LONG WELDED RAIL

A LWR, is the rail whose central part does not undergo any longitudinal movement under temperature variations.

Normally, any length greater than 200 m on BG, and 300 m on MG will function as LWR.

Length of rail required in one direction L = (n - 1) s

Total minimum length of LWR so that central portion does not move = 2L Minimum no. of sleepers required to prevent P_f force

$$n = \frac{F}{P_f}$$
 where $F = \alpha T E_S \cdot A_S$

where,

F = Force in a fully developed rail neglecting the creep effects.

 A_S = Cross-sectional area of rail section.

 $E_S = Modulus of elasticity of rail steel.$

~2150 tonnes/sq. cm.

 α = Coefficient of linear expansion for rail steel ~0.00001152/°C

T = Change in temperature in °C.

 P_f = Force resisted by one fixtures.

S = Spacing of fixtures.

n = minimum no. of sleepers required to prevent F force