V. Consequently
the terms containing the factor t— I'V% may be neglected. Formulae (3.61.3)
and (3.61.8) then reduce to, respectively,

—dy/dr=85-rs: 3.63.1
y—=Tdy[dT=US-TUL. 3.63.2
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It is worth noticing that the right side of (1) is the entropy of unit area of
surface less the entropy of the same material content of liquid and the right
side of (2) is the energy of unit area of surface less the energy of the same
material content of liquid. More pictorially we may say that when unit area
of surface is created isothermally and reversibly, the work done on the
system is 7, the heat absorbed by the system is the right side of (1) multi-
plied by 7, and the increase of energy, the sum of these two quantities, is
equal to the right side of (2).

If however we are making the above simplifying approximations, then by
making them at an earlier stage we can considerably simplify the derivations.
We accordingly replace (3.61.1) by the approximation

—dy=S85dT+TI'du 3.63.3
and (3.61.2) by the approximation
dy=—-SLdT=SSdT+RTdIn P. 3.63.4
Eliminating du from (3) and (4) we obtain immediately
—dy=(85—TISk)dT 3.63.5

in agreement with (1).
Furthermore we replace (3.61.4) by the approximation
u=UL—TSE 3.63.6
and (3.61.6) by the approximation
Tu=U$—-TS5—y. 3.63.7
Eliminating S§ and Sk, from (5), (6), and (7) we recover (2).
We conclude this discussion with a warning against indiscriminately using

the simplified formulae of this section in the neighbourhood of the critical
point. The necessary condition for their use is that

M —VegVE—vk 3.63.8

In the neighbourhood of the critical temperature VX becomes nearly as
great as V'S and this condition may no longer be taken for granted.

§3.64 Vapour pressure of small drops

Figure 3.14 represents a small spherical drop and a portion of liquid in
bulk both at the same temperature. We denote the interiors of these liquid
phases by o, B respectively and the vapour immediately outside them by
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o', B’ respectively. Let us assume that the external pressures P* and P* are
equal, that is
P*=P". 3.64.1

Then, according to (1.60.9) the pressure P® at the interior a of the drop is
greater than that P® of the liquid in bulk by

P*—PP=2y/a 3.64.2

where 4 is the radius of the drop. But according to (3.46.11) the fugacity p
is related to the pressure P by

dIn p/dP=VX/RT. 3.64.3

/3/

Fig. 3.14. Vapour pressure of droplet

If then we neglect the compressibility of the liquid, the fugacity p® of the
liquid in the drop is related to the fugacity p® of the liquid in bulk by

RT In(p*/p®?)=(P*— P*)Vy. 3.64.4
Comparing (2) and (4) we find
RT In(p*/p*)=2yV}/a. 3.64.5

We see then that at the same external pressure the small drop always has a
greater fugacity than the bulk liquid. Vapour will distil from the drop to the
liquid and as the drop becomes smaller its fugacity increases still more.
Thus small drops are essentially unstable relatively to the liquid in bulk.

§3.65 Empirical temperature dependence of surface tension

Since the surface tension of a liquid decreases with increasing temperature
and vanishes at the critical point, the simplest possible form of empirical
relation between y and T is

y=yo(1=T/T)'*" 3.65.1

where y, and r are constants. For the substances having the simplest and
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most symmetrical molecules such as Ne, Ar, Xe, N,, O, excellent agreement
with the experimental data is obtained with =2 as is shown in table 3.11.
The data at the foot of this table will be discussed in §3.66.

The reason for the particular choice r=% will be explained shortly.
Ferguson* in a review of the experimental data for ten esters and four other
organic compounds found r=0.210£0.015, which does not differ significant-
ly from the value Z adopted above.

Another type of formula relates the surface tension to the coexisting
proper volumes V" of the liquid and ¥ of the vapour. The simplest satis-
factory formula of this type is the following

vy }c(1-T/T,) 3.65.2
where y is defined in terms of densities ¢ by
yVe=(e"-e%/e.. 3.65.3

This formula, due to Katayama', is a striking improvement over the older
and less accurate formula of Edtvos, which contained V" instead of y~ 1.
This was shown by Katayama for various organic compounds and we shall
now verify that this is also the case for the substances having the simplest
molecules.

In §3.48 we verified that the substances having the simplest molecules
follow with a high degree of accuracy formula (3.48.7), namely

(€"~e%)/e.=3(1-T/T)*. 3.65.4
Using the definition (3) of y, this can be written
yoc(1=T/T). 3.65.5
If we now eliminate y between (2) and (5), we obtain
yoo(L=T/T)® 3.65.6

of the form (1) with r=3. It follows that the verification of (6) in table 3.11
and the verification of (4) in figure 3.11 together constitute a verification
of (2).

If instead of eliminating y between (2) and (5), we eliminate 7T, between
the same formulae we obtain

yocy? . 3.65.7

* Ferguson, Trans. Faraday Soc. 1923 19 407; Proc. Phys. Soc. London 1940 52 759.
t Katayama, Sci. Rep. Téhoku Univ. 1916 4 373.
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The better known relation of Macleod* with an index 4 instead of 13 is less
accurate, at least for the substances having the simplest molecules. Actually
for the half dozen organic compounds considered by Macleod it is clear that
y in fact varies as some power of y less than 4.

§3.66 Corresponding states of surface tension

The principle of corresponding states, so far as it is applicable at all to
surfaces, can on physical grounds be expected to hold only for subtances
having the simplest and most symmetrical molecules.

According to the principle it is clear from dimensional considerations
that yV2 T ! should be a common function of T/T, for substances obeying
the principle. In particular, if these substances obey (3.65.1) then y, V2T,
should have a common value. The data' at the bottom of table 3.11 show
that this is in fact the case within about + 2% for Ar, Xe, N,, O, while
the value for Ne deviates by rather less than 10 %,.

More recent measurements’ are summarized in table 3.12.

TABLE 3.12
Ar N, CH,
Yo/dyne cm-? 37.78 28.12 39.08
Yo V3T erg K-+ mole—# 4.25 4.48 4.39

§3.67 Sorption of a single gas

In our discussion of the interface between a liquid and a gas the surface
area A was first introduced as an independent variable. The interfacial tension
y was then introduced through the relation

w=yd4. 3.67.1

Both 4 and y are well defined measurable quantities. The situation for a
solid—gas interface is altogether different. The area of the interface may be
difficult, if not impossible, to measure accurately especially if the solid is
porous or a powder. Furthermore the surface area can not be varied rever-
sibly and consequently there is no relation such as (1). There is no quantity

* Macleod, Trans. Faraday Soc. 1923 19 38.

t Guggenheim, J. Chem. Phys. 1945 13 259. Guggenheim, Proc. Phys. Soc. London
1965 85 8i11.

t Sprow and Prausnitz, Trans. Faraday Soc. 1966 62 1102.
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analogous to interfacial tension. For discussing the equilibrium between a
gas and a solid—gas interface a completely different approach is called for.

The name sorption was coined by McBain* to include as special cases
absorption and adsorption which should be restricted to proven cases of
solution and surface condensation respectively.

In the following discussion of sorption we shall assume that the sorbed
gas is a single substance, but no restriction will be placed on the nature of
the sorbent except that we assume absence of hysteresis. In other words
we shall consider the equilibrium between a single gas and a sorbent which
may be a piece of platinum gauze, a lump of impure charcoal, or some pow-
dered glass, or in fact almost anything.

The first question to be considered is how to measure sorption. This may
be done by a sorption balance. Essentially the sorbent is suspended on a
spring balance so that its weight, and thence its mass, can be compared in
vacuo and in equilibrium with a surrounding gas at a given temperature
and pressure. If no correction is applied for the buoyancy due to the surround-
ing gas, the apparent increase in mass recorded by the balance is equal to
that of the excess quantity of the sorbed substance due to sorption over and
above the quantity which would be contained in the same volume, at the
same temperature and pressure, in the absence of the sorbent. This mass
divided by the proper mass of the gas is equal to the excess amount of the
sorbed substance due to sorption over and above the amount of the gas
which would be contained in the same volume, at the same temperature and
pressure, in the absence of the sorbent. We denote this amount by #* and
we shall call »* the sorbed excess. This quantity is the simplest and most
convenient measure of sorption. At a first approach it might seem that a
simpler quantity would be the amount of sorbed substance contained by
the sorbent. Such a quantity would have to be calculated by adding to »*
the quantity oV °/M where g is the density of the gas, M is the proper mass
of the gas, and V*®is the volume of the sorbent. On reflection it becomes clear
that V* is a rather vague quantity, difficult if not impossible to measure
accurately especially if the sorbent is porous or a powder. This difficulty is
completely avoided by using #®, without any buoyancy correction as our
measure of sorption. We shall adopt this approach and shall consider how
n* is related to the temperature and pressure.

§3.68 Temperature dependence of sorption

We consider a vessel of volume V containing the sorbent and a fixed amount
* McBain, Phil. Mag. 1909 18 916.
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n of the sorbate at the temperature T"and pressure P. If V', denotes the proper
volume of gaseous sorbate, then according to the definition of #* in the pre-
vious section we have

V=(n-n*)V,. 3.68.1

We now combine Maxwell’s relation (1.47.4) with (1) and obtain
—(0S/0P)r=(0V/0T)p=(n—n*)0V,/0T)p—(0n*[OT)pV,,  3.68.2

and consequently
— (3S/0n")y = — (0S/0P) (OP/on")y

=(n—n")(0V,/OT)p(OP/0n*)y — (0n*[OT)p V(0P [ON")
=(n—n*)(0V,/0T)p(0P/On*)r +(OP[OT )pa Vip - 3.68.3
We now compare our system with another system consisting of a vessel of
the same volume V containing the same gas at the same temperature and
pressure but without any sorbent. We shall use dashed symbols for quantities

relating to this second system when they may differ from those relating to
the first system. We have then

n'=n—n® 3.68.4

Moreover since both systems are in equilibrium and the gas is in identical

conditions we have also
w=pn 3.68.5

If now we denote by AS,, the entropy increase in the first system per unit
decrease of n* brought about by decreasing the pressure, we have according
to (3)

AS . =(n—n")(0V,/oT)p(0P/0n*)r+(OP[OT )y Vyy - 3.68.6

If further we denote by A’S the entropy increase in the second system
corresponding to the same decrease in pressure, we have

A'S,,=n'(8V,,/0T)p(0P/On%);. 3.68.7
Subtracting (7) from (6) and using (4) we obtain
AS,—A'S,=(3P0T),.V,, 3.68.8
or
TAS,,— TA’'S,=T(3P/0T),V, 3.68.9

It follows immediately from (5) that
Ap=Ayu 3.68.10
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and so subtracting (10) from (9) we obtain the alternative formula
AH,~A'H,=T(OP[0T ) V- 3.68.11

The left side of either (9) or (11) may be called* the equilibrium proper
enthalpy of desorption. 1t is the heat that must be supplied per unit decrease
of n® resulting from decrease of pressure under isothermal equilibrium con-
ditions less the heat that must be supplied to the second system when the
pressure is isothermally decreased by the same amount. We emphasize
that every quantity occurring in (9) and (11) is experimentally determinable
without the use of any approximation or extraneous assumption. This
contrasts with some other formulae which contain quantities such as the
surface area of the sorbent, the spreading pressure, and the volume occupied
by a sorbed molecule. Such quantities play their natural part as parameters
in a model used for a kinetic or statistical mechanical theory of sorption,
but, not being accurately measurable, they have no part in a treatment by
classical thermodynamics.

In all normal applications the pressure will be sufficiently small to justify
neglect of all virial coefficients higher than the second. We then have in

accordance with (3.19.5)
Va=RT/P+B. 3.68.12
Substituting (12) into (9) and (11) we obtain
TAS,—TA'S,,=AH,—AH,=RT?*@In P[3T),.(1+PB/RT). 3.68.13

When the term in B is negligible so that the gas is effectively perfect, (13)
reduces to a form derivable by more elementary methods.

* The derivation of these formulae was presented to the Boston University Conference on
Nucleation 1951.



